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Relative entropy: D(p|lo) := tr[p(log p — logo)] AB

APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(pallon) < c[Das(pallon) + Dpc(palloa)l +d,

for pa,on € D(Hapc), constants ¢ > 1 and d > 0, and for Dx (pa|loa) a suitable
conditional relative entropy in X C A.
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MOTIVATION

o Modified logarithmic Sobolev inequalities

Given a quantum Markov semigroup {ew} and denoting p; := e“(p), a

t>0
modified logarithmic Sobolev constant yields an inequality of the form:

D(pillo) < e D(pollo),

for o such that £L(p) = 0.

Classical spin systems: The key ingredient in modern proofs of MLSI
constants is a result of quasi-factorization or approximate tensorization of the
entropy.

Quantum systems: Can we do something similar?
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MOTIVATION

o Modified logarithmic Sobolev inequalities

Given a quantum Markov semigroup {ew}oo and denoting p; := e“(p), a

modified logarithmic Sobolev constant yields an inequality of the form:
D(pillo) < e** D(pollo),

for o such that £L(p) = 0.

Classical spin systems: The key ingredient in modern proofs of MLSI
constants is a result of quasi-factorization or approximate tensorization of the
entropy.

Quantum systems: Can we do something similar?

o Generalization of strong subadditivity

Given papc € D(Hagc), the strong subadditivity (SSA) inequality is:

S(pasc) + S(ps) < S(par) + S(psc),

where S(p) := —tr[plog p] is the von Neumann entropy.
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Quasi-factorization / Approximate tensorization of the relative entropy A = ABC A A
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

D(pnlloa) < c[Dag(palloa) + Dec(palloa)] +d

Classical quasi-factorization Cesi02
DPP02

Ent(f) < cp[Ent(f|F1) + Ent(f|F2)] S(paBc) +S(ps) < S(pas) + S(pc)

Strong subadditivity

— e PR Dec(A)]
SIICA® [Dap(A) + Dpc(A)]

CLP18
BDR20

Generalized depolarizing 1D Heat-bath generator,
R(PA) =0z & pre — PA 2 assumptions
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QUASI—FACTORIZATION FOR THE RELATIVE ENTROPY

Da(paBclloaBc) := D(paBclloaBc) — D(pscllosc) o

QUASI-FACTORIZATION FOR THE CRE (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,oaBc € Sac. The following holds

D(pasclloase) < &(oac) [Das(papclloasc) + Dec(pasclloasc)l,
where
1

&(oac) = = o
1-— QHUAI/2 ®051/2 ogaC 021/2 ®051/2 - 1lAOH

D(papclloasc) Dag(pasclloasc) Dgpc(pasclloasc)

TABC

ANl c | <&(B0) |Falel o + | 4 BBl e
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

D(pallon) < c[Dag(palloa) + Dpc(palloa)] +d

Classical quasi-factorization . Strong subadditivity

Ent(f) < e [Ent(f]F1) + Ent(f|F2)] S(pagc)

BS-entropy

: NNl |
D(pl|o) = Trlplog(p' General superadditivity 0 By, = Ep, 0 By,
< - Dy £ D1+ Dy

— CLP1g'

Quantum quasi-factorization
DY (palloa) = Dipa|EX(pa))

1
D(A) £ ——=———[DaB(A) + Dp¢
(A) < T 2[Hn)w [Das(A) + Dpe(

A(PA) = 0p ® ppe — pa

Generalized depolarizing
2 assumptions

‘ 1D Heat-bath generator,
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CONDITIONAL EXPECTATIONS

CONDITIONAL EXPECTATIONS

Let M C N and o € D(M). A linear map E : N' = M is a conditional expectation
with respect to o of N onto M if:

> For all X € NV, [|[E(X)| < |IX]|.
> For all X € M, E(X) = X.
> For all X € N, tr[c E(X)] = tr[o X].
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)

takes the form
T1a 1 1
¢ )l<b PABCHPAB ®—<]+D PABCHPBC ® =2 |.
d'HAC d'Hc d'HA

dl
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)
takes the form

T1a 1 1
D ¢ )<p PABCHPAB ® —<)|+D PABCHPBC ® 2| .
d'HAC d'Hc d'HA

For M C N1,Na C N, if EM Eq, Ey are the conditional expectations onto M, N7, Na,

respectively, we have

D(pllEM(p)) < D(p||E1«(p)) + D(pl| E24(p)) & E1x 0 Eax = Eay 0 E1 = EM .
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)

takes the form
T1a 1 1
D ¢ )l<b PABCHPAB ®—<]+D PABCHPBC ® =2 |.
d'HAC d'Hc d'HA

For M C N1,Na C N, if EM Eq, Ey are the conditional expectations onto M, N7, Na,

respectively, we have

D(pllEM(p)) < D(p||E1«(p)) + D(pl| E24(p)) & E1x 0 Eax = Eay 0 E1 = EM .
Define E 4, := lim el Then,
t—o00

D(pl|[Eaur«(p)) < D(pl|Eax(p)) + D(pllEB«(p)) < Eaxo Epx = Epx 0 Eax = EauB« -
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)

takes the form
T1a 1 1
D ¢ )l<b PABCHPAB ®—<]+D PABCHPBC ® =2 |.
d'HAC d'Hc d'HA

For M C N1,Na C N, if EM Eq, Ey are the conditional expectations onto M, N7, Na,

respectively, we have

D(pllEM(p)) < D(p||E1«(p)) + D(pl| E24(p)) & E1x 0 Eax = Eay 0 E1 = EM .
Define E 4, := lim el Then,
t—o00
D(pllBaus«(p)) < D(pllEax(p)) + D(pllEp«(p)) < Eax o Ep« = Ep« 0 Eax = Eaub« -

In general, we present conditions in (Bardet-C.-Rouzé ’21) for which

D(pllEaup«(p)) < c[D(pllEax(p)) + D(pl|lEp«(p))] +d
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy N="ABE

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization Strong subadditivity

Ent(f) < cp [Ent(f|F1) + Ent(f|F2)] S(pagc) +S(p) < S(pas) + S(psc)

D= D(pl| EM(p))

BS-entropy
. bt o M
D(plla) = Tr[plog(p**a ™ p" General superadditivity E1y0 By = Ep 0 Er = E}

s Dm < D1+ D;
~ CLP18'

BCR20

. L20
D (pallon)

D(pa|EX(pa))
m 1

Pinching onto
different bases

L(X) = Fy(X)
LB = B

BDR20 v

Generalized depolarizing
7\(/’1\) =03 Q pee — PA

1D Heat-bath generator,
2 assumptions
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MAIN RESULTS

Take M C N1,N> C N and EM7 FE1, E5 the conditional expectations onto
M, N1, Na, respectively.
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MAIN RESULTS

Take M C N1,N> C N and EM7 FE1, E5 the conditional expectations onto
M, N1, Na, respectively.

For classical systems, these inequalities take the form

[D(pllEr«(p)) + D(pl B2+ (p))] 5

D(pIEM () < 75

where 0 = EM (o) and

c1 = HEl o Ey — EM 1Ly (0) —>ILOO(./\/’)H
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MAIN RESULTS

Take M C N1,N> C N and EM7 FE1, E5 the conditional expectations onto
M, N1, Na, respectively.

For classical systems, these inequalities take the form

D(pl|E (p)) <

5 DI (9) + D(el|Eae (o)),

where 0 = EM (o) and

c1 = HEl o Ey — EM 1Ly (0) —>ILOO(./\/’)H

For quantum systems, we have in general
D(p| EX (p)) < c[D(pllEr«(p)) + D(pl| E2x(p))] +d,

where:
o d measures the correction from the classical case.

o c is a finite-temperature relaxation from ¢ = 1.
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MAIN RESULTS

Take M C N1,N> C N and EM7 FE1, E5 the conditional expectations onto
M, N1, Na, respectively.

For classical systems, these inequalities take the form

D(pl| B (p)) < [D(pllEr«(p)) + D(pl B2+ (p))] 5

1-— 261
where 0 = EM (o) and

c1 = HEl o Ey — EM 1Ly (0) —>ILOO(./\/’)H

For quantum systems, we have in general
D(p| EX (p)) < c[D(pllEr«(p)) + D(pl| E2x(p))] +d,

where:
o d measures the correction from the classical case.

o c is a finite-temperature relaxation from ¢ = 1.

Whenever d = 0, we say that the result is strong.
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MAIN RESULTS

APPROXIMATE TENSORIZATION UNDER CHANGE OF MEASURE

Consider E®M Efo), Eéo) the doubly stochastic conditional expectations onto
M, N1, Na, respectively. Assume that:

D(pl| B (p)) < D(plE (p)) + D(pllEY (p)) +d.

Then, it holds:

Amex(O) | 11 Bra(p)) + D(pllEze (0))] + Amax() dae d.

D(pl|lEX(p)) < m
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MAIN RESULTS

APPROXIMATE TENSORIZATION VIA PINCHING

As M CBH),if H= P H:®K;, then M = @B ) ® 1x,. Given a state p,

i€ pm

1€ p
consider P,,,, the Pinching map with respect to EM(p). We have:

D(p|l B (p)) < - [D(pl| Er+(p)) + D(pl| B2 (p))] + ¢ (El*(p%Ez*(pLEy(p)) :

1-—2
where

)

CIE= maxHE( Yo B — (M Ly (1) — ILOO(N)'

i€l p

and & (E1+(p), E2«(p), EM (p)) strongly depends on P,,,.
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MAIN RESULTS

APPROXIMATE TENSORIZATION VIA PINCHING

As M CBH),if H= P H:®K;, then M = @B ) ® 1x,. Given a state p,

i€ pm

1€ p
consider P,,,, the Pinching map with respect to EM(p). We have:

D(p|l " (p)) < 1 71201 [D(pl| Ers(p)) + D(pl| B2« (p))] + € (El*(p%Ez*(pLEy(p)) :

where

)

CIE= maxHE( Yo B — (M Ly (1) — ILOO(N)'

i€l p

and & (E1+(p), E2«(p), EM (p)) strongly depends on P,,,.

Important tools used in the proof:
o Multivariate trace inequalities (Sutter-Berta-Tomamichel ’17)
+oo

trlexp(Hy + Hz + H3)] < /

dt Bo(t) tr [eHl e 2 H2 oHs elEitH2] .
— o0

o Chain rule for the relative entropy (Ohya-Petz '04,

3

Junge-Laracuente-Rouzé '20): If o = E. (o), then
D(pllo) = D(pl|E«(p)) + D(Ex(p)||o) -
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Some applications of these results are the following:

o MLSI for Pinching onto different bases.
In this paper.

o MLSI in more general contexts.
In subsequent papers.

o Uncertainty relations.
In this paper.
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MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘e}(cl)>} X {‘el(f)>} orthonormal bases.
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MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘e}(cl)>} X {‘el(f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.
} and EM = %TrH.

For i € {1,2}, E; denotes the Pinching map onto span {‘eg)> <e§j)



{‘e}(cl)>} X {‘el(f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.

For i € {1,2}, E; denotes the Pinching map onto span {‘eg)> <e§j)

(1) 4]

} and EM = %TrH.

Denote:

€ := {max
k,k’




{‘e}(cl)>} X {‘el(f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.

For i € {1,2}, E; denotes the Pinching map onto span {‘eg)> <e§j)

(1) 4]

Denote:

€ 7Zmax
k,k

Then,

D(plle™'1) <

1—2¢
and subsequently
L(X) = E1(X) + E2(X) —2X .
has MLSI(1 — 2¢).

} and EM = %TrH.

(D(pl|E1x(p)) + D(pll E2x(p))) ,
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A=

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization , Strong subadditivity

Ent(f) < cp [Ent(f|F1) + Ent(f|F2)] S(papc) +S(pB) < S(pas) + S(pc)

= D(palloa) = D(pacloae) MM CN
BS-entropy - Y
13(/7\\”) = Tr[plog(p"/%0~1p!/? Eijvo0 = FEo 0B = E;,M
: Dy < Dy + D

<l CLP18'

Quantum quasi-factorization
1
2[[H (o)l

Di(palloa)

D(pal|EX(pa)) Pinching onto
different bases
L(X) := Ey(X)

LIACR) = DT

[DaB(A) + Dpe(A)]

2 assumptions,
Dy < ¢[Dy + Dy

BRS20

BDR20 I TR .
Generalized depolarizing 1D Heat-bath generator, g fl:lljassmal
Alpa) = 00 ® pae — pa 2 assumptions e
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APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY

AnAl 2

APPROXIMATE TENSORIZATION (C.-Rouzé-Stilck Franca ’20)

Let £ be a Gibbs sampler corresponding to a commuting potential. Assume further that the
family £ satisfies some conditions of clustering of correlations and on the fixed points of the

generator. Then, for any C, D € S such that C,D Cc A cc z% with
2¢|C'U D|exp( — W) <1, and all p € D(Hnp),
1
D(wl|Eoups(w)) < — ey (P@lEcs() + D@IEp.(w)))
1—2c|CUDlJe 3

with w := Eznqax(p).

Here, we show that a condition on the fixed points of the generator and a condition of
decay of correlations imply

d=0,cn~ 1+ne_d(C\D*D\C) .



TIGHTENED ENTROPIC UNCERTAINTY RELATIONS

Given two POVMs X := {X,}, and Y := {Y, }, on a quantum system A, and in the
presence of side information M, for any bipartite state p € D(Ha ® Hu),

S(X|M)@xwidr) ) + ST M) @y gidp)(p) = —Inc’ + S(A|IM),,

with ¢ = max, ,{tr(X, Y:)}, where ®z denotes the quantum-classical channel
corresponding to the measurement Z € {X,Y}:

z(pa) i= 3 tr(paZs) |2zl

z

ENTROPIC UNCERTAINTY RELATION

(Frank-Lieb ’13) Given a finite alphabet Z € {X, Y}, let Ez denote the Pinching
channels onto the orthonormal basis {|e§z)>}ze z corresponding to the measurement
Z. Assume further that c; = da max, y ||<e§c)()|e§,y)>|2 = i| < 1. Then the following

strenghtened entropic uncertainty relation holds for any state p € D(Ha),

S(X)Ex) +SY)Ey() =2 (1+c1)S(A)p+ (1 —c1)lnda.
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In this talk:
e Review on results of approximate tensorization of the relative entropy.

e Main results based on change of measure and Pinching arguments.
Interpretation of the error terms in each case.

o Application of such results of approximate tensorization of the relative entropy
to prove MLSI and uncertainty relations.

Open problems:
o Can we improve the additive and multiplicative terms?

o Extension to different entropic quantities.

For further information, see 2001.07981.
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