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Cambyse Rouzé (T. U. München).

Based on arXiv: 2001.07981 (accepted in Annales Henri Poincaré).
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Approximate tensorization of the relative entropy

Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

Approximate tensorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ c [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] + d ,

for ρΛ, σΛ ∈ D(HABC), constants c ≥ 1 and d ≥ 0, and for DX(ρΛ‖σΛ) a suitable
conditional relative entropy in X ⊂ Λ.
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Motivation

Modified logarithmic Sobolev inequalities

Given a quantum Markov semigroup
{

etL
}
t≥0

and denoting ρt := etL(ρ), a

modified logarithmic Sobolev constant yields an inequality of the form:

D(ρt‖σ) ≤ e−tα(L) D(ρ0‖σ) ,

for σ such that L(ρ) = 0.

Classical spin systems: The key ingredient in modern proofs of MLSI
constants is a result of quasi-factorization or approximate tensorization of the
entropy.

Quantum systems: Can we do something similar?

Generalization of strong subadditivity

Given ρABC ∈ D(HABC), the strong subadditivity (SSA) inequality is:

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) ,

where S(ρ) := − tr[ρ log ρ] is the von Neumann entropy.
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Quasi-factorization for the relative entropy

DA(ρABC ||σABC) := D(ρABC ||σABC)−D(ρBC ||σBC)

Quasi-factorization for the CRE (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Conditional expectations

Conditional expectations

Let M⊂ N and σ ∈ D(M). A linear map E : N →M is a conditional expectation
with respect to σ of N onto M if:

I For all X ∈ N , ‖E(X)‖ ≤ ‖X‖.
I For all X ∈M, E(X) = X.

I For all X ∈ N , tr[σE(X)] = tr[σX].
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Generalization of strong subadditivity

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai ’73)
takes the form

D

(
ρABC

∥∥∥ρB ⊗ 1AC

dHAC

)
≤ D

(
ρABC

∥∥∥ρAB ⊗ 1C

dHC

)
+D

(
ρABC

∥∥∥ρBC ⊗ 1A

dHA

)
.

For M⊂ N1,N2 ⊂ N , if EM, E1, E2 are the conditional expectations onto M,N1,N2,

respectively, we have

D(ρ‖EM∗ (ρ)) ≤ D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ)) ⇔ E1∗ ◦ E2∗ = E2∗ ◦ E1∗ = EM∗ .

Define EA∗ := lim
t→∞

etL
∗
A . Then,

D(ρ‖EA∪B∗(ρ)) ≤ D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ)) ⇔ EA∗ ◦ EB∗ = EB∗ ◦ EA∗ = EA∪B∗ .

In general, we present conditions in (Bardet-C.-Rouzé ’21) for which

D(ρ‖EA∪B∗(ρ)) ≤ c [D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ))] + d
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Main results

Take M⊂ N1,N2 ⊂ N and EM, E1, E2 the conditional expectations onto
M,N1,N2, respectively.

For classical systems, these inequalities take the form

D(ρ‖EM∗ (ρ)) ≤ 1

1− 2c1
[D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] ,

where σ = EM∗ (σ) and

c1 :=
∥∥E1 ◦ E2 − EM : L1(σ)→ L∞(N )

∥∥ .

For quantum systems, we have in general

D(ρ‖EM∗ (ρ)) ≤ c [D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] + d ,

where:

d measures the correction from the classical case.

c is a finite-temperature relaxation from c = 1.

Whenever d = 0, we say that the result is strong.



Introduction and motivation Approximate tensorization of the relative entropy Applications

Main results

Take M⊂ N1,N2 ⊂ N and EM, E1, E2 the conditional expectations onto
M,N1,N2, respectively.

For classical systems, these inequalities take the form

D(ρ‖EM∗ (ρ)) ≤ 1

1− 2c1
[D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] ,

where σ = EM∗ (σ) and

c1 :=
∥∥E1 ◦ E2 − EM : L1(σ)→ L∞(N )

∥∥ .
For quantum systems, we have in general

D(ρ‖EM∗ (ρ)) ≤ c [D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] + d ,

where:

d measures the correction from the classical case.

c is a finite-temperature relaxation from c = 1.

Whenever d = 0, we say that the result is strong.



Introduction and motivation Approximate tensorization of the relative entropy Applications

Main results

Take M⊂ N1,N2 ⊂ N and EM, E1, E2 the conditional expectations onto
M,N1,N2, respectively.

For classical systems, these inequalities take the form

D(ρ‖EM∗ (ρ)) ≤ 1

1− 2c1
[D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] ,

where σ = EM∗ (σ) and

c1 :=
∥∥E1 ◦ E2 − EM : L1(σ)→ L∞(N )

∥∥ .
For quantum systems, we have in general

D(ρ‖EM∗ (ρ)) ≤ c [D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] + d ,

where:

d measures the correction from the classical case.

c is a finite-temperature relaxation from c = 1.

Whenever d = 0, we say that the result is strong.



Introduction and motivation Approximate tensorization of the relative entropy Applications

Main results

Take M⊂ N1,N2 ⊂ N and EM, E1, E2 the conditional expectations onto
M,N1,N2, respectively.

For classical systems, these inequalities take the form

D(ρ‖EM∗ (ρ)) ≤ 1

1− 2c1
[D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] ,

where σ = EM∗ (σ) and

c1 :=
∥∥E1 ◦ E2 − EM : L1(σ)→ L∞(N )

∥∥ .
For quantum systems, we have in general

D(ρ‖EM∗ (ρ)) ≤ c [D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] + d ,

where:

d measures the correction from the classical case.

c is a finite-temperature relaxation from c = 1.

Whenever d = 0, we say that the result is strong.



Introduction and motivation Approximate tensorization of the relative entropy Applications

Main results

Approximate Tensorization under change of measure

Consider E(0),M, E
(0)
1 , E

(0)
2 the doubly stochastic conditional expectations onto

M,N1,N2, respectively. Assume that:

D(ρ‖E(0),M
∗ (ρ)) ≤ D(ρ‖E(0)

1∗ (ρ)) +D(ρ‖E(0)
2∗ (ρ)) + d .

Then, it holds:

D(ρ‖EM∗ (ρ)) ≤ λmax(σ)

λmin(σ)
[D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] + λmax(σ) dH d .
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Main results

Approximate Tensorization via Pinching

As M⊂ B(H), if H =
⊕
i∈IM

Hi ⊗Ki, then M =
⊕
i∈IM

B(Hi)⊗ 1Ki . Given a state ρ,

consider PρM , the Pinching map with respect to EM∗ (ρ). We have:

D(ρ‖EM∗ (ρ)) ≤ 1

1− 2c1
[D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))] + ξ

(
E1∗(ρ), E2∗(ρ), EM∗ (ρ)

)
,

where

c1 := max
i∈IM

∥∥∥E(i)
1 ◦ E

(i)
2 − (EM)(i) : L1(τi)→ L∞(N )

∥∥∥ ,
and ξ

(
E1∗(ρ), E2∗(ρ), EM∗ (ρ)

)
strongly depends on PρM .

Important tools used in the proof:

Multivariate trace inequalities (Sutter-Berta-Tomamichel ’17)

tr[exp(H1 +H2 +H3)] ≤
∫ +∞

−∞
dt β0(t) tr

[
eH1 e

1+it
2

H2 eH3 e
1−it

2
H2

]
.

Chain rule for the relative entropy (Ohya-Petz ’04,
Junge-Laracuente-Rouzé ’20): If σ = E∗(σ), then

D(ρ‖σ) = D(ρ‖E∗(ρ)) +D(E∗(ρ)‖σ) .
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Applications

Some applications of these results are the following:

MLSI for Pinching onto different bases.
In this paper.

MLSI in more general contexts.
In subsequent papers.

Uncertainty relations.
In this paper.
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MLSI for Pinching onto different bases

{∣∣∣e(1)
k

〉}
,
{∣∣∣e(2)

k

〉}
orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1`.

For i ∈ {1, 2}, Ei denotes the Pinching map onto span
{∣∣∣e(i)k 〉〈e(i)k ∣∣∣} and EM = 1

`
Tr[·].

Denote:

ε := `max
k,k′

∣∣∣∣∣∣∣〈e(1)
k

∣∣e(2)
k′

〉∣∣∣2 − 1

`

∣∣∣∣ .
Then,

D(ρ‖`−11) ≤
1

1− 2ε
(D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))) ,

and subsequently

L(X) := E1(X) + E2(X)− 2X .

has MLSI(1− 2ε).
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Approximate tensorization of the relative entropy

Approximate tensorization (C.-Rouzé-Stilck França ’20)

Let L be a Gibbs sampler corresponding to a commuting potential. Assume further that the
family L satisfies some conditions of clustering of correlations and on the fixed points of the

generator. Then, for any C,D ∈ S̃ such that C,D ⊂ Λ ⊂⊂ Zd with

2c |C ∪D| exp
(
− d(C\D,D\C)

ξ

)
< 1, and all ρ ∈ D(HΛ),

D(ω‖EC∪D∗(ω)) ≤
1

1− 2c |C ∪D| e−
d(C\D,D\C)

ξ

(
D(ω‖EC∗(ω)) +D(ω‖ED∗(ω))

)
,

with ω := EA∩Λ∗(ρ).

Here, we show that a condition on the fixed points of the generator and a condition of
decay of correlations imply

d = 0, c ∼ 1 + κ e− d(C\D,D\C) .
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Tightened entropic uncertainty relations

Given two POVMs X := {Xx}x and Y := {Yy}y on a quantum system A, and in the
presence of side information M , for any bipartite state ρ ∈ D(HA ⊗HM ),

S(X|M)(ΦX⊗idM )(ρ) + S(Y |M)(ΦY⊗idM )(ρ) ≥ − ln c′ + S(A|M)ρ ,

with c′ = maxx,y{tr(Xx Yx)}, where ΦZ denotes the quantum-classical channel
corresponding to the measurement Z ∈ {X,Y}:

ΦZ(ρA) :=
∑
z

tr(ρAZz) |z〉〈z|Z .

Entropic uncertainty relation

(Frank-Lieb ’13) Given a finite alphabet Z ∈ {X ,Y}, let EZ denote the Pinching

channels onto the orthonormal basis {|e(Z)
z 〉}z∈Z corresponding to the measurement

Z. Assume further that c1 = dA maxx,y
∣∣|〈e(X )

x |e(Y)
y 〉|2 − 1

dA

∣∣ < 1. Then the following

strenghtened entropic uncertainty relation holds for any state ρ ∈ D(HA),

S(X)EX (ρ) + S(Y )EY (ρ) ≥ (1 + c1)S(A)ρ + (1− c1) ln dA .
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Conclusions

In this talk:

Review on results of approximate tensorization of the relative entropy.

Main results based on change of measure and Pinching arguments.
Interpretation of the error terms in each case.

Application of such results of approximate tensorization of the relative entropy
to prove MLSI and uncertainty relations.

Open problems:

Can we improve the additive and multiplicative terms?

Extension to different entropic quantities.

For further information, see 2001.07981.
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