

ÁNGELA CAPEL CUEVAS (ICMAT and U. Autónoma de Madrid)

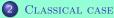
Workshop on Quantum Functional Inequalities, Toulouse

Joint work with Angelo Lucia and David Pérez-García

arXiv: 1705.03521 and 1804.09525

12 June 2018

TABLE OF CONTENTS



3 Conditional relative entropy

- Conditional relative entropy
- QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Conditional relative entropy by expectations

- Conditional relative entropy by expectations
- QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIONS

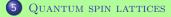


TABLE OF CONTENTS

1. INTRODUCTION

- $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ (or $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$).
- $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda})$, set of bounded linear operators.
- $\mathcal{A}_{\Lambda} \subseteq \mathcal{B}_{\Lambda}$, set of Hermitian operators.
- $\mathcal{S}_{\Lambda} := \{ f \in \mathcal{A}_{\Lambda} : f \ge 0 \text{ and } tr[f] = 1 \}.$
- $f \in \mathcal{B}_{\Lambda}$ has support on $A \subseteq \Lambda$ if $f = f_A \otimes \mathbb{1}_B$ for certain $f_A \in \mathcal{B}_A$.
- Modified partial trace: $\operatorname{tr}_A : f \mapsto \operatorname{tr}_A[f] \otimes \mathbb{1}_A$, where $\operatorname{tr}_A[f]$ has support in B.
- We denote by f_B the observable $tr_A[f]$ with support in B.

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \le \varepsilon\right\}.$$

RAPID MIXING

We say that \mathcal{L}^{\ast} satisfies $\textbf{rapid}\ \textbf{mixing}$ if

$$\sup_{\rho \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

Problem

Find bounds for the mixing time!

LOG-SOBOLEV CONSTANT

Let $\mathcal{L} : \mathcal{B}_{\Lambda} \to \mathcal{B}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** (MLSI constant) of \mathcal{L}^*_{Λ} by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

We have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$
(1)

RESULT

If $\alpha(\mathcal{L}^*_\Lambda) > 0$,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})}e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

Log-Sobolev inequality \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

▲□ → ▲□ → ▲目 → ▲目 → ▲○ → ▲○ →

INTRODUCTION

2. Classical case

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space $(\Omega, \mathcal{F}, \mu)$ and define, for every f>0, the **entropy** of f by

$$\mathsf{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Given a $\sigma\text{-algebra}\ \mathcal{G}\subseteq\mathcal{F},$ we define the **conditional entropy** of f in \mathcal{G} by

$$\mathsf{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

CLASSICAL CASE

With these definitions, the following lemma is proven:

LEMMA, Dai Pra et al. '02

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space, and $\mathcal{F}_1, \mathcal{F}_2$ sub- σ -algebras of \mathcal{F} . Suppose that there exists a probability measure $\bar{\mu}$ that makes \mathcal{F}_1 and \mathcal{F}_2 independent, $\mu \ll \bar{\mu}$ and $\mu \mid \mathcal{F}_i = \bar{\mu} \mid \mathcal{F}_i$ for i = 1, 2. Then, for every $f \geq 0$ such that $f \log f \in L^1(\mu)$ and $\mu(f) = 1$,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right]$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

CLASSICAL CASE

Problem

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

 $D(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{AB}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$

Yes! (We will see how later)

CONDITIONAL RELATIVE ENTROPY

3. Conditional relative entropy

Conditional relative entropy

QUANTUM RELATIVE ENTROPY

Let $f, g \in A_{\Lambda}$, f verifying $tr[f] \neq 0$. The **quantum relative** entropy of f and g is defined by:

$$D(f||g) = \frac{1}{\operatorname{tr}[f]} \operatorname{tr}\left[f(\log f - \log g)\right].$$
(2)

Remark

In this talk, we only consider density matrices (with trace 1). In this case, the **quantum relative entropy** is given by:

$$D(\rho||\sigma) = \operatorname{tr}\left[\rho(\log \rho - \log \sigma)\right].$$
 (3)

CONDITIONAL RELATIVE ENTROPY

PROPERTIES OF THE RELATIVE ENTROPY

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **Octinuity.** $\rho_{AB} \mapsto D(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$
- Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

CHARACTERIZATION OF THE RELATIVE ENTROPY, Wilming et al. '17

If $f: S_{AB} \times S_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. We define a **conditional relative entropy** in A as a function

 $D_A(\cdot || \cdot) : \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$

verifying the following properties for every $\rho_{AB}, \sigma_{AB} \in S_{AB}$:

- **Q** Continuity: The map $\rho_{AB} \mapsto D_A(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Non-negativity: $D_A(\rho_{AB}||\sigma_{AB}) \ge 0$ and (2.1) $D_A(\rho_{AB}||\sigma_{AB})=0$ if, and only if, $\rho_{AB} = \mathbb{E}_A^*(\rho_{AB})$.
- **③** Semi-superadditivity: $D_A(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A)$ and (3.1) Semi-additivity: if $\rho_{AB} = \rho_A \otimes \rho_B$, $D_A(\rho_A \otimes \rho_B||\sigma_A \otimes \sigma_B) = D(\rho_A||\sigma_A)$.
- Semi-monotonicity: For every quantum channel \mathcal{T} , $D_A(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB})) + D_B((\operatorname{tr}_A \circ \mathcal{T})(\rho_{AB})||(\operatorname{tr}_A \circ \mathcal{T})(\sigma_{AB}))$ $\leq D_A(\rho_{AB}||\sigma_{AB}) + D_B(\operatorname{tr}_A(\rho_{AB})||\operatorname{tr}_A(\sigma_{AB})).$

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Remark

Consider for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$

$$D_{A,B}^+(\rho_{AB}||\sigma_{AB}) = D_A(\rho_{AB}||\sigma_{AB}) + D_B(\rho_{AB}||\sigma_{AB}).$$

Then, $D_{A,B}^+$ verifies the following properties:

- **Continuity:** $\rho_{AB} \mapsto D^+_{A,B}(\rho_{AB} || \sigma_{AB})$ is continuous.
- 2 Additivity:

 $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$

O Superadditivity:

 $D_{A,B}^+(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

However, it does not satisfy the property of monotonicity.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

AXIOMATIC CHARACTERIZATION OF THE CONDIITONAL RELATIVE ENTROPY

The only possible conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$.

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

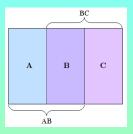


Figura: Choice of indices in $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Result of **quasi-factorization** of the relative entropy, for every $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$:

$$(1 - \xi(\sigma_{ABC}))D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}),$$

where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$. CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CRE

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$(1 - 2 \|H(\sigma_{AC})\|_{\infty}) D(\rho_{ABC} || \sigma_{ABC}) \le D_{AB}(\rho_{ABC} || \sigma_{ABC}) + D_{BC}(\rho_{ABC} || \sigma_{ABC}),$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

$$\begin{aligned} (1-2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) &\leq \\ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) &= \\ &= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}). \end{aligned}$$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_{A}||\sigma_{A}) + D(\rho_{C}||\sigma_{C}).$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

Quasi-factorization of the quantum relative entropy Conditional relative entropy

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Recall:

• Superadditivity.

 $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

 $2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$

Our result:

 $\left| (1+2\|H(\sigma_{AB})\|_{\infty}) D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) \right|.$

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CRE

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$(1 - 2 \|H(\sigma_{AC})\|_{\infty}) D(\rho_{ABC} || \sigma_{ABC}) \le D_{AB}(\rho_{ABC} || \sigma_{ABC}) + D_{BC}(\rho_{ABC} || \sigma_{ABC}),$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Step 1

$$D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) - \log \operatorname{tr} M, \quad (4)$$

where $M = \exp \left[\log \sigma_{AB} - \log \sigma_A \otimes \sigma_B + \log \rho_A \otimes \rho_B \right]$.

It holds that:

$$D(\rho_{AB}||\sigma_{AB}) - [D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})] =$$

$$= \operatorname{tr}\left[\rho_{AB}\left(\log \rho_{AB} - \underbrace{(\log \sigma_{AB} - \log \sigma_{A} \otimes \sigma_{B} + \log \rho_{A} \otimes \rho_{B})}_{\log M}\right)\right]$$

$$= D(\rho_{AB}||M) \ge -\log \operatorname{tr} M.$$

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Step 2

$$\log \operatorname{tr} M \leq \operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)], \tag{5}$$

where

$$L(\sigma_{AB}) = \mathcal{T}_{\sigma_A \otimes \sigma_B} (\sigma_{AB}) - \mathbb{1}_{AB}.$$

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ● ○ ○ ○ ○

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

THEOREM (LIEB)

Let g a positive operator, and define

$$\mathcal{T}_g(f) = \int_0^\infty \mathrm{d}t \, (g+t)^{-1} f(g+t)^{-1}.$$

 \mathcal{T}_g is positive-semidefinite if g is. We have that

$$\operatorname{tr}[\exp(-f+g+h)] \le \operatorname{tr}\left[e^{h}\mathcal{T}_{e^{f}}(e^{g})\right].$$

We apply Lieb's theorem to the previous equation :

$$\operatorname{tr} M \leq \operatorname{tr} [\rho_A \otimes \rho_B \mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB})] = \operatorname{tr} \left[\rho_A \otimes \rho_B \underbrace{\left(\mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB}) - \mathbb{1}_{AB} \right)}_{L(\sigma_{AB})} \right] + \underbrace{\operatorname{tr} [\rho_A \otimes \rho_B]}_{1}.$$

By using the fact $log(x) \leq x - 1$, we conclude

 $\log \operatorname{tr} M \leq \operatorname{tr} M - 1 \leq \operatorname{tr} [L(\sigma_{AB}) \rho_A \otimes \rho_B].$

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

LEMMA (SUTTER ET AL.)

For $f \in S_{AB}$ and $g \in A_{AB}$ the following holds:

$$\mathcal{T}_{g}(f) = \int_{-\infty}^{\infty} dt \,\beta_{0}(t) \, g^{\frac{-1-it}{2}} \, f \, g^{\frac{-1+it}{2}},$$

with

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

Lemma

For every operator $O_A \in \mathcal{B}_A$ and $O_B \in \mathcal{B}_B$ the following holds:

$$\operatorname{tr}[L(\sigma_{AB}) \, \sigma_A \otimes O_B] = \operatorname{tr}[L(\sigma_{AB}) \, O_A \otimes \sigma_B] = 0.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - ∽へ⊙

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Step 3

$$\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \le 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} || \sigma_{AB}).$$
(6)

In virtue of Hölder's inequality and tensorization of Schatten norms,

$$tr[L(\sigma_{AB}) (\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \leq \\ \|L(\sigma_{AB})\|_{\infty} \|(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)\|_1 \\ = \|L(\sigma_{AB})\|_{\infty} \|\rho_A - \sigma_A\|_1 \|\rho_B - \sigma_B\|_1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

THEOREM (PINSKER)

For ρ_{AB} and σ_{AB} density matrices, it holds that

$$|\rho_{AB} - \sigma_{AB}||_1^2 \le 2D(\rho_{AB}||\sigma_{AB}).$$

Using Pinsker's theorem and the data-processing inequality, we can conclude:

 $\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \leq 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} || \sigma_{AB}).$

CONDITIONAL RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Step 4

$$\left\|L(\sigma_{AB})\right\|_{\infty} \leq \left\|\sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty}.$$
(7)

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

4. Conditional relative entropy by expectations

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

WEAK CONDITIONAL RELATIVE ENTROPY

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. We define a weak conditional relative entropy in A as a function

 $D_A(\cdot || \cdot) : \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$

verifying the following properties for every $\rho_{AB}, \sigma_{AB} \in S_{AB}$:

Continuity: The map ρ_{AB} → D_A(ρ_{AB}||σ_{AB}) is continuous.
Non-negativity: D_A(ρ_{AB}||σ_{AB}) ≥ 0 and
(2.1) D_A(ρ_{AB}||σ_{AB})=0 if, and only if, ρ_{AB} = ℝ^{*}_A(ρ_{AB}).
Semi-superadditivity: D_A(ρ_{AB}||σ_A ⊗ σ_B) ≥ D(ρ_A||σ_A) and
(3.1) Semi-additivity: if ρ_{AB} = ρ_A ⊗ ρ_B, D_A(ρ_A ⊗ ρ_B||σ_A ⊗ σ_B) = D(ρ_A||σ_A). CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

MINIMAL CONDITIONAL EXPECTATION

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\sigma_{AB} \in \mathcal{S}_{AB}$, $f_{AB} \in \mathcal{A}_{AB}$. We define the **minimal conditional expectation** of σ_{AB} on A by

$$\mathbb{E}_{A}^{\sigma}(f_{AB}) := \operatorname{tr}_{A}[\eta_{A}^{\sigma}f_{AB}\,\eta_{A}^{\sigma\dagger}],\tag{8}$$

where $\eta_A^{\sigma} := (\operatorname{tr}_A[\sigma_{AB}])^{-1/2} \sigma_{AB}^{1/2}$.

For $\rho_{AB} \in \mathcal{S}_{AB}$, $(\mathbb{E}_A^{\sigma})^*$ (hereafter denoted by \mathbb{E}_A^*) is given by

$$\mathbb{E}_{A}^{*}(\rho_{AB}) := \sigma_{AB}^{1/2} \sigma_{B}^{-1/2} \rho_{B} \sigma_{B}^{-1/2} \sigma_{AB}^{1/2}.$$
 (9)

It coincides with the Petz recovery map for the partial trace.

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in S_{AB}$. Let \mathbb{E}_A^* be defined as above. We define the **conditional relative entropy by** expectations of ρ_{AB} and σ_{AB} in A by:

$$D_A^E(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\mathbb{E}_A^*(\rho_{AB})).$$

PROPERTY

 $D_A^E(\rho_{AB}||\sigma_{AB})$ is a weak conditional relative entropy.

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Problem

Under which conditions holds

$$D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB})?$$

EXAMPLES

• If
$$[\rho_B, \sigma_{AB}] = [\rho_B, \sigma_B] = [\sigma_B, \sigma_{AB}] = 0$$
,
 $D_A(\rho_{AB} || \sigma_{AB}) = D_A^E(\rho_{AB} || \sigma_{AB})$.

2 If $\sigma = \sigma_A \otimes \sigma_B$, then

$$D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB}).$$

In general, it is an open question.

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

RELATION WITH THE CLASSICAL CASE

	STATES		OBSERVABLES
QUANTUM	$D(ho_{AB} \sigma_{AB})$	$f_{AB} = \Gamma_{\sigma_{AB}}^{-1}(\rho_{AB})$	$\mathrm{tr}[\sigma_{AB}f_{AB}\log\!f_{AB}]$
SETTING	$D(\rho_{AB} \sigma_{AB}) - D(\rho_B \sigma_B)$	$f_B = \Gamma_{\sigma_B}^{-1}(\rho_B)$	$\mathrm{tr}[\mathrm{tr}_{A}[\sigma_{AB}f_{AB}\log f_{AB}] - \sigma_{B}f_{B}\log f_{B}]$
	$ \left(\begin{array}{c} \rho_{AB} \equiv \nu \\ \sigma_{AB} \equiv \mu \end{array}\right) $		$ \left(\begin{array}{c} \mathrm{tr}[\sigma \cdot] = \mu(\cdot) \\ \mathrm{tr}_A[\cdot] = \mu(\cdot \mathcal{F}) \end{array} \right) $
CLASSICAL	$H(u,\mu)$	$f = \frac{d\nu}{d\mu}$	$\mu(f \log f)$
SETTING	$H_{\mathcal{F}}(u,\mu)$		$\mu\left(\mu(f \log f \mathcal{F}) - \mu(f \mathcal{F}) \log \mu(f \mathcal{F})\right)$

Figura: Identification between classical and quantum quantities when the states considered are classical.

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIONS

QUASI-FACTORIZATION CRE BY EXPECTATIONS

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following inequality holds

 $(1 - \xi(\sigma_{AB}))D(\rho_{AB}||\sigma_{AB}) \le D_A^E(\rho_{AB}||\sigma_{AB}) + D_B^E(\rho_{AB}||\sigma_{AB}),$ (10)

where

$$\xi(\sigma_{AB}) = 2 (E_1(t) + E_2(t)),$$

and

$$E_{1}(t) = \int_{-\infty}^{+\infty} dt \,\beta_{0}(t) \left\| \sigma_{B}^{\frac{-1+it}{2}} \sigma_{AB}^{\frac{1-it}{2}} \sigma_{A}^{\frac{-1+it}{2}} - \mathbb{1}_{AB} \right\|_{\infty} \left\| \sigma_{A}^{-1/2} \sigma_{AB}^{\frac{1+it}{2}} \sigma_{B}^{-1/2} \right\|_{\infty},$$
$$E_{2}(t) = \int_{-\infty}^{+\infty} dt \,\beta_{0}(t) \left\| \sigma_{B}^{\frac{-1-it}{2}} \sigma_{AB}^{\frac{1+it}{2}} \sigma_{A}^{\frac{-1-it}{2}} - \mathbb{1}_{AB} \right\|_{\infty}.$$

Note that $\xi(\sigma_{AB}) = 0$ if σ_{AB} is a tensor product between A and B.

QUANTUM SPIN LATTICES

5. Quantum spin lattices

QUANTUM SPIN LATTICES

QUANTUM SPIN LATTICES

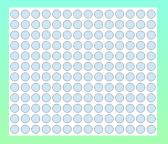


Figura: A quantum spin lattice system.

- Lattice $\Lambda \subset \mathbb{Z}^d$.
- For every site x, \mathcal{H}_x (= \mathbb{C}^D).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.

Quantum spin lattices

QUANTUM SPIN LATTICES

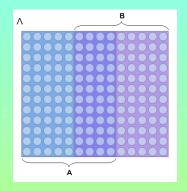


Figura: A quantum spin lattice system Λ and $A, B \subseteq \Lambda$ such that $A \cup B = \Lambda$.

General quasi-factorization for σ a tensor product

Let
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}).$$
(11)

Proof based on strong subadditivity.

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local Lindbladian

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_\Lambda$$
,

and the global Lindbladian

$$\mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x.$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

CONDITIONAL LOG-SOBOLEV CONSTANT

For $A\subset\Lambda,$ we define the conditional log-Sobolev constant of \mathcal{L}^*_Λ in A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

where σ_{Λ} is the fixed point of the evolution, and $D_A(\rho_{\Lambda}||\sigma_{\Lambda})$ is the conditional relative entropy.

Lemma

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \geq \frac{1}{2}.$$

・ロ・・団・・ヨ・・ヨ・ うへつ

Positive log-Sobolev constant

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \frac{1}{2}.$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

For further knowledge, Arxiv: 1705.03521 and 1804.09525

・ロ> < 団> < 国> < 国> < 国> < 国> < 国