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INTRODUCTION

CLASSICAL PHYSICS VERSUS QUANTUM PHYSICS

Some of the main differences between classical and quantum mechanics are
complementarity and entanglement.

o Entanglement: The quantum state of a particle in a group cannot be
described independently of the state of the others, even when the
particles are separated by a large distance.

o Complementarity: Quantum mechanical observables may not be
simultaneously measurable.
Mathematically, this means that operators do not need to commute,
ie. [A,B]= AB— BA #0.
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In general, mathematically it is more difficult to deal with problems in
quantum mechanics.

Example: Consider a distribution Pxyz and a density operator pagc.
The conditional mutual information (CMI) is given by:

° I(X : Z|Y)p = H(ny) —|—H(Pyz) — H(Py) — H(nyz),
where H(Px) := — > Px(z)log Px(x).
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In general, mathematically it is more difficult to deal with problems in
quantum mechanics.

Example: Consider a distribution Pxyz and a density operator pagc.
The conditional mutual information (CMI) is given by:
o I(X : Z|Y)p = H(ny) + H(Pyz) — H(Py) — H(nyz),
where H(Px) := — > Px(z)log Px(x).

o I(A:C|B), = S(par) + S(psc) — S(ps) — S(pasc),
where S(pa) := —tr[palog pal, for pa :=trec[pasc].
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Example: Consider a distribution Pxyz and a density operator pagc.
The conditional mutual information (CMI) is given by:
o I(X : Z|Y)p = H(ny) + H(Pyz) — H(Py) — H(nyz),
where H(Px) := — > Px(z)log Px(x).

o I(A:C|B), = S(par) + S(psc) — S(ps) — S(pasc),
where S(pa) := —tr[palog pal, for pa :=trec[pasc].

Then, the following holds:
e I(X : Z|Y)p > 0 (trivial).
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INTRODUCTION

CLASSICAL PHYSICS VERSUS QUANTUM PHYSICS

A C

In general, mathematically it is more difficult to deal with problems in
quantum mechanics.

Example: Consider a distribution Pxyz and a density operator pagc.
The conditional mutual information (CMI) is given by:
o I(X : Z|Y)p = H(ny) + H(Pyz) — H(Py) — H(nyz),
where H(Px) := — > Px(z)log Px(x).

o I(A:C|B), = S(pap) + S(psc) — S(ps) — S(pasc),
where S(pa) := —tr[palog pal, for pa :=trec[pasc].
Then, the following holds:
e I(X : Z|Y)p > 0 (trivial).
e I(A:C|B), > 0 (strong subadditivity, difficult to prove).
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Pxvyz is a Markov chain (X < Y < 7) if, and only if, Pxyz = Pxv Pz)y.
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CLASSICAL MARKOV CHAINS

CLASSICAL MARKOV CHAIN

Pxvyz is a Markov chain (X < Y < 7) if, and only if, Pxyz = Pxv Pz)y.

Pxyz is a Markov chain < I(X : Z|Y)p = 0.

Moreover, this is robust:

I(X:Z|lY)p <e & Pxyz =: Qxvz

for Q@xvyz a Markov chain.

On the DPI for the relative entropy



INTRODUCTION

QUANTUM MARKOV CHAINS

QUANTUM MARKOV CHAIN

paBc is a quantum Markov chain (A <> B < C) if, and only if, there exists
a recovery map such that

paBc = PeoBc(paB).

On the DPI for the relative entropy



INTRODUCTION

QUANTUM MARKOV CHAINS

QUANTUM MARKOV CHAIN

paBc is a quantum Markov chain (A <> B < C) if, and only if, there exists
a recovery map such that

paBc = PeoBc(paB).

papc is a quantum Markov chain iff I(A: C|B), = 0.

On the DPI for the relative entropy



INTRODUCTION

QUANTUM MARKOV CHAINS

QUANTUM MARKOV CHAIN

paBc is a quantum Markov chain (A <> B < C) if, and only if, there exists
a recovery map such that

paBc = PeoBc(paB).

papc is a quantum Markov chain iff I(A: C|B), = 0.

Is this robust?

I(A:C|B), <& & paBc Re 0ABC

for capc a quantum Markov chain?

On the DPI for the relative entropy



INTRODUCTION

QUANTUM MARKOV CHAINS

QUANTUM MARKOV CHAIN

paBc is a quantum Markov chain (A <> B < C) if, and only if, there exists
a recovery map such that

paBc = PeoBc(paB).

papc is a quantum Markov chain iff I(A: C|B), = 0.

Is this robust?

I(A:C|B), <& & paBc Re 0ABC

for capc a quantum Markov chain?

Answer: No! Counterexamples (Ibinson et al. ’08, Christandl et al. ’12).

On the DPI for the relative entropy
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VON NEUMANN ENTROPY

Given o > 0 a state on a matrix algebra M, its von Neumann entropy is
defined as:

S(o) := —tr[olog o].

RELATIVE ENTROPY

| \

Given o > 0, p > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(allp) := trlo(log o — log p)].

\
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DATA PROCESSING INEQUALITY

Quantum channel: 7 : M — M CPTP map.
00>0~T(o)>0.
o T®Ild, : M® M, = M ® M, is positive for every n € N.
o tr[T(0)] = tr[o].
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DATA PROCESSING INEQUALITY

Quantum channel: 7 : M — M CPTP map.
00>0~T(o)>0.
o T®Ild, : M® M, = M ® M, is positive for every n € N.
o tr[T(0)] = tr[o].

DATA PROCESSING INEQUALITY

D(allp) = D(T(0)[IT(p))-

CONDITIONS FOR EQUALITY, Petz ’86

D(ol|p) = D(T (0)||T(p)) < o = P4 o T (o), for P4 a recovery map.

Petz recovery map: R4 (-) := p'/2T* (T(p)fl/g(-)T(p)fl/Q) p'/2.
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DATA PROCESSING INEQUALITY

Particular case: Hapc = Ha @ He @ He.

Quantum channel: 7 = tra.

Counsider papc,capc € Sapc. Denote ppe = tra[pasc].
Petz’s condition reads as:

1/2 —1/2 —-1/2 1/2
D(cascllpasc) = D(oscllpse) < oanc = pipcrsd oBcpnd Pinc

On the DPI for the relative entropy
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Operational meaning of D(c||p) — D(T (o)||T (p))

o Thermodynamics: Cost of a certain quantum process (Faist et al, ’18).
o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).
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Operational meaning of D(c||p) — D(T (o)||T (p))

o Thermodynamics: Cost of a certain quantum process (Faist et al, ’18).
o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).

DPI for relative entropy: D(cl||p) — D(T (o)||T(p)) >0

On the DPI for the relative entropy



UMEGAKI RELATIVE ENTROPY \TA QUALITY FOR THE RELATIVE TROPY

HEI\ED L)l’l FOR THE RELATIVE ENTROPY

STRENGTHENED BOUNDS FOR DPI or RE

Operational meaning of D(c||p) — D(T (o)||T (p))

o Thermodynamics: Cost of a certain quantum process (Faist et al, ’18).
o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).

DPI for relative entropy: D(cl||p) — D(T (o)||T(p)) >0

PROBLEM

Can we find a lower bound for the DPI in terms of R5-o T (o) ?
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STRENGTHENED BOUNDS FOR DPI or RE

Operational meaning of D(c||p) — D(T (o)||T (p))

o Thermodynamics: Cost of a certain quantum process (Faist et al, ’18).
o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).

DPI for relative entropy: D(cl||p) — D(T (o)||T(p)) >0

PROBLEM
Can we find a lower bound for the DPI in terms of R5-o T (o) ?

(Fawzi-Renner ’15) Hapc = Ha @ Hp @ He, oapc > 0 and
pagc =1a/da®ope, T(:) = trc[].

CMLI: I(A: C|B), = D(oapc|lpasc) — D(osc|lpse).

I(A:C|B), > inf (—2log, F(ocapc,naBc)),

7 ABCTecov.

where

F(oaBc,naBc) = |[vV/oaBcovnasc|;
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

(Fawzi-Renner ’15) Hapc = Ha @ Hp ® He, oapc > 0 and
pagc =Ia®opc, T(:) = trc[].

CMI: I(A:C|B)s = D(oacllpasc) — D(oscllpse).

I(A : C‘B)g > inf (—210g2 F(UABC,nABC)),

NABC

where

F(oaBc,nasc) = |Voasovnasc|l;
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

(Fawzi-Renner ’15) Hapc = Ha @ Hp ® He, oapc > 0 and
pagc =Ia®opc, T(:) = trc[].

CMI: I(A:C|B)s = D(oacllpasc) — D(oscllpse).

I(A : C‘B)g > inf (—210g2 F(UABC,nABC)),

NABC
where

F(oaBc,nasc) = |Voasovnasc|l;

More specifically, if we consider V¢ o R”BC oUp, with Ugp and V¢
unitaries on H B, Hpc respectively,

1/2 —1/2 _1/2¢ %
Ve o RYC oUp(oar) = VBCJB/CJB UBO'ABUBJ / og&Vee,

we have

I(A : C‘B)g Z 7210g2 F(G'ABC,VBC O'R,gric OUB(O'AB)).

On the DPI for the relative entropy
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:

(1) := —/ﬂo(t) log F' (U, Rg—’m o T(a)) dt (Junge et al. ’15),

with

1—it

OT) )0

—1—it
2

and
Bo(t) = g(cosh(ﬂt) +1)7!

On the DPI for the relative entropy
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:

(1) := —/ﬂo(t) log F' (U, Rg—’m o T(a)) dt (Junge et al. ’15),

with )
1—it

OT) )0

—1—it
2

and

(2) := Dy (a

with

Bo(t) = g(cosh(ﬂt) +1)7!

t) ’R;’—’M o T(a)) dt (Sutter-Berta-Tomamichel ’16),

M (ollp) = sup D(Ps || Po,a1), for M a POVM on the power-set of a finite .
(&, M)

Angela Capel, TUM On the DPI for the relative entropy



UMEGAKI RELATIVE ENTROPY DATA PR QUALITY FOR THE RELATIVE
STRENG! THEI\ED L)l l FUR THE RELATIVE ENTROPY

MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:

(1) := —/ﬂo(t) log F' (U, Rg—’m o T(a)) dt (Junge et al. ’15),

with )
1—it

OT) )0

—1—it
2

and

(2) := Dy (a

with

Bo(t) = g(cosh(ﬂt) +1)7!

t) ’R;’—’M o T(a)) dt (Sutter-Berta-Tomamichel ’16),

M (ollp) = sup D(Ps || Po,a1), for M a POVM on the power-set of a finite .
(&, M)

(3) := lim sup— D(

n—o0o

®n
o ’7'(0)) ) dt (Berta et al. ’17),

Angela Capel, TUM On the DPI for the relative entropy
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5 o T (0))?

Answer: Tt is not possible (Brandao et al. '15, Fawzi® ’17).
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5 o T (0))?

Answer: Tt is not possible (Brandao et al. '15, Fawzi® ’17).

(Sutter-Renner ’18) Hapc = Ha ® Hp ® Hc, capc > 0 and
papc =1a/da®opc, T(-) = trel].

D(oaBc||RGEE otreloapc]) + Amax(caB||Re-5) > I(A: C|B),,

tro

where
Amax(UHg) =0 5(0') =0,

and
Rp_p = tre O'RUBC.

On the DPI for the relative entropy
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of RS-0 T (0)?
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of RS-0 T (0)?

(Carlen-Vershynina ’17) £ : M — N conditional expectation,
on = E(o) and pn = E(p):

T\ 4 _ o
D(allp) = Diowllpn) = (T ) ILoRo-r | ZIRE (o) = pl}-
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of RS-0 T (0)?

(Carlen-Vershynina ’17) £ : M — N conditional expectation,
on = E(o) and pn = E(p):

T\ 4 _ o
D(allp) = Diowllpn) = (T ) ILoRo-r | ZIRE (o) = pl}-

(Carlen-Vershynina ’18) Extension to standard f-divergences.

On the DPI for the relative entropy
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STRE\I( THENED DI’I FOR THE RELATIVE ENTROPY

SOME DEFINITIONS

CONDITIONAL EXPEC ON

Let M matrix algebra with matrix subalgebra N. There exists a unique
linear mapping € : M — A such that

Q ¢ is a positive map,

Q@ &£(B) =B forall BeN,

Q £(AB)=E&E(A)Bfor all A€ M and all Be N,
@ €& is trace preserving.

A map fulfilling (1)-(3) is called a conditional expectation.

On the DPI for the relative entropy
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BELAVKIN-STASZEWSKI RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is
defined as:

Sgs(al|p) == tr [a log (01/2p_101/2)] .
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STANDARD AND MAXIMAL f-DIVERGENCES

BELAVKIN-STASZEWSKI RELATIVE ENTROPY STRENGTHENED DPI FOR THE BS-ENTR(

BELAVKIN-STASZEWSKI RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is
defined as: )
Ses(ollp) := tr [0 log (01/2p_101/2)].

v,

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every o > 0, p > 0:

Ses(allp) > D(o]|p)-

Angela Capel, TUM On the DPI for the relative entropy



STANDARD AND MAXIMAL f-DIVEE
BELAVKIN-STASZEWSKI RELATIVE ENTROPY STRENGTHENED DPI FOR THE BS

SOME DEFINITIONS

OPERATOR CONVEX
Let Z C R interval and f:Z — R. If

fAA+ (L=XN)B) < Af(A)+ (1= Nf(B)

for all Hermitian A, B € B(*H) with spectrum contained in Z, all X € [0, 1],
and for all finite-dimensional Hilbert spaces #, then f is operator convex.

On the DPI for the relative entropy
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STANDARD f-DIVERGENCES

(Hiai-Mosonyi ’17)




STANDARD AND MAXIMAL f-DIVERG:
BELAVKIN-STASZEWSKI RELATIVE ENTROPY STRENGTHENED DPI FOR THE BS-ENT

STANDARD f-DIVERGENCES

(Hiai-Mosonyi ’17)

STANDARD f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(llp) = tx[p" 2 f (Lo Ry1)p"?]

is the standard f-divergence.
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Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(llp) = tx[p" 2 f (Lo Ry1)p"?]

is the standard f-divergence.

Example: Let f(z) = zlogx. Then,
S¢(allp) = trlo(log o — log p)]

defines the relative entropy D(c||p).

DATA PROCESSING INEQUALITY

Si(T(@)T((p)) < Ss(allp).
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CONDITIONS FOR EQUALITY

Let 0 >0, p >0 beon M and let 7 : M — B be a 2PTP linear map.
Then, the following are equivalent:

O There exists a TP map T : B — M such that 7(T(p)) = p and
T(T (o)) =o0.

Q Sy (T(o)|IT(p)) = St(o|lp) for all operator convex f on [0, c0).

Q@ RY(T(0)) =o0.
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Let f : (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

Si(ollp) :tr[p1/2f(p—1/2 1/2)p1/2:|

is the maximal f-divergence.
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Let f : (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

Sp(ollp) = tr [pl/zf(p_l/%p_l“)pl”]

is the maximal f-divergence.

Example: Let f(x) = zlogz. Then,

Si(ollp) = tr pPop /2 log(p_l/QUp_l/Q)] =tr [a log(gl/zp_lal/Q)]

is the Belavkin-Staszewski relative entropy (BS-entropy).
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CONDITIONS FOR EQUALITY

Let 0 >0, p>0beon M and T : M — B be a PTP linear map. Then, the
following are equivalent:

Q SH(T(0)||T(p)) = S¢(allp) for all operator convex functions on [0, o).
Q tr[T(0)*T(p)~'] =tr[o?p!].
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RELATION BETWEEN f-DIVERGENCES

For every two states ¢ > 0, p > 0 on M and every operator convex function
f:(0,00) =R, X
St(ollp) < St(ollp).

REMARK: DIFFERENCE

For maximal f-divergences, there is no equivalent condition for equality in
DPI which provides a explicit expression of recovery for o.
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BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS
entropy (or for maximal f-divergences) which provides a explicit expression
of recovery for o?
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QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS
entropy (or for maximal f-divergences) which provides a explicit expression
of recovery for o?

STRENGTHENED DPI FOR BS ENTROPY

Following Carlen-Vershynina, can we provide a lower bound for the DPI for
the BS entropy (or for maximal f-divergences) in terms of a (hypothetical)
BS recovery condition?
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r:.= 071/2p071/2 and I'r := 0;1/2p70;1/2

p1 :=T(p), o1 :=T(0)
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r:.= 071/2p071/2 and I'r := 0;1/2p7—0;1/2

p1 :=T(p), o1 :=T(0)

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI (Bluhm-C. ’19)

Let M be a matrix algebra with unital subalgebra A. Let 7 : M — N be
the trace-preserving conditional expectation onto this subalgebra. Let
o >0, p > 0 be two quantum states on M. Then, the following are
equivalent:

@ Sas(ollp) = Ses(orllor)-

@ p=oT"(T(0)"'T(0)).

o 01/27*(07_—1/2P¥20¥2) =T1/251/2,
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Let M be a matrix algebra with unital subalgebra A. Let 7 : M — N be
the trace-preserving conditional expectation onto this subalgebra. Let
o >0, p > 0 be two quantum states on M. Then, the following are
equivalent:

@ Sas(ollp) = Ses(orllor)-

@ p=oT"(T(0)"'T(0)).

o 01/27*(07_—1/2P¥20¥2) =T1/251/2,

BS RECOVERY CONDITION

B7(-) =0T (T(o)™' ()
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Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.
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CONSEQUENCES

Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.

COROLLARY

Ses(ollp) = Ses(o7llpr) & p=BF 0 T(p)
&0 =BLoT(0)

& Ses(pllo) = Ses(prlloT).

COROLLARY

| \

D(ollp) = D(o7llpr) = SBs(ollp) = Sas(orller):
Equivalently,

c=R50T(0c) = o=B%0T(0).

The converse of this result is false (Jencova-Petz-Pitrik 09,
Hiai-Mosonyi ’17).
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BELAVKIN-STASZEWSKI RELATIVE ENTROPY

RESULTS FOR THE BS-ENTROPY, Bluhm-C. ’19

Relative entropy BS-entropy
trfo(log & — log p)] te[olog (o1/2p~101/2)]
p=p 2T (T(p)~ V2T (a)T (p)~1/2) p'/? c=pT* (T(p)~'T(0))
(5)" Lo Ry 12 [RE (o) = oI} @) N o | 2l = B o (o)
Extension to Extension to
standard f-divergences maximal f-divergences

On the DPI for the relative entropy



CONCLUSIONS AND FUTURE WORK

FUTURE WORK

Particular case: Hapc = Ha @ He ® Hc.

On the DPI for the relative entropy



CONCLUSIONS AND FUTURE WORK

FUTURE WORK

Particular case: Hapc = Ha @ He ® Hc.

Quantum channel: T = trc.

On the DPI for the relative entropy



CONCLUSIONS AND FUTURE WORK

FUTURE WORK

Particular case: Hapc = Ha @ He ® Hc.

Quantum channel: T = trc.

Ta
Consider papc,caBc € Sapc such that papc = — ® opc.

da

On the DPI for the relative entropy



CONCLUSIONS AND FUTURE WORK

FUTURE WORK

Particular case: Hapc = Ha @ He ® Hc.

Quantum channel: T = trc.

. Ta
Consider papc,caBc € Sapc such that papc = — ® opc.

da

1/2

o = RpT o T(U) w oape = o2 051/ /2 1/2
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ocaBog ' Togs.
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FUTURE WORK

Particular case: Hapc = Ha @ He ® Hc.

Quantum channel: T = trc.

. Ta
Consider papc,caBc € Sapc such that papc = — ® opc.

da

1/2

o = RpT o T(U) w oape = o2 051/ /2 1/2

2 -1
ocaBog ' Togs.

1
o=Br0T(0)~ ocapc =0BcOg 0AaB.
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(Bluhm-C. ’20)

1/2 _—1/2 —1/2 _1/2 = _ -1
OABC = 0o 0p OABOp OBc - OABC = 0BCOp OUAB
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1/2 _—1/2 —1/2 _1/2

— —1
OABC = 0o 0p OABOp OBc OABC = 0BCOp OUAB

<

Define a BS quantum state as a state capc € Sapc such that
OABC = OBC G;}l OAB-

Is the set of BS quantum states robust?
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