On the data processing inequality for the relative entropy between two quantum states

Ángela Capel

Technische Universität München

Joint work with Andreas Bluhm (U. Copenhagen)

Based on arXiv: 1904.10768

V Congreso de Jóvenes Investigadores de la RSME, 28th January 2020

- Introduction
 - Origins of Quantum Information Theory
 - Classical Physics versus Quantum Physics
 - Classical versus Quantum Markov Chains
- 2 Umegaki relative entropy
 - Data processing inequality for the relative entropy
 - Strengthened DPI for the relative entropy
- 3 Belavkin-Staszewski relative entropy
 - STANDARD AND MAXIMAL f-DIVERGENCES
 - STRENGTHENED DPI FOR THE BS-ENTROPY
- 4 Conclusions and future work

Origins of Quantum Information Theory

Shannon

Bennett

$$H |\psi\rangle = E |\psi\rangle$$
$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

"Nature isn't classical, dammit, and if you want to make a simulation of nature. you'd better make it quantum mechanical"

Given n = pq. Find (p, q)

Quantum supremacy

New algorithms

1920s

First quantum revolution

New technologies

New applications

The Bell System Technical Journal

Vol. XXVII July, 1945 A Mathematical Theory of Communication By C. E. SHANNON

$$H(p) := -\sum_{x} p(x) \log p(x)$$

1948

1984 1994

Second quantum revolution

Classical digital revolution

Acknowledgement: David Sutter (IBM Research)

Some of the main differences between classical and quantum mechanics are complementarity and entanglement.

• Entanglement: The quantum state of a particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance.

Some of the main differences between classical and quantum mechanics are complementarity and entanglement.

- Entanglement: The quantum state of a particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance.
- Complementarity: Quantum mechanical observables may not be simultaneously measurable.

Some of the main differences between classical and quantum mechanics are complementarity and entanglement.

- Entanglement: The quantum state of a particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance.
- Complementarity: Quantum mechanical observables may not be simultaneously measurable.

Mathematically, this means that operators do not need to commute i.e. $[A,B]=AB-BA\neq 0.$

Some of the main differences between classical and quantum mechanics are complementarity and entanglement.

- Entanglement: The quantum state of a particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance.
- Complementarity: Quantum mechanical observables may not be simultaneously measurable.
 - Mathematically, this means that operators do not need to commute, i.e. $[A, B] = AB BA \neq 0$.

In general, mathematically it is more difficult to deal with problems in quantum mechanics.

Example: Consider a distribution P_{XYZ} and a density operator ρ_{ABC} .

In general, mathematically it is more difficult to deal with problems in quantum mechanics.

Example: Consider a distribution P_{XYZ} and a density operator ρ_{ABC} .

The conditional mutual information (CMI) is given by:

•
$$I(X:Z|Y)_P := H(P_{XY}) + H(P_{YZ}) - H(P_Y) - H(P_{XYZ}),$$

where $H(P_X) := -\sum_x P_X(x) \log P_X(x).$

In general, mathematically it is more difficult to deal with problems in quantum mechanics.

Example: Consider a distribution P_{XYZ} and a density operator ρ_{ABC} .

The **conditional mutual information** (CMI) is given by:

- $I(X:Z|Y)_P := H(P_{XY}) + H(P_{YZ}) H(P_Y) H(P_{XYZ}),$ where $H(P_X) := -\sum_x P_X(x) \log P_X(x).$
- $I(A:C|B)_{\rho} := S(\rho_{AB}) + S(\rho_{BC}) S(\rho_{B}) S(\rho_{ABC})$, where $S(\rho_{A}) := -\operatorname{tr}[\rho_{A}\log\rho_{A}]$, for $\rho_{A} := \operatorname{tr}_{BC}[\rho_{ABC}]$.

In general, mathematically it is more difficult to deal with problems in quantum mechanics.

Example: Consider a distribution P_{XYZ} and a density operator ρ_{ABC} .

The **conditional mutual information** (CMI) is given by:

- $I(X:Z|Y)_P := H(P_{XY}) + H(P_{YZ}) H(P_Y) H(P_{XYZ}),$ where $H(P_X) := -\sum_x P_X(x) \log P_X(x).$
- $I(A:C|B)_{\rho} := S(\rho_{AB}) + S(\rho_{BC}) S(\rho_{B}) S(\rho_{ABC})$, where $S(\rho_{A}) := -\operatorname{tr}[\rho_{A}\log\rho_{A}]$, for $\rho_{A} := \operatorname{tr}_{BC}[\rho_{ABC}]$.

Then, the following holds:

•
$$I(X:Z|Y)_P \geq 0$$
 (trivial).

In general, mathematically it is more difficult to deal with problems in quantum mechanics.

Example: Consider a distribution P_{XYZ} and a density operator ρ_{ABC} .

The **conditional mutual information** (CMI) is given by:

- $I(X:Z|Y)_P := H(P_{XY}) + H(P_{YZ}) H(P_Y) H(P_{XYZ}),$ where $H(P_X) := -\sum_x P_X(x) \log P_X(x).$
- $I(A:C|B)_{\rho} := S(\rho_{AB}) + S(\rho_{BC}) S(\rho_{B}) S(\rho_{ABC})$, where $S(\rho_{A}) := -\operatorname{tr}[\rho_{A}\log\rho_{A}]$, for $\rho_{A} := \operatorname{tr}_{BC}[\rho_{ABC}]$.

Then, the following holds:

- $I(X:Z|Y)_P \geq 0$ (trivial).
- $I(A:C|B)_{\rho} \geq 0$ (strong subadditivity, difficult to prove).

In general, mathematically it is more difficult to deal with problems in quantum mechanics.

Example: Consider a distribution P_{XYZ} and a density operator ρ_{ABC} .

The **conditional mutual information** (CMI) is given by:

- $I(X:Z|Y)_P := H(P_{XY}) + H(P_{YZ}) H(P_Y) H(P_{XYZ}),$ where $H(P_X) := -\sum_x P_X(x) \log P_X(x).$
- $I(A:C|B)_{\rho} := S(\rho_{AB}) + S(\rho_{BC}) S(\rho_{B}) S(\rho_{ABC})$, where $S(\rho_{A}) := -\operatorname{tr}[\rho_{A}\log\rho_{A}]$, for $\rho_{A} := \operatorname{tr}_{BC}[\rho_{ABC}]$.

Then, the following holds:

- $I(X:Z|Y)_P \geq 0$ (trivial).
- $I(A:C|B)_{\rho} \geq 0$ (strong subadditivity, difficult to prove).

CLASSICAL MARKOV CHAINS

CLASSICAL MARKOV CHAIN

 P_{XYZ} is a Markov chain $(X \leftrightarrow Y \leftrightarrow Z)$ if, and only if, $P_{XYZ} = P_{XY}P_{Z|Y}$.

 P_{XYZ} is a Markov chain $\Leftrightarrow I(X:Z|Y)_P = 0$.

CLASSICAL MARKOV CHAINS

CLASSICAL MARKOV CHAIN

 P_{XYZ} is a Markov chain $(X \leftrightarrow Y \leftrightarrow Z)$ if, and only if, $P_{XYZ} = P_{XY}P_{Z|Y}$.

 P_{XYZ} is a Markov chain $\Leftrightarrow I(X:Z|Y)_P = 0$.

Moreover, this is **robust**:

$$I(X:Z|Y)_P \le \varepsilon \Leftrightarrow P_{XYZ} \approx_{\varepsilon} Q_{XYZ}$$

for Q_{XYZ} a Markov chain

CLASSICAL MARKOV CHAINS

CLASSICAL MARKOV CHAIN

 P_{XYZ} is a Markov chain $(X \leftrightarrow Y \leftrightarrow Z)$ if, and only if, $P_{XYZ} = P_{XY}P_{Z|Y}$.

 P_{XYZ} is a Markov chain $\Leftrightarrow I(X:Z|Y)_P=0$.

Moreover, this is **robust**:

$$I(X:Z|Y)_P \le \varepsilon \Leftrightarrow P_{XYZ} \approx_{\varepsilon} Q_{XYZ}$$

for Q_{XYZ} a Markov chain.

QUANTUM MARKOV CHAIN

 ρ_{ABC} is a quantum Markov chain $(A \leftrightarrow B \leftrightarrow C)$ if, and only if, there exists a recovery map such that

$$\rho_{ABC} = \mathcal{P}_{B \to BC}(\rho_{AB}).$$

 ρ_{ABC} is a quantum Markov chain iff $I(A:C|B)_{\rho}=0$.

Quantum Markov Chain

 ρ_{ABC} is a quantum Markov chain $(A \leftrightarrow B \leftrightarrow C)$ if, and only if, there exists a recovery map such that

$$\rho_{ABC} = \mathcal{P}_{B \to BC}(\rho_{AB}).$$

 ρ_{ABC} is a quantum Markov chain iff $I(A:C|B)_{\rho}=0$.

Is this robust?

$$I(A:C|B)_{\rho} \leq \varepsilon \Leftrightarrow \rho_{ABC} \approx_{\varepsilon} \sigma_{ABC}$$

for σ_{ABC} a quantum Markov chain

Quantum Markov Chain

 ρ_{ABC} is a quantum Markov chain $(A \leftrightarrow B \leftrightarrow C)$ if, and only if, there exists a recovery map such that

$$\rho_{ABC} = \mathcal{P}_{B \to BC}(\rho_{AB}).$$

 ρ_{ABC} is a quantum Markov chain iff $I(A:C|B)_{\rho}=0$.

Is this **robust**?

$$I(A:C|B)_{\rho} \leq \varepsilon \Leftrightarrow \rho_{ABC} \approx_{\varepsilon} \sigma_{ABC}$$

for σ_{ABC} a quantum Markov chain?

Answer: No! Counterexamples (Ibinson et al. '08, Christandl et al. '12).

Quantum Markov Chain

 ρ_{ABC} is a quantum Markov chain $(A \leftrightarrow B \leftrightarrow C)$ if, and only if, there exists a recovery map such that

$$\rho_{ABC} = \mathcal{P}_{B \to BC}(\rho_{AB}).$$

 ρ_{ABC} is a quantum Markov chain iff $I(A:C|B)_{\rho}=0$.

Is this **robust**?

$$I(A:C|B)_{\rho} \leq \varepsilon \Leftrightarrow \rho_{ABC} \approx_{\varepsilon} \sigma_{ABC}$$

for σ_{ABC} a quantum Markov chain?

Answer: No! Counterexamples (Ibinson et al. '08, Christandl et al. '12).

Von Neumann entropy

Given $\sigma > 0$ a state on a matrix algebra \mathcal{M} , its **von Neumann entropy** is defined as:

$$S(\sigma) := -\operatorname{tr}[\sigma \log \sigma].$$

RELATIVE ENTROPY

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **relative entropy** is defined as:

$$D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

Von Neumann entropy

Given $\sigma > 0$ a state on a matrix algebra \mathcal{M} , its **von Neumann entropy** is defined as:

$$S(\sigma) := -\operatorname{tr}[\sigma \log \sigma].$$

Relative entropy

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **relative entropy** is defined as:

$$D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)].$$

Data processing inequality

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \mathrm{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

Data processing inequality

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \mathrm{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

Data processing inequality

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

Conditions for equality, Petz '86

$$D(\sigma||\rho) = D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \Leftrightarrow \sigma = \mathcal{P}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma), \text{ for } \mathcal{P}_{\mathcal{T}}^{\rho} \text{ a recovery map.}$$

$$\textbf{Petz recovery map: } \mathcal{R}^{\rho}_{\mathcal{T}}(\cdot) := \rho^{1/2}\mathcal{T}^* \left(\mathcal{T}(\rho)^{-1/2}(\cdot)\mathcal{T}(\rho)^{-1/2}\right)\rho^{1/2}.$$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \mathrm{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

Data processing inequality

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

Conditions for equality, Petz '86

$$D(\sigma||\rho) = D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \Leftrightarrow \sigma = \mathcal{P}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma), \text{ for } \mathcal{P}_{\mathcal{T}}^{\rho} \text{ a recovery map.}$$

$$\textbf{Petz recovery map: } \mathcal{R}^{\rho}_{\mathcal{T}}(\cdot) := \rho^{1/2}\mathcal{T}^*\left(\mathcal{T}(\rho)^{-1/2}(\cdot)\mathcal{T}(\rho)^{-1/2}\right)\rho^{1/2}.$$

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_A$.

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_A$.

Consider $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Denote $\rho_{BC} := \operatorname{tr}_A[\rho_{ABC}]$.

Data processing inequality

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_A$.

Consider $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Denote $\rho_{BC} := \operatorname{tr}_A[\rho_{ABC}]$.

Petz's condition reads as:

$$D(\sigma_{ABC}||\rho_{ABC}) = D(\sigma_{BC}||\rho_{BC}) \Leftrightarrow \sigma_{ABC} = \rho_{ABC}^{1/2} \rho_{BC}^{-1/2} \sigma_{BC} \rho_{BC}^{-1/2} \rho_{ABC}^{1/2}$$

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_A$.

Consider $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Denote $\rho_{BC} := \operatorname{tr}_A[\rho_{ABC}]$.

Petz's condition reads as:

$$D(\sigma_{ABC}||\rho_{ABC}) = D(\sigma_{BC}||\rho_{BC}) \Leftrightarrow \sigma_{ABC} = \rho_{ABC}^{1/2} \rho_{BC}^{-1/2} \sigma_{BC} \rho_{BC}^{-1/2} \rho_{ABC}^{1/2}$$

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
- Partial trace: Conditional relative entropy (C.-Lucia-Pérez García, '18).

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
- Partial trace: Conditional relative entropy (C.-Lucia-Pérez García, '18).

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
- Partial trace: Conditional relative entropy (C.-Lucia-Pérez García, '18).

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

PROBLEM

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

(Fawzi-Renner '15)
$$\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$$
, $\sigma_{ABC} > 0$ and $\rho_{ABC} = \mathbb{1}_A/d_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC} \text{ recov.}} \left(-2\log_2 F(\sigma_{ABC}, \eta_{ABC})\right),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \|\sqrt{\sigma_{ABC}}\sqrt{\eta_{ABC}}\|$$

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
- Partial trace: Conditional relative entropy (C.-Lucia-Pérez García, '18).

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

PROBLEM

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

(Fawzi-Renner '15)
$$\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$$
, $\sigma_{ABC} > 0$ and $\rho_{ABC} = \mathbb{1}_A/d_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC} \text{ recov.}} (-2\log_2 F(\sigma_{ABC}, \eta_{ABC})),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \left\| \sqrt{\sigma_{ABC}} \sqrt{\eta_{ABC}} \right\|_{1}$$

MOTIVATION: STRENGTHENED BOUNDS FOR DPI OF RE

(Fawzi-Renner '15)
$$\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$$
, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC}} \left(-2\log_2 F(\sigma_{ABC}, \eta_{ABC})\right),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \left\| \sqrt{\sigma_{ABC}} \sqrt{\eta_{ABC}} \right\|_{1}$$

More specifically, if we consider $\mathcal{V}_{BC} \circ \mathcal{R}_{\text{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B$, with U_B and V_{BC} unitaries on \mathcal{H}_B , \mathcal{H}_{BC} respectively,

$$V_{BC} \circ \mathcal{R}_{\text{tr}_{C}}^{\sigma_{BC}} \circ U_{B}(\sigma_{AB}) = V_{BC} \sigma_{BC}^{1/2} \sigma_{B}^{-1/2} U_{B} \sigma_{AB} U_{B}^{*} \sigma_{B}^{-1/2} \sigma_{BC}^{1/2} V_{BC}^{*},$$

we have

$$I(A:C|B)_{\sigma} \ge -2\log_2 F(\sigma_{ABC}, \mathcal{V}_{BC} \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B(\sigma_{AB})).$$

MOTIVATION: STRENGTHENED BOUNDS FOR DPI OF RE

(Fawzi-Renner '15)
$$\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$$
, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC}} \left(-2\log_2 F(\sigma_{ABC}, \eta_{ABC})\right),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \left\| \sqrt{\sigma_{ABC}} \sqrt{\eta_{ABC}} \right\|_{1}$$

More specifically, if we consider $\mathcal{V}_{BC} \circ \mathcal{R}_{\text{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B$, with U_B and V_{BC} unitaries on \mathcal{H}_B , \mathcal{H}_{BC} respectively,

$$\mathcal{V}_{BC} \circ \mathcal{R}_{\text{tr}_{C}}^{\sigma_{BC}} \circ \mathcal{U}_{B}(\sigma_{AB}) = V_{BC} \sigma_{BC}^{1/2} \sigma_{B}^{-1/2} U_{B} \sigma_{AB} U_{B}^{*} \sigma_{B}^{-1/2} \sigma_{BC}^{1/2} V_{BC}^{*},$$

we have

$$I(A:C|B)_{\sigma} \geq -2\log_2 F(\sigma_{ABC}, \mathcal{V}_{BC} \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B(\sigma_{AB})).$$

MOTIVATION: STRENGTHENED BOUNDS FOR DPI OF RE

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) dt \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}} \mathcal{T}^* \left(\mathcal{T}(\rho)^{\frac{-1-it}{2}} (\cdot) \mathcal{T}(\rho)^{\frac{-1+it}{2}} \right) \rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) \mathrm{d}t \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}}\mathcal{T}^*\left(\mathcal{T}(\rho)^{\frac{-1-it}{2}}(\cdot)\mathcal{T}(\rho)^{\frac{-1+it}{2}}\right)\rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

$$(2) := D_M \left(\sigma \left\| \int \beta_0(t) \, \mathcal{R}_{\mathcal{T}}^{\sigma,[t]} \circ \mathcal{T}(\sigma) \right) dt \text{ (Sutter-Berta-Tomamichel '16)},$$

with

$$D_M(\sigma||\rho) = \sup_{(\xi,M)} D(P_{\sigma,M}||P_{\rho,M}), \text{ for } M \text{ a POVM on the power-set of a finite } \xi.$$

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) \mathrm{d}t \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}} \mathcal{T}^* \left(\mathcal{T}(\rho)^{\frac{-1-it}{2}}(\cdot) \mathcal{T}(\rho)^{\frac{-1+it}{2}} \right) \rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

$$(2) := D_M\left(\sigma \left\| \int \beta_0(t) \, \mathcal{R}_{\mathcal{T}}^{\sigma,[t]} \circ \mathcal{T}(\sigma) \right) dt \text{ (Sutter-Berta-Tomamichel '16)},$$

with

 $D_M(\sigma||\rho) = \sup_{(\xi,M)} D(P_{\sigma,M}||P_{\rho,M}), \text{ for } M \text{ a POVM on the power-set of a finite } \xi.$

$$(3) := \limsup_{n \to \infty} \frac{1}{n} D\left(\sigma^{\otimes n} \left\| \int \beta_0(t) \, \left(\mathcal{R}^{\sigma,[t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \right)^{\otimes n} \right) \mathrm{d}t \, \, \text{(Berta et al. '17)},$$

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) \mathrm{d}t \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}}\mathcal{T}^*\left(\mathcal{T}(\rho)^{\frac{-1-it}{2}}(\cdot)\mathcal{T}(\rho)^{\frac{-1+it}{2}}\right)\rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

$$(2) := D_M\left(\sigma \left\| \int \beta_0(t) \, \mathcal{R}_{\mathcal{T}}^{\sigma,[t]} \circ \mathcal{T}(\sigma) \right) dt \text{ (Sutter-Berta-Tomamichel '16)},$$

with

 $D_M(\sigma||\rho) = \sup_{(\xi,M)} D(P_{\sigma,M}||P_{\rho,M}), \text{ for } M \text{ a POVM on the power-set of a finite } \xi.$

$$(3) := \limsup_{n \to \infty} \frac{1}{n} D\left(\sigma^{\otimes n} \left\| \int \beta_0(t) \, \left(\mathcal{R}^{\sigma,[t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \right)^{\otimes n} \right) \mathrm{d}t \, \, \text{(Berta et al. '17)},$$

PROBLEM

Can we find a lower bound for the DPI in terms of $D(\sigma||\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma))$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

PROBLEM

Can we find a lower bound for the DPI in terms of $D(\sigma||\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma))$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

(Sutter-Renner '18) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = \mathbb{1}_A/d_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

$$D(\sigma_{ABC}||\mathcal{R}_{\operatorname{tr}_{C}}^{\sigma_{BC}} \circ \operatorname{tr}_{C}[\sigma_{ABC}]) + \Lambda_{\max}(\sigma_{AB}||\mathcal{R}_{B \to B}) \ge I(A:C|B)_{\sigma},$$

where

$$\Lambda_{\max}(\sigma||\mathcal{E}) = 0 \Leftrightarrow \mathcal{E}(\sigma) = \sigma,$$

and

$$\mathcal{R}_{B\to B} := \operatorname{tr}_C \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}}.$$

PROBLEM

Can we find a lower bound for the DPI in terms of $D(\sigma||\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma))$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

(Sutter-Renner '18)
$$\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$$
, $\sigma_{ABC} > 0$ and $\rho_{ABC} = \mathbb{1}_A/d_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \text{tr}_C[\cdot]$.

$$D(\sigma_{ABC}||\mathcal{R}_{\operatorname{tr}_{C}}^{\sigma_{BC}} \circ \operatorname{tr}_{C}[\sigma_{ABC}]) + \Lambda_{\max}(\sigma_{AB}||\mathcal{R}_{B \to B}) \ge I(A:C|B)_{\sigma},$$

where

$$\Lambda_{\max}(\sigma||\mathcal{E}) = 0 \Leftrightarrow \mathcal{E}(\sigma) = \sigma,$$

and

$$\mathcal{R}_{B\to B} := \operatorname{tr}_C \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}}.$$

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma)$?

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^4.$$

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^{4}.$$

(Carlen-Vershynina '18) Extension to standard f-divergences.

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma)$?

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^{4}.$$

(Carlen-Vershynina '18) Extension to standard f-divergences.

Some definitions

CONDITIONAL EXPECTATION

Let \mathcal{M} matrix algebra with matrix subalgebra \mathcal{N} . There exists a unique linear mapping $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ such that

- \bullet \mathcal{E} is a positive map,
- $\mathcal{E}(B) = B \text{ for all } B \in \mathcal{N},$
- **3** $\mathcal{E}(AB) = \mathcal{E}(A)B$ for all $A \in \mathcal{M}$ and all $B \in \mathcal{N}$,
- **4** \mathcal{E} is trace preserving.

A map fulfilling (1)-(3) is called a *conditional expectation*.

Belavkin-Staszewski relative entropy

Given $\sigma > 0, \rho > 0$ states on a matrix algebra \mathcal{M} , their **BS-entropy** is defined as:

$$\hat{S}_{\mathrm{BS}}(\sigma||\rho) := \mathrm{tr} \Big[\sigma \log \Big(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \Big) \Big].$$

RELATION BETWEEN BELATIVE ENTROPIES

The following holds for every $\sigma > 0, \rho > 0$

$$\hat{S}_{\mathrm{BS}}(\sigma||\rho) \ge D(\sigma||\rho)$$

Belavkin-Staszewski relative entropy

Given $\sigma > 0, \rho > 0$ states on a matrix algebra \mathcal{M} , their **BS-entropy** is defined as:

$$\hat{S}_{\mathrm{BS}}(\sigma||\rho) := \mathrm{tr} \Big[\sigma \log \Big(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \Big) \Big].$$

Relation between relative entropies

The following holds for every $\sigma > 0, \rho > 0$:

$$\hat{S}_{\mathrm{BS}}(\sigma||\rho) \ge D(\sigma||\rho).$$

Some definitions

OPERATOR CONVEX

Let $\mathcal{I} \subseteq \mathbb{R}$ interval and $f: \mathcal{I} \to \mathbb{R}$. If

$$f(\lambda A + (1 - \lambda)B) \le \lambda f(A) + (1 - \lambda)f(B)$$

for all Hermitian $A, B \in \mathcal{B}(\mathcal{H})$ with spectrum contained in \mathcal{I} , all $\lambda \in [0, 1]$, and for all finite-dimensional Hilbert spaces \mathcal{H} , then f is operator convex.

(Hiai-Mosonyi '17)

STANDARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\ \rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma||\rho) = \operatorname{tr}\left[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2}\right]$$

is the standard f-divergence.

(Hiai-Mosonyi '17)

STANDARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma \| \rho) = \text{tr} \Big[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2} \Big]$$

is the standard f-divergence.

Example: Let $f(x) = x \log x$. Then,

$$S_f(\sigma||\rho) = \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

defines the relative entropy $D(\sigma || \rho)$.

(Hiai-Mosonyi '17)

Standard f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma \| \rho) = \text{tr} \Big[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2} \Big]$$

is the standard f-divergence.

Example: Let $f(x) = x \log x$. Then,

$$S_f(\sigma || \rho) = \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

defines the relative entropy $D(\sigma || \rho)$.

Data processing inequality

$$S_f(\mathcal{T}(\sigma)||\mathcal{T}((\rho)) \le S_f(\sigma||\rho)$$

(Hiai-Mosonyi '17)

$\underline{\text{STAND}}$ ARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma \| \rho) = \text{tr} \Big[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2} \Big]$$

is the standard f-divergence.

Example: Let $f(x) = x \log x$. Then,

$$S_f(\sigma || \rho) = \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

defines the relative entropy $D(\sigma || \rho)$.

Data processing inequality

$$S_f(\mathcal{T}(\sigma)||\mathcal{T}((\rho)) \leq S_f(\sigma||\rho).$$

CONDITIONS FOR EQUALITY

Let $\sigma > 0$, $\rho > 0$ be on \mathcal{M} and let $\mathcal{T} : \mathcal{M} \to \mathcal{B}$ be a 2PTP linear map. Then, the following are equivalent:

- There exists a TP map $\hat{\mathcal{T}}: \mathcal{B} \to \mathcal{M}$ such that $\hat{\mathcal{T}}(\mathcal{T}(\rho)) = \rho$ and $\hat{\mathcal{T}}(\mathcal{T}(\sigma)) = \sigma$.
- $S_f(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) = S_f(\sigma||\rho)$ for all operator convex f on $[0,\infty)$.

Maximal f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$\hat{S}_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(\rho^{-1/2} \sigma \rho^{-1/2}) \rho^{1/2}\right]$$

is the $maximal\ f$ -divergence.

Example: Let $f(x) = x \log x$. Then,

$$\hat{S}_f(\sigma\|\rho) = \operatorname{tr}\left[\rho^{1/2}\sigma\rho^{-1/2}\log\left(\rho^{-1/2}\sigma\rho^{-1/2}\right)\right] = \operatorname{tr}\left[\sigma\log\left(\sigma^{1/2}\rho^{-1}\sigma^{1/2}\right)\right]$$

is the Belavkin-Staszewski relative entropy (BS-entropy)

Maximal f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$\hat{S}_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(\rho^{-1/2} \sigma \rho^{-1/2}) \rho^{1/2}\right]$$

is the $maximal\ f$ -divergence.

Example: Let $f(x) = x \log x$. Then,

$$\hat{S}_f(\sigma \| \rho) = \operatorname{tr} \left[\rho^{1/2} \sigma \rho^{-1/2} \log \left(\rho^{-1/2} \sigma \rho^{-1/2} \right) \right] = \operatorname{tr} \left[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \right]$$

is the Belavkin-Staszewski relative entropy (BS-entropy).

DATA PROCESSING INEQUALITY

$$\hat{S}_f(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \le \hat{S}_f(\sigma||\rho)$$

Maximal f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$\hat{S}_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(\rho^{-1/2} \sigma \rho^{-1/2}) \rho^{1/2}\right]$$

is the $maximal\ f$ -divergence.

Example: Let $f(x) = x \log x$. Then,

$$\hat{S}_f(\sigma \| \rho) = \operatorname{tr} \left[\rho^{1/2} \sigma \rho^{-1/2} \log \left(\rho^{-1/2} \sigma \rho^{-1/2} \right) \right] = \operatorname{tr} \left[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \right]$$

is the Belavkin-Staszewski relative entropy (BS-entropy).

Data processing inequality

$$\hat{S}_f(\mathcal{T}(\sigma) \| \mathcal{T}(\rho)) \le \hat{S}_f(\sigma \| \rho).$$

CONDITIONS FOR EQUALITY

Let $\sigma > 0$, $\rho > 0$ be on \mathcal{M} and $\mathcal{T} : \mathcal{M} \to \mathcal{B}$ be a PTP linear map. Then, the following are equivalent:

- $\hat{S}_f(\mathcal{T}(\sigma) \| \mathcal{T}(\rho)) = \hat{S}_f(\sigma \| \rho) \text{ for all operator convex functions on } [0, \infty).$
- $\mathbf{2} \operatorname{tr} \left[\mathcal{T}(\sigma)^2 \mathcal{T}(\rho)^{-1} \right] = \operatorname{tr} \left[\sigma^2 \rho^{-1} \right].$

Relation between f-divergences

Relation between f-divergences

For every two states $\sigma > 0, \, \rho > 0$ on \mathcal{M} and every operator convex function $f:(0,\infty) \to \mathbb{R}$,

$$S_f(\sigma \| \rho) \leq \hat{S}_f(\sigma \| \rho).$$

REMARK: DIFFERENCE

For maximal f-divergences, there is no equivalent condition for equality in DPI which provides a explicit expression of recovery for σ .

Relation between f-divergences

Relation between f-divergences

For every two states $\sigma > 0$, $\rho > 0$ on \mathcal{M} and every operator convex function $f:(0,\infty) \to \mathbb{R}$,

$$S_f(\sigma \| \rho) \leq \hat{S}_f(\sigma \| \rho).$$

REMARK: DIFFERENCE

For maximal f-divergences, there is no equivalent condition for equality in DPI which provides a explicit expression of recovery for σ .

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS entropy (or for maximal f-divergences) which provides a explicit expression of recovery for σ ?

STRENGTHENED DPI FOR BS ENTROPY

Following Carlen-Vershynina, can we provide a lower bound for the DPI for the BS entropy (or for maximal f-divergences) in terms of a (hypothetical) BS recovery condition?

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS entropy (or for maximal f-divergences) which provides a explicit expression of recovery for σ ?

STRENGTHENED DPI FOR BS ENTROPY

Following Carlen-Vershynina, can we provide a lower bound for the DPI for the BS entropy (or for maximal f-divergences) in terms of a (hypothetical) BS recovery condition?

Equivalent conditions for equality on DPI

$$\Gamma := \sigma^{-1/2} \rho \sigma^{-1/2} \text{ and } \Gamma_{\mathcal{T}} := \sigma_{\mathcal{T}}^{-1/2} \rho_{\mathcal{T}} \sigma_{\mathcal{T}}^{-1/2}$$
$$\rho_{\mathcal{T}} := \mathcal{T}(\rho), \, \sigma_{\mathcal{T}} := \mathcal{T}(\sigma)$$

Equivalent conditions for equality on DPI (Bluhm-C. '19

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{T}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0$, $\rho > 0$ be two quantum states on \mathcal{M} . Then, the following are equivalent:

- $\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}).$

Equivalent conditions for equality on DPI

$$\Gamma := \sigma^{-1/2} \rho \sigma^{-1/2} \text{ and } \Gamma_{\mathcal{T}} := \sigma_{\mathcal{T}}^{-1/2} \rho_{\mathcal{T}} \sigma_{\mathcal{T}}^{-1/2}$$
$$\rho_{\mathcal{T}} := \mathcal{T}(\rho), \, \sigma_{\mathcal{T}} := \mathcal{T}(\sigma)$$

Equivalent conditions for equality on DPI (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{T}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0, \, \rho > 0$ be two quantum states on \mathcal{M} . Then, the following are equivalent:

- $\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}).$

BS RECOVERY CONDITION

$$\mathcal{B}_{\mathcal{T}}^{\sigma}(\cdot) := \sigma \mathcal{T}^*(\mathcal{T}(\sigma)^{-1}(\cdot))$$

Equivalent conditions for equality on DPI

$$\Gamma := \sigma^{-1/2} \rho \sigma^{-1/2} \text{ and } \Gamma_{\mathcal{T}} := \sigma_{\mathcal{T}}^{-1/2} \rho_{\mathcal{T}} \sigma_{\mathcal{T}}^{-1/2}$$
$$\rho_{\mathcal{T}} := \mathcal{T}(\rho), \, \sigma_{\mathcal{T}} := \mathcal{T}(\sigma)$$

Equivalent conditions for equality on DPI (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{T}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0, \, \rho > 0$ be two quantum states on \mathcal{M} . Then, the following are equivalent:

- $\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}).$

BS RECOVERY CONDITION

$$\mathcal{B}_{\mathcal{T}}^{\sigma}(\cdot) := \sigma \mathcal{T}^*(\mathcal{T}(\sigma)^{-1}(\cdot)).$$

Consequences

Note: Although they can be seen as a consequence of the previous result, the following facts were previously known.

COROLLARY

$$\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}) \Leftrightarrow \rho = \mathcal{B}_{\mathcal{T}}^{\sigma} \circ \mathcal{T}(\rho)$$

$$\Leftrightarrow \sigma = \mathcal{B}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma)$$

$$\Leftrightarrow \hat{S}_{BS}(\rho \| \sigma) = \hat{S}_{BS}(\rho_{\mathcal{T}} \| \sigma_{\mathcal{T}})$$

Consequences

Note: Although they can be seen as a consequence of the previous result, the following facts were previously known.

COROLLARY

$$\begin{split} \hat{S}_{\mathrm{BS}}(\sigma \| \rho) &= \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}) \Leftrightarrow \rho = \mathcal{B}_{\mathcal{T}}^{\sigma} \circ \mathcal{T}(\rho) \\ &\Leftrightarrow \sigma = \mathcal{B}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma) \\ &\Leftrightarrow \hat{S}_{\mathrm{BS}}(\rho \| \sigma) = \hat{S}_{\mathrm{BS}}(\rho_{\mathcal{T}} \| \sigma_{\mathcal{T}}). \end{split}$$

Corollary

$$D(\sigma \| \rho) = D(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}) \implies \hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}).$$

Equivalently

$$\sigma = \mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \implies \sigma = \mathcal{B}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$$

The converse of this result is false (Jencová-Petz-Pitrik '09, Hiai-Mosonyi '17).

Consequences

Note: Although they can be seen as a consequence of the previous result, the following facts were previously known.

COROLLARY

$$\begin{split} \hat{S}_{\mathrm{BS}}(\sigma \| \rho) &= \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}) \Leftrightarrow \rho = \mathcal{B}_{\mathcal{T}}^{\sigma} \circ \mathcal{T}(\rho) \\ &\Leftrightarrow \sigma = \mathcal{B}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma) \\ &\Leftrightarrow \hat{S}_{\mathrm{BS}}(\rho \| \sigma) = \hat{S}_{\mathrm{BS}}(\rho_{\mathcal{T}} \| \sigma_{\mathcal{T}}). \end{split}$$

COROLLARY

$$D(\sigma \| \rho) = D(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}) \implies \hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}).$$

Equivalently,

$$\sigma = \mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \implies \sigma = \mathcal{B}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma).$$

The converse of this result is false (Jencová-Petz-Pitrik '09, Hiai-Mosonyi '17).

RESULTS FOR THE BS-ENTROPY, Bluhm-C. '19

Relative entropy	BS-entropy
$\operatorname{tr}[\sigma(\log\sigma-\log\rho)]$	$\operatorname{tr} \bigl[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \bigr]$
$\rho = \rho^{1/2} \mathcal{T}^* \left(\mathcal{T}(\rho)^{-1/2} \mathcal{T}(\sigma) \mathcal{T}(\rho)^{-1/2} \right) \rho^{1/2}$	$\sigma = \rho \mathcal{T}^* \left(\mathcal{T}(\rho)^{-1} \mathcal{T}(\sigma) \right)$
$\left(\frac{\pi}{8}\right)^4 \ L_{\rho}R_{\sigma^{-1}}\ _{\infty}^{-2} \ \mathcal{R}_{\mathcal{E}}^{\sigma}(\rho_{\mathcal{N}}) - \rho\ _{1}^{4}$	$\left(\frac{\pi}{8}\right)^{4} \ \Gamma\ _{\infty}^{-4} \ \sigma^{-1}\ _{\infty}^{-2} \ \rho - \mathcal{B}_{\mathcal{T}}^{\sigma} \circ \mathcal{T}(\rho)\ _{2}^{4}$
Extension to standard f-divergences	Extension to maximal f-divergences

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_{\mathcal{C}}$.

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_C$.

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_C$.

$$\sigma = \mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \leadsto \sigma_{ABC} = \sigma_{BC}^{1/2} \, \sigma_{B}^{-1/2} \, \sigma_{AB} \, \sigma_{B}^{-1/2} \, \sigma_{BC}^{1/2}.$$

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_C$.

$$\sigma = \mathcal{R}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma) \leadsto \sigma_{ABC} = \sigma_{BC}^{1/2} \, \sigma_{B}^{-1/2} \, \sigma_{AB} \, \sigma_{B}^{-1/2} \, \sigma_{BC}^{1/2}.$$

$$\sigma = \mathcal{B}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma) \leadsto \sigma_{ABC} = \sigma_{BC} \, \sigma_{B}^{-1} \, \sigma_{AB}.$$

Particular case: $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Quantum channel: $\mathcal{T} = \operatorname{tr}_C$.

$$\sigma = \mathcal{R}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma) \leadsto \sigma_{ABC} = \sigma_{BC}^{1/2} \, \sigma_{B}^{-1/2} \, \sigma_{AB} \, \sigma_{B}^{-1/2} \, \sigma_{BC}^{1/2}.$$

$$\sigma = \mathcal{B}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \leadsto \sigma_{ABC} = \sigma_{BC} \, \sigma_{B}^{-1} \, \sigma_{AB}.$$

(Bluhm-C. '20)

Define a BS quantum state as a state $\sigma_{ABC} \in \mathcal{S}_{ABC}$ such that $\sigma_{ABC} = \sigma_{BC} \sigma_B^{-1} \sigma_{AB}$.

(Bluhm-C. '20)

Define a **BS quantum state** as a state $\sigma_{ABC} \in \mathcal{S}_{ABC}$ such that $\sigma_{ABC} = \sigma_{BC} \sigma_B^{-1} \sigma_{AB}$.

QUESTION

Is the set of BS quantum states robust?

(Bluhm-C. '20)

$$\sigma_{ABC} = \sigma_{BC}^{1/2} \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{B}^{-1/2} \sigma_{BC}^{1/2}$$
 \Rightarrow
$$(\sigma_{ABC} = \sigma_{BC} \sigma_{B}^{-1} \sigma_{AB})$$

Define a **BS quantum state** as a state $\sigma_{ABC} \in \mathcal{S}_{ABC}$ such that $\sigma_{ABC} = \sigma_{BC} \sigma_B^{-1} \sigma_{AB}$.

QUESTION

Is the set of BS quantum states robust?

References

A. Bluhm, A. Capel.

 $A\ strengthened\ data\ processing\ inequality\ for\ the\ Belavkin-Staszewski$ relative\ entropy

Reviews in Mathematical Physics, to appear (2019).

E. Carlen, A. Vershynina.

Recovery map stability for the Data Processing Inequality
Journal of Physics A: Mathematical and Theoretical, 53 (3), 035204,
2020.

O. Fawzi, R. Renner.

 $\label{eq:Quantum conditional mutual information and approximate Markov} \ chains$

Communications in Mathematical Physics, 340 (2) (2015), 575-61.

F. Hiai, M. Mosonyi.

Different quantum f-divergences and the reversibility of quantum operations

Reviews in Mathematical Physics, 29 (7) (2017).

