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X, Y Banach spaces

K =R or C base field

By :={zeX : |z|| <1}

Sx :={zreX : |z| =1}

X* dual space of X

L(X,Y):={T: X — Y | T linear and bounded}
K(X,Y):={T € L(X,Y) | T compact}
F(X,Y):={T € L(X,Y) | T with finite rank}
If X =Y, L(X), K(X), F(X)
FX,)Y)CK(X,Y)CL(X,Y)
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NORM-ATTAINING FUNCTIONAL

X (real or complex) Banach space, X* dual of X, z* € X*.

|z*|| :=sup{|z*(z)| : x € Bx}
z* attains its norm when this supremum is a maximum, i.e.,

dzo € Sx : [27(w0)| = [|2¥]|
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EXAMPLES OF NORM-ATTAINING FUNCTIONALS
»

I 2 — K
e={z) o @) = Y%
k=1
For every x € /1,

(@) < kzﬂ\”;j] <Slml<oo  (weh)

k=1

And if z € By,, |f(x)] <1, s0 || f|| < 1.
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EXAMPLES OF NORM-ATTAINING FUNCTIONALS
»

f: % — K
k=1

For every x € /1,

|f($)’§kzﬂ‘zg’§;|xk|<oo (€ f)

And if z € By,, |f(x)] <1, s0 || f|| < 1.

Taking z = (1,0,...), |
attains its norm.

zlly =1and f(z) =1=|f|. Thus, f
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EXAMPLES OF NORM-ATTAINING FUNCTIONALS
:

g: co — K
r=A{x,} +— glx) = 21+ 22
For every x € ¢y, ||z||,, < o0, so |g(z)| < 2|z, < oo, and

lgll < 2.

And if we take x = (1,1,0,...) € ¢y, we have ||z|, =1 and
g(x) = |1+ 1] = 2, so g attains its norm.
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NA(X,K) = {z* € X* : z* attains its norm}
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HAHN-BANACH THEOREM

Let X be a normed space over K and M a subspace. Let

g : M — K be continuous and linear. Then, there exists an
extension f : X — K of g, which is also linear and continuous,
such that || f]| = [lgll.
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NA(X,K) = {z* € X* : z* attains its norm}

HAHN-BANACH THEOREM

Let X be a normed space over K and M a subspace. Let

g : M — K be continuous and linear. Then, there exists an
extension f : X — K of g, which is also linear and continuous,
such that || f]| = [lgll.

COROLLARY
For every x € X, there exists f € X* verifying || f|| = 1 and

f(@) = |l=|.
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HAHN-BANACH THEOREM

Let X be a normed space over K and M a subspace. Let

g : M — K be continuous and linear. Then, there exists an
extension f : X — K of g, which is also linear and continuous,
such that || f]| = [lgll.

COROLLARY
For every x € X, there exists f € X* verifying || f|| = 1 and

f(@) = |l=|.

Given zp € Sx there exists f € X* with ||f|| =1 and
f(@o) = |lwoll = 1.
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NA(X,K) = {z* € X* : z* attains its norm}

HAHN-BANACH THEOREM

Let X be a normed space over K and M a subspace. Let

g : M — K be continuous and linear. Then, there exists an
extension f : X — K of g, which is also linear and continuous,
such that || f]| = [lgll.

COROLLARY
For every x € X, there exists f € X* verifying || f|| = 1 and

f(@) = |l=|.

Given zp € Sx there exists f € X* with ||f|| =1 and
f(@o) = |lwoll = 1.

= NA(X,K) # 0
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< akl < o0 (z € &)

(n)

Then, ||f|| < 1. Considering e, = (0,...,0, 1,0,...) € ¢4,
we have ||e,|| =1 Vn € N and

1
1— =
n

’f(en)‘ =

1
and lim ’1—):1$ Ifll=1
n

n—oo
z € By = [f(2)] <lzf, <1

Then, f does not attain its norm.
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REFLEXIVE SPACE

X Banach space, X** its bidual space

z € X, J(z): X* > K

J(@)(f) = flx) [feX*

A Banach space is reflexive when J is surjective.

JAMES THEOREM

A Banach space X is reflexive if, and only if, every continuous
linear functional on X attains its norm on Bx.

» X reflexive = NA(X,K) = L(X,K)
» X non-reflexive = NA(X,K) # L(X,K)



PRESENTATION OF THE PROBLEM RESI

000000e0000

Bisnopr-PHELPS THEOREM, Bull. AMS 1961

The set of norm-attaining functionals is dense in X* (for the norm
topology).

NA(X,K) = L(X,K)



PRESENTATION OF THE PROBLEM RES

) @000

NORM-ATTAINING OPERATOR



TION OF THE PROBLEM R

OO@000

NORM-ATTAINING OPERATOR

X,Y Banach spaces, T' € L(X,Y)



PRESENTATION OF THE PROBLEM RESI

) @000

NORM-ATTAINING OPERATOR

X,Y Banach spaces, T' € L(X,Y)

IT|| := sup {[IT(z)lly : = € Bx}
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NORM-ATTAINING OPERATOR

X,Y Banach spaces, T' € L(X,Y)

1T == sup{[[T'(z)[ly : v € Bx}
T attains its norm when this supremum is a maximum, i.e.,

dzo € Sx : [[T(xo)lly = [T

NAX,Y):={T € L(X,Y) : T attains its norm}
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EXAMPLE OF NORM-ATTAINING OPERATOR

T: LY(T) — co

oo {fm)
ITl = sup |T(f)| = sup H{ ol
fGSLl(T) GSl
= sup sup— / f(t) _mtdt'
fESLl(T) neN 27T

< s s [IfOIE= sp [f]=1
fGSLl(T) neN 47T J_n feSLl('ﬂ‘)
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EXAMPLE OF NORM-ATTAINING OPERATOR

T: LY(T) — co

oo {fm)
Il = s IT@I= s [{fo}]
fGSLl(T) GSl
= sup sup— / f(t) _mtdt'
f€Sp1 ) neEN 2
< sup supr |()’dt sup  |Ifl=1
FE€SL1(p neN &7 J—m FESL1m)

Fix ng € N and consider f(t) = ¢!, Then,

1 ™
[ ral-
2 J_ .

f 1 i —ino _
Tl = sup || > |5 [ sremorar| =
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EXAMPLE OF NON NORM-ATTAINING OPERATOR

Consider ¢ = {¢p, } € € such that |c,| < sup |e,| and
T : 0y — £y given by

T(z) = cx = {chan}, Ve = {x,} € lo

For any z = {x,} € {2, we have

ITz)* =) lenanl® < D (sup lenl®) |2al® = (sup [cal®) |||

neN neN

Therefore, | T|| < sup [cn| . If we choose z = en, = {0k n )y ey, We
have

sup || 2 sup [Tex | = sup |
||| <1

IT[| = sup [cnl
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PROBLEM
NA(X,Y)=L(X,Y)?
PROBLEM
NA(X)=L(X)?
PROBLEM
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PROBLEM
NAX,Y)=L(X,Y)?

PROPOSITION

Let X be a finite dimensional space and Y arbitrary. Then,

NA(X,Y) = L(X,Y)

COROLLARY

Let X be a finite dimensional space. Then,
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PROBLEM

T: EQ — 52

r o Tpi= Z(1-i)<x,en>en,

n>1

where {e,} is the sequence whose n-th term is 1 and the others
are 0, and (-, -) is the scalar product of ¢2. The norm of T is 1, but
for x # 0,

2
ol = 3= (1= 1) Kol < X ltaven)® = el

n>1 n>1

since (z, e,) # 0 for some n.



RESULTS ON NORM-ATTAINING OPERATORS

PROPOSITION

A Banach space X is reflexive if, and only if, for every finite
dimensional Y, every T' € L(X,Y) attains its norm.




RESULTS ON NORM-ATTAINING OPERATORS

PROPOSITION

A Banach space X is reflexive if, and only if, for every finite
dimensional Y, every T' € L(X,Y") attains its norm.

PROPOSITION
If X and Y verify

NA(X,Y) = L(X,Y)

then X is reflexive.

A\,
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PROPOSITION

A Banach space X is reflexive if, and only if, for every finite
dimensional Y, every T' € L(X,Y’) attains its norm.

PROPOSITION
If X and Y verify

NA(X,Y) = L(X,Y)

then X is reflexive.

» X reflexive, Y finite dimensional (in particular, K)
= NA(X,Y) = L(X,Y)

» X finite dimensional = NA(X,Y) = L(X,Y) VY

» X non-reflexive == NA(X,Y) # L(X,Y) VY




PRESE

THEOREM

Let X and Y be two classical Banach spaces, i.e., they are of the
form LP(u) or C(S). Then, NA(X,Y) = L(X,Y) if and only if
X =LP(n), Y =L"(v), with 1 <r < p < oo and one of the
following holds

(a) 1 <r and p and v are atomic.
(b) 1 <r < 2andvis atomic.
(¢) p>2,r>1and pis atomic.
(d)
(e)

@

r =1 and v is atomic.

r=1, p> 2 and p is atomic.
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THEOREM

Let X and Y be two classical Banach spaces, i.e., they are of the
form LP(u) or C(S). Then, NA(X,Y) = L(X,Y) if and only if
X =LP(n), Y =L"(v), with 1 <r < p < oo and one of the
following holds

(a) 1 <r and p and v are atomic.
(b) 1 <r < 2andvis atomic.
(¢) p>2,r>1and pis atomic.
(d)
(e)

@

r =1 and v is atomic.

r=1,p>2and u is atomic.

COROLLARY

Let X be a classical Banach space. Then, if
NA(X) = L(X),
X has finite dimension.
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PROBLEM NA(X,Y) = L(X,Y)

NAX,Y)=L(X,Y)?
The answer, in general, is negative.

X = c¢p, Y strictly convex
T e NA(C(),Y) =1T¢ F(Co,Y)
If there exists a non-compact operator from ¢y to Y, then
NA(C(), Y) 75 L(Co, Y)

PROBLEM

NA(X)=L(X)?
If Y is strictly convex and isomorphic to ¢y, X = ¢y Do Y
NA(X) # L(X)
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PROPERTIES A AND B

X has property A if NA(X,Y)=L(X,Y) VY

Y has property B if NA(X,Y)=L(X,Y) VX

LINDENSTRAUSS-Z1ZLER THEOREM

Lind: {T € L(X,Y) : T € NA(X™,Y*)} = L(X,Y) VX,Y

Zizler: {T € L(X,Y) : T* € NA(Y*,X*)} = L(X,Y) VX,Y

= Every reflexive Banach space has property A.
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EXAMPLES

» K has property B.
» X finite dimensional has property A.

> X reflexive has property A.

v

co does not have property A.

v

If Y strictly convex and there exists a non-compact operator
from ¢y to Y, then Y does not have property B.
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PROPERTIES a@ AND [3

PROPERTIES @ AND f3

{(:v)\,xj) :AEACSxy xSx+,0<p<1

(1) z3(zx) =1 VA€A

(2) ApeM A#p=[z3(zu)| <p
(Bar) ||z*|| = sup{|z*(xp)| : A€ A} Vz*e X*  (e: 4)
(38) lloll = sup {3 (@)| s A€ A} Vo e X (e corlc)

LINDENSTRAUSS / SCHACHERMAYER

68=0B

a= A
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PARTINGTON THEOREM
Every Banach space can be renormed with 5.

SCHACHERMAYER THEOREM
Every WCG Banach space can be renormed with a.

GODUN-TROYANSKI THEOREM

Every Banach space X admitting a biorthogonal system with
cardinality equal to densX can be renormed with «.

| \

REMARK

Not every Banach space can be renormed with property B. Indeed,
there exists K Hausdorff compact topological space such that
C(K) cannot be renormed with property a.

A\
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RELATION WITH THE RADON-NIKODYM PROPERTY

DENTABILITY

X Banach space, C subset of X,
C'is dentabile if, for every € > 0, we can find x € C such that
z ¢ o(C\ (z +eBx)).

A Banach space X has the Radon-Nikodym property (RNP) if
the Radon-Nikodym theorem holds for X-valued vector measures

(w.r.t. every finite positive measure).

THEOREM (RIEFFEL, MAYNARD, HUFF, DAVID, PHELPS)

» X has the RNP if, and only if, every bounded subset of X is
dentable.

» X has the RNP if, and only if, Bx is dentable for every
equivalent norm.
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BOURGAIN THEOREM

RNP = A (for every equivalent norm)

X no RNP = 3X; ~ X ~ X, : NA(Xy, X2) # L(X1, X2)

NON-LINEAR OPTIMIZATION PRINCIPLE OF

BOURGAIN-STEGALL

RNP < A (for every equivalent norm)

B (for every equivalent norm) = RN P
The reciprocal is not true.
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CONJECTURE

RNP < NA(X) = L(X) for every equivalent norm

PROPOSITION
Y Banach space, X 2 Y QY

X=YarY = |zlx = luly +llv2ly V2= (y1,42)
X2Y 0 Y = |zfx =max{llyilly lv2lly} Vo = (y1,92)

X verifies NA(X) = L(X) for every equivalent norm, if, and only
if, X has the RNP.
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COUNTEREXAMPLES

GOWERS’ COUNTEREXAMPLE

No infinite dimensional Hilbert space has property B.

For 1 <p < o0, £, and L, do not have property B.

ACOSTA’S COUNTEREXAMPLE

No infinite dimensional strictly convex Banach space has property
B.

In another result, #; and L; do not have property B.
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OPEN PROBLEMS

» Do finite dimensional spaces have property B?
In particular, does R?, with the euclidean norm, have property
B?

» Characterize the compacts K such that C'(K) has property B.

» RNP & NA(X) = L(X) for every equivalent norm ?
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NORM-ATTAINING COMPACT OPERATORS

NORM-ATTAINING COMPACT OPERATORS
NAK(X,Y) := K(X,Y)NNA(X,Y)

PROBLEM

NAK(X,Y) = K(X,Y)?

If X is reflexive, NAK (X,Y) = K(X,Y) VY.
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XIMATION PROPERTY

X has the approximation property (AP) if for every compact
K C X and every € > 0 there exists an operator T' € F/(X) such
that |7z — z|| < ¢ for every x € K.

GROTHENDIECK THEOREM

» Y has AP & F(Z,Y) = K(Z,Y) VZ.

» X*has AP & F(X,Z2)=K(X,Z) VZ.
» X* has AP = X has AP.

GROTHENDIECK LEMMA

A Banach space Y has the approximation property if, and only if,

F(X,Y)= K(X,Y) for every closed subspace X of c.
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MARTIN, '14
There exist compact linear operators between Banach spaces which
cannot be approximated by norm-attaining operators.

PROBLEM

iINAK(X,Y) = K(X,Y)?




NORM-ATTAINING COMPACT OP.

[eJe] le]

» (Enflo) There exists X < ¢y without AP.
> (Davie) There exists X < ¢, without AP for 1 < p < 2.
> (Szankowski) There exists X < ¢, without AP for 2 < p < co.

MARTIN, '14
There exist compact linear operators between Banach spaces which
cannot be approximated by norm-attaining operators.

INAK(X,Y)=K(X,Y)?
The answer is negative, in general.




NORM-ATTAINING COMPACT OP.
[eJele] )

PROPERTIES AK AND BK

» X has property AK if NAK(X,Y) = K(X,Y) VY.
> Y has property BK if NAK(X,Y) = K(X,Y) VX.



NORM-ATTAINING COMPACT OP.

[eJele] )

PROPERTIES AK AND BK
» X has property AK if NAK(X,Y) = K(X,Y) VY.
» Y has property BK if NAK(X,Y) = K(X,Y) VX.

EXAMPLES

» Finite-dimensional spaces have property AK.
» Y = K has property BK.

» Real finite-dimensional polyhedral spaces have property BK.




NORM-ATTAINING COMPACT OP.

[eJele] )

PROPERTIES AK AND BK
» X has property AK if NAK(X,Y) = K(X,Y) VY.
» Y has property BK if NAK(X,Y) = K(X,Y) VX.

EXAMPLES

» Finite-dimensional spaces have property AK.
» Y = K has property BK.

» Real finite-dimensional polyhedral spaces have property BK.

There exists X < ¢ failing property AK and Y failing BK.
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