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Notation

X, Y Banach spaces

K = R or C base field

BX := {x ∈ X : ‖x‖ ≤ 1}
SX := {x ∈ X : ‖x‖ = 1}
X∗ dual space of X

L(X,Y ) := {T : X → Y | T linear and bounded}
K(X,Y ) := {T ∈ L(X,Y ) | T compact}
F (X,Y ) := {T ∈ L(X,Y ) | T with finite rank}
If X = Y , L(X), K(X), F (X)

F (X,Y ) ⊆ K(X,Y ) ⊆ L(X,Y )
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Norm-attaining functional

X (real or complex) Banach space, X∗ dual of X, x∗ ∈ X∗.

‖x∗‖ := sup {|x∗(x)| : x ∈ BX}

x∗ attains its norm when this supremum is a maximum, i.e.,

∃x0 ∈ SX : |x∗(x0)| = ‖x∗‖
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Examples of norm-attaining functionals

I In `1 :

f : `1 −→ K

x = {xn} 7→ f(x) =

∞∑
k=1

xk
k

For every x ∈ `1,

|f(x)| ≤
∞∑
k=1

∣∣∣xk
k

∣∣∣ ≤ ∞∑
k=1

|xk| <∞ (x ∈ `1)

And if x ∈ B`1 , |f(x)| ≤ 1, so ‖f‖ ≤ 1.

Taking x = (1, 0, . . .), ‖x‖1 = 1 and f(x) = 1 = ‖f‖. Thus, f
attains its norm.
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Examples of norm-attaining functionals

I In c0:

g : c0 −→ K
x = {xn} 7→ g(x) = x1 + x2

For every x ∈ c0, ‖x‖∞ <∞, so |g(x)| ≤ 2 ‖x‖∞ <∞, and
‖g‖ ≤ 2.

And if we take x = (1, 1, 0, . . .) ∈ c0, we have ‖x‖∞ = 1 and
g(x) = |1 + 1| = 2, so g attains its norm.



Presentation of the problem Results on norm-attaining operators Norm-attaining compact op. Bibliography

Examples of norm-attaining functionals

I In c0:

g : c0 −→ K
x = {xn} 7→ g(x) = x1 + x2

For every x ∈ c0, ‖x‖∞ <∞, so |g(x)| ≤ 2 ‖x‖∞ <∞, and
‖g‖ ≤ 2.

And if we take x = (1, 1, 0, . . .) ∈ c0, we have ‖x‖∞ = 1 and
g(x) = |1 + 1| = 2, so g attains its norm.



Presentation of the problem Results on norm-attaining operators Norm-attaining compact op. Bibliography

Examples of norm-attaining functionals

I In c0:

g : c0 −→ K
x = {xn} 7→ g(x) = x1 + x2

For every x ∈ c0, ‖x‖∞ <∞, so |g(x)| ≤ 2 ‖x‖∞ <∞, and
‖g‖ ≤ 2.

And if we take x = (1, 1, 0, . . .) ∈ c0, we have ‖x‖∞ = 1 and
g(x) = |1 + 1| = 2, so g attains its norm.



Presentation of the problem Results on norm-attaining operators Norm-attaining compact op. Bibliography

Examples of norm-attaining functionals

I In c0:

g : c0 −→ K
x = {xn} 7→ g(x) = x1 + x2

For every x ∈ c0, ‖x‖∞ <∞, so |g(x)| ≤ 2 ‖x‖∞ <∞, and
‖g‖ ≤ 2.

And if we take x = (1, 1, 0, . . .) ∈ c0, we have ‖x‖∞ = 1 and
g(x) = |1 + 1| = 2, so g attains its norm.



Presentation of the problem Results on norm-attaining operators Norm-attaining compact op. Bibliography

NA(X,K) = {x∗ ∈ X∗ : x∗ attains its norm}

Hahn-Banach Theorem

Let X be a normed space over K and M a subspace. Let
g : M → K be continuous and linear. Then, there exists an
extension f : X → K of g, which is also linear and continuous,
such that ‖f‖ = ‖g‖.

Corollary

For every x ∈ X, there exists f ∈ X∗ verifying ‖f‖ = 1 and
f(x) = ‖x‖.

Given x0 ∈ SX there exists f ∈ X∗ with ‖f‖ = 1 and
f(x0) = ‖x0‖ = 1.

⇒ NA(X,K) 6= ∅
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Examples of non norm-attaining functionals

I In `1:

f : `1 −→ K

x = {xn} 7→ f(x) =

∞∑
k=1

(
1− 1

k

)
xk

|f(x)| ≤
∞∑
k=1

∣∣∣∣(1− 1

k

)
xk

∣∣∣∣ ≤ ∞∑
k=1

|xk| <∞ (x ∈ `1)

Then, ‖f‖ ≤ 1. Considering en = (0, . . . , 0,
(n)

1 , 0, . . .) ∈ `1,
we have ‖en‖ = 1 ∀n ∈ N and

|f(en)| =
∣∣∣∣1− 1

n

∣∣∣∣ and lim
n→∞

∣∣∣∣1− 1

n

∣∣∣∣ = 1 ⇒ ‖f‖ = 1

x ∈ B`1 ⇒ |f(x)| < ‖x‖1 ≤ 1

Then, f does not attain its norm.
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Reflexive space

X Banach space, X∗∗ its bidual space

x ∈ X, J(x) : X∗ → K

J(x)(f) = f(x) f ∈ X∗

A Banach space is reflexive when J is surjective.

James Theorem

A Banach space X is reflexive if, and only if, every continuous
linear functional on X attains its norm on BX .

I X reflexive ⇒ NA(X,K) = L(X,K)

I X non-reflexive ⇒ NA(X,K) 6= L(X,K)
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Bishop-Phelps Theorem, Bull. AMS 1961

The set of norm-attaining functionals is dense in X∗ (for the norm
topology).

NA(X,K) = L(X,K)
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Norm-attaining operator

X,Y Banach spaces, T ∈ L(X,Y )

‖T‖ := sup {‖T (x)‖Y : x ∈ BX}

T attains its norm when this supremum is a maximum, i.e.,

∃x0 ∈ SX : ‖T (x0)‖Y = ‖T‖

NA(X,Y ) := {T ∈ L(X,Y ) : T attains its norm}
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Example of norm-attaining operator

T : L1(T) −→ c0

f 7→
{
f̂(n)

}
‖T‖ = sup

f∈SL1(T)

‖T (f)‖ = sup
f∈SL1(T)

∥∥∥{f̂(n)
}∥∥∥

= sup
f∈SL1(T)

sup
n∈N

1

2π

∣∣∣∣∫ π

−π
f(t)e−intdt

∣∣∣∣
≤ sup

f∈SL1(T)

sup
n∈N

1

2π

∫ π

−π
|f(t)| dt = sup

f∈SL1(T)

‖f‖ = 1

Fix n0 ∈ N and consider f(t) = ein0t. Then,

‖T (f)‖ = sup
n∈N

∣∣∣f̂(n)
∣∣∣ ≥ ∣∣∣∣ 1

2π

∫ π

−π
f(t)e−in0tdt

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ π

−π
1 dt

∣∣∣∣ = 1



Presentation of the problem Results on norm-attaining operators Norm-attaining compact op. Bibliography

Example of norm-attaining operator

T : L1(T) −→ c0

f 7→
{
f̂(n)

}
‖T‖ = sup

f∈SL1(T)

‖T (f)‖ = sup
f∈SL1(T)

∥∥∥{f̂(n)
}∥∥∥

= sup
f∈SL1(T)

sup
n∈N

1

2π

∣∣∣∣∫ π

−π
f(t)e−intdt

∣∣∣∣
≤ sup

f∈SL1(T)

sup
n∈N

1

2π

∫ π

−π
|f(t)| dt = sup

f∈SL1(T)

‖f‖ = 1

Fix n0 ∈ N and consider f(t) = ein0t. Then,

‖T (f)‖ = sup
n∈N

∣∣∣f̂(n)
∣∣∣ ≥ ∣∣∣∣ 1

2π

∫ π

−π
f(t)e−in0tdt

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ π

−π
1 dt

∣∣∣∣ = 1



Presentation of the problem Results on norm-attaining operators Norm-attaining compact op. Bibliography

Example of norm-attaining operator

T : L1(T) −→ c0

f 7→
{
f̂(n)

}
‖T‖ = sup
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Example of non norm-attaining operator

Consider c = {cn} ∈ `∞ such that |cn| < sup |cn| and
T : `2 → `2 given by

T (x) = cx = {cnxn} , ∀x = {xn} ∈ `2

For any x = {xn} ∈ `2, we have

‖Tx‖2 =
∑
n∈N
|cnxn|2 <

∑
n∈N

(sup |cn|2) |xn|2 = (sup |cn|2) ‖x‖2

Therefore, ‖T‖ ≤ sup |cn| . If we choose x = en = {δk,n}k∈N, we
have

sup
‖x‖≤1

‖Tx‖ ≥ sup
n∈N
‖Ten‖ = sup

n∈N
|cn|

‖T‖ = sup |cn|
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Problem NA(X, Y ) = L(X, Y )

Problem

NA(X,Y ) = L(X,Y ) ?

Proposition

Let X be a finite dimensional space and Y arbitrary. Then,

NA(X,Y ) = L(X,Y )

Corollary

Let X be a finite dimensional space. Then,

NA(X) = L(X)
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Problem

T : `2 −→ `2

x 7→ Tx :=
∑
n≥1

(
1− 1

n

)
〈x, en〉 en ,

where {en} is the sequence whose n-th term is 1 and the others
are 0, and 〈·, ·〉 is the scalar product of `2. The norm of T is 1, but
for x 6= 0,

‖Tx‖2 =
∑
n≥1

(
1− 1

n

)2

|〈x, en〉|2 <
∑
n≥1
|〈x, en〉|2 = ‖x‖2 ,

since 〈x, en〉 6= 0 for some n.
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Proposition

A Banach space X is reflexive if, and only if, for every finite
dimensional Y , every T ∈ L(X,Y ) attains its norm.

Proposition

If X and Y verify

NA(X,Y ) = L(X,Y )

then X is reflexive.

I X reflexive, Y finite dimensional (in particular, K)
⇒ NA(X,Y ) = L(X,Y )

I X finite dimensional ⇒ NA(X,Y ) = L(X,Y ) ∀Y
I X non-reflexive ⇒ NA(X,Y ) 6= L(X,Y ) ∀Y
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Theorem

Let X and Y be two classical Banach spaces, i.e., they are of the
form Lp(µ) or C(S). Then, NA(X,Y ) = L(X,Y ) if and only if
X = Lp(µ), Y = Lr(ν), with 1 ≤ r < p <∞ and one of the
following holds

(a) 1 < r and µ and ν are atomic.

(b) 1 < r < 2 and ν is atomic.

(c) p > 2, r > 1 and µ is atomic.

(d) r = 1 and ν is atomic.

(e) r = 1, p > 2 and µ is atomic.

Corollary

Let X be a classical Banach space. Then, if

NA(X) = L(X),

X has finite dimension.
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Problem NA(X, Y ) = L(X, Y )

Problem

NA(X,Y ) = L(X,Y ) ?
The answer, in general, is negative.

Lindenstrauss’ counterexample

X = c0, Y strictly convex
T ∈ NA(c0, Y )⇒ T ∈ F (c0, Y )

If there exists a non-compact operator from c0 to Y , then
NA(c0, Y ) 6= L(c0, Y )

Problem

NA(X) = L(X) ?
If Y is strictly convex and isomorphic to c0, X = c0 ⊕∞ Y

NA(X) 6= L(X)
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Properties A and B

Properties A and B

X has property A if NA(X,Y ) = L(X,Y ) ∀Y

Y has property B if NA(X,Y ) = L(X,Y ) ∀X

Lindenstrauss-Zizler Theorem

Lind.: {T ∈ L(X,Y ) : T ∗∗ ∈ NA(X∗∗, Y ∗∗)} = L(X,Y ) ∀X,Y

Zizler: {T ∈ L(X,Y ) : T ∗ ∈ NA(Y ∗, X∗)} = L(X,Y ) ∀X,Y

⇒ Every reflexive Banach space has property A.
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Examples

I K has property B.

I X finite dimensional has property A.

I X reflexive has property A.

I c0 does not have property A.

I If Y strictly convex and there exists a non-compact operator
from c0 to Y , then Y does not have property B.
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Properties α and β

Properties α and β

{(xλ, x∗λ) : λ ∈ Λ} ⊂ SX × SX∗ , 0 ≤ ρ < 1

(1) x∗λ(xλ) = 1 ∀λ ∈ Λ

(2) λ, µ ∈ Λ, λ 6= µ⇒ |x∗λ(xµ)| ≤ ρ
(3α) ‖x∗‖ = sup {|x∗(xλ)| : λ ∈ Λ} ∀x∗ ∈ X∗ (ej: `1)

(3β) ‖x‖ = sup {|x∗λ(x)| : λ ∈ Λ} ∀x ∈ X (ej: c0, `∞)

Lindenstrauss / Schachermayer

β ⇒ B

α⇒ A
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Partington Theorem

Every Banach space can be renormed with β.

Schachermayer Theorem

Every WCG Banach space can be renormed with α.

Godun-Troyanski Theorem

Every Banach space X admitting a biorthogonal system with
cardinality equal to densX can be renormed with α.

Remark

Not every Banach space can be renormed with property B. Indeed,
there exists K Hausdorff compact topological space such that
C(K) cannot be renormed with property α.
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Relation with the Radon-Nikodym property

Dentability

X Banach space, C subset of X,
C is dentable if, for every ε > 0, we can find x ∈ C such that
x /∈ co(C \ (x+ εBX)).

Radon-Nikodym property

A Banach space X has the Radon-Nikodym property (RNP) if
the Radon-Nikodym theorem holds for X-valued vector measures
(w.r.t. every finite positive measure).

Theorem (Rieffel, Maynard, Huff, David, Phelps)

I X has the RNP if, and only if, every bounded subset of X is
dentable.

I X has the RNP if, and only if, BX is dentable for every
equivalent norm.
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Bourgain Theorem

RNP ⇒ A (for every equivalent norm)

Huff Theorem

X no RNP ⇒ ∃X1 ∼ X ∼ X2 : NA(X1, X2) 6= L(X1, X2)

Non-linear optimization principle of
Bourgain-Stegall

RNP ⇐ A (for every equivalent norm)

B (for every equivalent norm) ⇒ RNP
The reciprocal is not true.
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Conjecture

RNP⇔ NA(X) = L(X) for every equivalent norm

Proposition

Y Banach space, X ∼= Y ⊕ Y

X ∼= Y ⊕1 Y ⇒ ‖x‖X = ‖y1‖Y + ‖y2‖Y ∀x = (y1, y2)

X ∼= Y ⊕∞ Y ⇒ ‖x‖X = max {‖y1‖Y , ‖y2‖Y } ∀x = (y1, y2)

X verifies NA(X) = L(X) for every equivalent norm, if, and only
if, X has the RNP.
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Counterexamples

Gowers’ counterexample

No infinite dimensional Hilbert space has property B.

For 1 < p <∞, `p and Lp do not have property B.

Acosta’s counterexample

No infinite dimensional strictly convex Banach space has property
B.

In another result, `1 and L1 do not have property B.
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Open problems

I Do finite dimensional spaces have property B?
In particular, does R2, with the euclidean norm, have property
B?

I Characterize the compacts K such that C(K) has property B.

I RNP⇔ NA(X) = L(X) for every equivalent norm ?
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Norm-attaining compact operators

Norm-attaining compact operators

NAK(X,Y ) := K(X,Y ) ∩NA(X,Y )

Problem

NAK(X,Y ) = K(X,Y )?

Remark

If X is reflexive, NAK(X,Y ) = K(X,Y ) ∀Y .
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Approximation property

X has the approximation property (AP) if for every compact
K ⊂ X and every ε > 0 there exists an operator T ∈ F (X) such
that ‖Tx− x‖ < ε for every x ∈ K.

Grothendieck Theorem

I Y has AP ⇔ F (Z, Y ) = K(Z, Y ) ∀Z.

I X∗ has AP ⇔ F (X,Z) = K(X,Z) ∀Z.

I X∗ has AP ⇒ X has AP.

Grothendieck Lemma

A Banach space Y has the approximation property if, and only if,
F (X,Y ) = K(X,Y ) for every closed subspace X of c0.
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Examples

I (Enflo) There exists X 6 c0 without AP.

I (Davie) There exists X 6 `p without AP for 1 ≤ p < 2.

I (Szankowski) There exists X 6 `p without AP for 2 < p <∞.

Mart́ın, ’14

There exist compact linear operators between Banach spaces which
cannot be approximated by norm-attaining operators.

Problem

¿NAK(X,Y ) = K(X,Y )?
The answer is negative, in general.
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Properties AK and BK

I X has property AK if NAK(X,Y ) = K(X,Y ) ∀Y .

I Y has property BK if NAK(X,Y ) = K(X,Y ) ∀X.

Examples

I Finite-dimensional spaces have property AK.

I Y = K has property BK.

I Real finite-dimensional polyhedral spaces have property BK.

Example

There exists X 6 c0 failing property AK and Y failing BK.
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Thank you!
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