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CONDITIONAL RELATIVE ENTROPY

CLASSICAL CASE

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space (2, F, 1) and define, for every f > 0, the
entropy of f by

Enty(f) = p(flog f) — u(f) log u(f).
Given a og-algebra G C F, we define the conditional entropy of f in G by

Ent,(f | G) = u(flog f|G) —p(f | G)logu(f|9)-

pel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY

CLASSICAL CASE

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space (2, F, 1) and define, for every f > 0, the
entropy of f by

Ent,(f) = p(flog f) — pu(f)log pu(f).
Given a og-algebra G C F, we define the conditional entropy of f in G by

Ent,.(f | G) = u(flog f | G) — p(f [ G)log u(f | G)-

LEMMA, Dai Pra et al. '02

Let (2, F, 1) be a probability space, and F1, F2 sub-o-algebras of F.
Suppose that there exists a probability measure i that makes F; and F»
independent, 4 < i and p | F; = i | F; for ¢ = 1,2. Then, for every f > 0
such that flog f € L'(u) and u(f) = 1,

Ent,.(f) Ent,(f [ F1) + Ent,.(f | 72)],

1
<7
< Tapm o M
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CONDITIONAL RELATIVE ENTROPY

STATEMENT OF THE PROBLEM

CLASSICAL CASE

1
L = F F
Ent#(f) - 1— 4||h _ 1”00 /’L[Entﬂ(f ‘ 1) +Ent#(f | 2)]3
where h = Z—Z

v
PROBLEM

Let Hapc = Ha ® He @ He and papc,ocaBc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(pasc|loasc) + Dec(pasc|loase)] ?

Capel (ICMAT-UAM, Madrid a ctorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY

STATEMENT OF THE PROBLEM

CLASSICAL CASE

1
S F F
Ent#(f) - 1— 4||h _ 1”00 /’L[Entﬂ(f ‘ 1) +Ent#(f | 2)]3
where h = Z—Z

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocaBc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(pasc|loasc) + Dec(pasc|loase)] ?

Yes! (We will see several examples during this talk)

Capel (ICMAT-UAM, Madrid) a ctorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logona)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pas — D(pag||ocar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(ps||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagl|lcas) > D(T(pas)||T(caB)) for every
quantum channel T'.

Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logona)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pas — D(pag||ocar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(ps||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagl|lcas) > D(T(pas)||T(caB)) for every
quantum channel T'.

CHARACTERIZATION OF THE RE, Wilming et al. ’17, Matsumoto ’10

If f:SaB X Sap — ]RBL satisfies 1 — 4, then f is the relative entropy.

Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY
( UM SPIN LATTICES

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as

a function
DA(H) :SaB X SaB — Ra—
verifying the following properties for every pap,ocap € Sap:

@ Continuity: The map pap — Da(par||loar) is continuous.
@ Non-negativity: Da(pag|locas) > 0 and
(21) Da(paplloap)=0if, and only if, pap = oy po*ppog'/ o if5.
@ Semi-superadditivity: Da(pag|loa ® o) > D(pal|loa) and
(3.1) Semi-additivity: if pap = pa ® pp,
Da(pa ® pBlloa ® o) = D(palloa)-
© Semi-motonicity: For every quantum channel T,
Da(T(pap)lIT(0a8)) + Dp((tra oT)(pas)||(traoT)(can))

< Da(paslloas) + Dp(tra(pas)||tra(ocas)).

A]xgela Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY
CONDITIONAL RELATIVE ENTROPY Quas IC TION FOR THE CONDITIONAL

L RELATIV ENTROP XPECTATIONS
QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIONS

REMARK

Consider for every pap,cap € Sap
D} p(paglloas) = Da(paslloas) + De(paslloan).

Then, DX’ p verifies the following properties:
© Continuity: pap — D} z(pasl|loas) is continuous.
@ Additivity: Dij(pA ® pBl|loa ® o) = D(pal|loa) + D(psllos).

@ Superadditivity: D} 5(paslloa ® o) > D(palloa) + D(pzllos).
However, it does not satisfy the property of monotonicity.

e entropy



CONDITIONAL TIVE ENTROPY
CONDITIONAL RELATIVE ENTROPY ( -FACTOF FOR

REMARK

Consider for every pap,cap € Sap

D} 5(paslloas) = Da(pasl|loas) + Ds(paslloas).

Then, DX’ p verifies the following properties:
© Continuity: pap — D} z(pasl|loas) is continuous.
@ Additivity: Dij(pA ® pBl|loa ® o) = D(pal|loa) + D(psllos).

@ Superadditivity: D} 5(paslloa ® o) > D(palloa) + D(pzllos).
However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CONDITIONAL RELATIVE ENTROPY

The only possible conditional relative entropy is given by:
Da(paslloas) = D(pasl|loas) — D(psllos)

for every pap,oaB € SaB.

tion of the relative entropy



CONDITIONAL RELAT ENTROPY
CONDITIONAL RELATIVE ENTROPY QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY
CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIO

BC

%/—/

AB
Figure: Choice of indices in Hapc = Ha @ Hp @ Hc.

Result of quasi-factorization of the relative entropy, for every
PABC,TABC € SABC:

D(pasclloase) <
&(oasc) [Dap(papcl|loasc) + Dee(papclloasc)],

where £(0aBc) depends only on o4pc and measures how far oac is from
oA Roc.
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CONDITIONAL RELATIVE ENTROPY Ql ASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY
o .

TIONAL RELATIVE EM
le\ll ACTORIZATION FOR THE CRE BY EXPECTATIONS

QUASI-FACTORIZATION FOR THE CRE

Let Hapec = Ha @ HB ® He and papc,ocaBc € Sapc. Then, the following
inequality holds

D(pasclloase) <
1

m [Dag(paBclloasc) + Dec(pasc|loasc)],

where

—1/2

H(O‘Ac) 20;1/2@0‘51/2 OAC O 4 ®0‘ —Tac.

Note that H(ocac) = 0 if oac is a tensor product between A and C.

ion of the relative entropy



CONDITIONAL RELA

QUASI-FACTORIZATION FOR THE CRE

Let Hapec = Ha @ HB ® He and papc,ocaBc € Sapc. Then, the following
inequality holds

D(pasclloase) <
1

—————[D D
1 2] H(oac)] - [Dag(paBc|loasc) + Dec(papc|loase)],

where
H(oac) = 0‘;1/2 ® 0‘51/2 oAC 0;1/2 ® 0‘51/2 —Tac.

Note that H(ocac) = 0 if oac is a tensor product between A and C.

CLASSICAL CASE

1
Ent,(f) < mN[Entu(f | F1) + Ent,.(f | F2)],

torization of the relative entropy



« \L RELAT ENTROPY
CONDITIONAL RELATIVE ENTROPY 7 ORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

RELAT ENTROPY BY EXPECTATIONS
\CTORIZATION FOR CRE BY EXPE(

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

Capel (ICMAT-UAM, Madrid ctorization of the relative entropy
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CONDITIONAL RELATIVE ENTROPY 7 ORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

INAL RELAT
\CTORIZATIO!

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

=

(1 +2||H(cac)llo)D(pasclloasc) > D(palloa) + D(pclloc).

Angela Capel (ICMAT-UAM, Madrid) Qua ctorization of the relative entropy
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CONDITIONAL RELATIVE ENTROPY 7 ORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

INAL RELAT
\CTORIZATIO!

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

=2
(1 +2||H(cac)llo)D(pasclloasc) > D(palloa) + D(pclloc).
=4

(1+2||H(cac)lloo)D(paclloac) = D(palloa) + D(pclloc).

Angela Capel (ICMAT-UAM, Madrid) Qua ctorization of the relative entropy
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CONDITIONAL RELAT ENTROPY BY EXPECTATIONS
QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIO]

This result is equivalent to:

(1+2[|H(0aB)ll)D(paslloar) = D(palloa) + D(psllos) |

ization of th
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CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIO

This result is equivalent to:

(1+2[|H(0aB)ll)D(paslloar) = D(palloa) + D(psllos) |

Recall:

o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).
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CONDITIONAL RELATIVE ENTROPY 7 ORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

INAL RELAT
\CTORIZATIO!

This result is equivalent to:

(1+2[|H(0aB)ll)D(paslloar) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

Due to:

e Monotonicity. D(pag|loar) > D(T(pag)||T(cag)) for every
quantum channel T'.

we have

2D(paslloas) > D(palloa) + D(psllos).

Angela Capel (ICMAT-UAM, Madrid) Qua ctorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY JTORIZATION FO E CONDITIONAL RELATIVE ENTROPY

RELATION WITH THE CLASSICAL CASE

STATES OBSERVABLES

faB =151, (paB trloanfap logfan]
oap\f

QUANTUM Dipas|/zas)

SETTING D(paslloas) — D(psllos) fB=T;1(pB) trftraloap fap logfag] — opfp logfs]
pAB =V trfo] = p(:)
e tral] = p(-|F)
— dv oo f
CLASSICAL Hw, 1) ; u(f logf)
SEe Hr(v.1) 1 (1 f logfIF) — (f|F)logyu(f|F))

Figure: Identification between classical and quantum quantities when the states
considered are classical.
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CONDITIONAL RELATIVE ENTROPY Q -FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY
CONDITIONAL RELATIY NTROPY BY EXPECTAT
(

Y EXPECTATIONS

TCH OF THE PROOF OF QUASI-FACTORIZATION

| (1+ 2| H(0a5)]l.)D(pazlloas) > D(palloa) + D(psllos) | |

ive entropy
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CONDITIONAL RELATIVE ENTROPY 7 ORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

D(paslloas) = D(palloa) + D(psllos) — logtr M, 1)
where M = exp [logoap —logoa ® o + log pa ® pgs].

Angela Capel (ICMAT-UAM, Madrid) Qua ctorization of the relative entropy



CONDITIONAL RELATIVE ENTROPY

SKETCH OF THE PROOF OF QUASI-FACTORIZATION

| (1+ 2 H(0a5)]l.)D(pazlloas) > D(palloa) + D(psllos) | J

D(paslloas) 2 D(palloa) + D(psllos) — logtr M, (1)

where M = exp [logoap —logoa ® o + log pa ® pgs].

It holds that:

D(paBlloas) — [D(palloa) + D(psllos)] =

=1tr |pap [ logpap — (logoap —logoa ® op +logpa ® pB)

log M
= D(paplIM) > —logtr M.

Capel (ICMAT-UAM, Madrid ctorization of the relative entropy
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CONDITIONAL RELATIVE ENTROPY QUASI-FACTORIZATION FOR CONDITIONAL RELATIVE ENTROPY

CONDITIO 3Y PECTATIONS
Q CTORIZATION FOR 3Y E

logtr M < tr[L(cap) (pa —0a) ® (pB — oB)], (2)

where

L(oaB) = Tosgop (04aB) — LaB.
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HEOREM (LIEB)

Let g a positive operator, and define

7'g(f)=/Ooodt(g+t)‘1f(g+t)‘1-

Ty is positive-semidefinite if g is. We have that

trlexp(—f + g+ h)] < tr [ehTef (eg)] .

ization of th



CONDITIONA

THEOREM (LIEB)

Let g a positive operator, and define

[e o)
T = [ e+ @+
Ty is positive-semidefinite if g is. We have that

trlexp(—f + g+ h)] < tr [ehTef (eg)] .

We apply Lieb’s theorem to the previous equation :

trM < trlpa ® peToa®op (0aB)]

= tr{pa®pB(Tos@o5(0aB) —1ap)| +trlpa ® pB].

L(ocag) 1

torization of the tive entropy



CONDITIONA

THEOREM (LIEB)

Let g a positive operator, and define

[e o)
T = [ e+ @+
Ty is positive-semidefinite if g is. We have that

trlexp(—f + g+ h)] < tr [ehTef (eg)] .

We apply Lieb’s theorem to the previous equation :

trM < trlpa ® peToa®op (0aB)]

tr{pa ® pB (To p®05(0aB) —1aB)| +tr[pa ® pB].

L(ocag) 1

By using the fact log(z) < = — 1, we conclude
logtr M <trM — 1 < tr[L(caB)pa ® pB]-

torization of the tive entropy



CONDITIONAL RELATIVE ENTROPY Ql SI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

CONDITIONAL REI
SI-FACTORI

Quas

LEMMA (SUTTER ET A
For f € Sap and g € Aap the following holds:
()= [ dtpuvg”

— o0

with

Bo(t) = g(cosh(wt) +1)7t

ATIVE EN
ATIO!

—1-Fit
2
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CONDITIONAL RELATIVE ENTROPY QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELAT ENTROPY BY EXPECTATIONS
QUA \CTORIZATIO! “H\‘\}M\“\‘\Hw

LEMMA (SUTTER ET AL.)

For f € Sap and g € Aap the following holds:

To(f) = / T dtBo(t)g T fg T,

— o0

with
Bo(t) = = (cosh(mt) + 1)

| N
\

LEMMA

For every operator O4 € B4 and Op € Bpg the following holds:
tr[L(caB)oa ® O] = tr[L(cas) Oa ® o] = 0.

tion of the relative entropy
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CONDITIONAL RELATIVE ENTROPY QUASI-FACTORIZATION FOR CONDITIONAL RELATIVE ENTROPY
) ROPY BY PECTATIO!
Q CTO! N F( rHE CRE BY ¥

CONDITIO

tr[L(caB) (pa —04) ® (p5 — 08)] < 2||L(0aB)|D(paslloas). (3)
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C

tr[L(caB) (pa —04) ® (p5 — 08)] < 2||L(0aB)|D(paslloas). (3)

In virtue of Hélder’s inequality and tensorization of Schatten norms,

tr[L(caB) (pa —0oa) ® (pB —0B)] <
IL(eaB)|looll(pa —ca) ® (pB —0B)lly
= L(eaB)llsllpa —oall llps —oBll;-

orization of the ve entropy



CONDITIONAL RELATIVE ENTROPY

tr[L(caB) (pa —04) ® (p5 — 08)] < 2||L(0aB)|D(paslloas). (3)

In virtue of Hélder’s inequality and tensorization of Schatten norms,

tr[L(caB) (pa —0oa) ® (pB —0B)] <
IL(eaB)|looll(pa —ca) ® (pB —0B)lly
= L(eaB)llsllpa —oall llps —oBll;-

Using Pinsker’s theorem and the data-processing inequality, we can conclude:

tr[L(caB) (pa —0a) ® (pB — 0B)] < 2||L(0aB)llD(paBlloas).

Angela Capel (ICMAT-UAM, M d Qua orization of the relative entropy
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CONDITIO! RELAT ENT PECTATIO!

ROPY BY
Q CTOF ON FOR THE CRE BY ECTAT

IL@aR)lo < 0222 ® 05 2 om0 * @05 —1an| . @)

oo
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CONDITIONAL RELATIVE ENTROPY @ ACTORIZATION FOR THE ITIONAL RELATIVE ENTROPY

AL RELATIVE ENTROPY BY EXPECTA
\CTORIZATION FOR THE CRE BY EXPECTATIONS

WEAK CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha @ Hp. We define a weak conditional relative entropy
in A as a function

DA(H) :SaB X SaB — Rg
verifying the following properties for every pap,oap € Sap:

@ Continuity: The map pap — Da(par||loar) is continuous.
@ Non-negativity: Da(pap|loar) > 0 and
(2.1) Da(paBlloap)=0 if, and only if, pap = E% (paB).
@ Semi-superadditivity: Da(pag|loa ® o) > D(pal|loa) and
(3.1) Semi-additivity: if pap = pa ® pB,
D4(pa ®pplloa®op) = D(palloa).

ive entropy
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CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let Hap = Ha @ Hp and pap,cap € Sap. We define the conditional
relative entropy by expectations of pap and cap in A by:

DX(paslloas) = D(pas|[E4(pas)),

where E% (paB) := 0114/; 01;1/2 PB 01_31/2 ‘7,14/33-

tion of the relative entropy




CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY EXPEC

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let Hap = Ha @ Hp and pap,cap € Sap. We define the conditional
relative entropy by expectations of pap and cap in A by:

D3 (paslloas) = D(pas|lEa(pas)),

where E% (paB) := 0114/; 01;1/2 PB 01_31/2 ‘7,14/3?-

PROPERTY

DE(pABHO'AB) is a weak conditional relative entropy.

tion of the relative entropy
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\CTORIZATION FOR THE CRE BY EXPECTATIO!

PROBLEM

Under which conditions holds
Da(paslloas) = DX(paslloas)?

ization of th
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CONDITIONAL RELATIVE ENTROPY QUASI-FACTORIZATION FOR THE CONDITIONAL RELA
( UI\DIT[ON AL RELATIVE ENTROPY BY EXPECTATIONS
\CTORIZATION FOR THE CRE BY EXPECTATIC

PROBLEM

Under which conditions holds
Da(paslloas) = DX(paslloas)?

Q If [pB,04aB] = [pB,08] = [0B,048] = 0,

Da(paslloas) = DE(pag|loas).
Q If o =04 ®oB, then

Da(paglloar) = DX (paslloar).
@ Da(paslloas) =0 < DX (pag|loan) = 0.

In general, it is an open question.

Capel (ICMAT-UAM, Madrid ctorization of the relative entropy
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CONDITIONAL RELATIVE ENTROPY Q ACTORIZATION FOR THE CO!
NAL RELATIVE ENTROPY BY EXPE
QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIONS

QUASI-FACTORIZATION CRE BY EXPECTATIONS

Let Hap =Ha R Hp and pap,0ap € Sap. The following inequality holds
(1—¢&(0aB))D(paslloas) < Di(paslloas) + DE(paslloas),

where
§(oap) =2(E1(t) + E2()),
and
+oo —1+n 1—it —14it 14it
Ei(t) :/ dt Bo( 2 ouf 047 —1las O‘ZI/QO‘AE 051/2
— 0 [e5S]
+oo —1—it 14t —1—it
Eg(t):/ dt Bo( a'Ag o 2 —IlABH s
— oo e}

with
Bo(t) = g(cosh(wt) +1)”

Note that £(cap) =0 if o4p is a tensor product between A and B.

(5)

ive entropy




QUANTUM DISSIPATIVE SYSTEMS
L

QUANTUM SPIN LATTICES 30LEV CONST

MOTIVATION

E environment

S system

Figure: An open quantum many-body system.

o Interesting for information processing = Open (unavoidable
interactions).

o Dynamics of S is dissipative!

@ The continuous-time evolution of a state on S is given by a quantum
Markov semigroup.
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QUANTUM SPIN LATTICES

Figure: A quantum spin lattice system.

o Lattice A cC Z%.
o To every site z € A we associate H, (= CP).
o The global Hilbert space associated to A is Ha = @, cp Ha-
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DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sx.
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DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sx.

pr == pe =T (pa) = €3 (pa) =5 oa

tion of the relative entropy
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DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sx.

pr == pe =T (pa) = €3 (pa) =5 oa

RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lp: — oall; < poly(|A])e™".
PAESA

torization of the relative entropy
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DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sx.

pr — pe =T (pa) = €A (pa) =F o

RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lp: — oall; < poly(|A])e™".
PAESA

PROBLEM

Find examples of rapid mixing!

torization of the relative entropy
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Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£a) = inf 2D(pallon)

pel (ICMAT-UAM, Madrid) a ctorization of the relative entropy
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Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£a) = inf 2D(pallon)

If a(L}) > 0:
D(pi|lon) < D(palloa)e 2ERE

Capel (ICMAT-UAM, Madrid) a ctorization of the relative entropy
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Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£a) = fof 2D(pallon)

If a(£L3) > 0:
D(pelloa) < D(pa|lon)e 2@ER
and putting this together with Pinsker’s inequality, we have:

o = oally < /2D(palloa) e~ ER)t < /2Tog (1 mm) e ER)",

Capel (ICMAT-UAM, Madrid) a ctorization of the relative entropy
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Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£a) = fof 2D(pallon)

If a(L}) > 0:
D(pi|lon) < D(palloa)e 2ERE

and putting this together with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e @A < \/210g(1/0min) ™ * DL,

Log-Sobolev constant = Rapid mixing. )

Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy



QUANTUM DISS! /E SYSTEMS
L I\

0G-SOBOLEY ANT

QUANTUM SPIN LATTICES

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£a) = fof 2D(pallon)

If a(L}) > 0:
D(pi|lon) < D(palloa)e 2ERE

and putting this together with Pinsker’s inequality, we have:

o = oally < /2D(palloa) e~ ER)t < /2Tog (1 mm) e ER)",

Log-Sobolev constant = Rapid mixing. )

PROBLEM
Find positive log-Sobolev constants!

Capel (ICMAT-UAM, Madrid) a ctorization of the relative entropy
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Figure: A quantum spin lattice system A and A, B C A such that AU B = A.

PROBLEM

For a certain £}, can we prove a(L£}) > 0 using the result of
quasi-factorization of the relative entropy?
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Quasi-factorization of the relative entropy. J
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Quasi-factorization of the relative entropy. )

+

Recursive geometric argument.
Lower bound for the log-Sobolev constant in terms of a conditional
log-Sobolev constant.

ive entropy
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Quasi-factorization of the relative entropy. )

+

Recursive geometric argument.
Lower bound for the log-Sobolev constant in terms of a conditional
log-Sobolev constant.

+

Positive (and size-independent) conditional log-Sobolev constant. J

ion of the relative entropy
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Quasi-factorization of the relative entropy. )

+

Recursive geometric argument.
Lower bound for the log-Sobolev constant in terms of a conditional
log-Sobolev constant.

+

Positive (and size-independent) conditional log-Sobolev constant. J
I

Positive log-Sobolev constant. )

ion of the r ive entropy
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GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Ha = @ Ho and pa,on € Sa such that op = ®az. The following

TEA
inequality holds:

zEA

D(palloa) <Y Dalpallon). (6)
TEA

tion of the ive entropy
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GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Ha = @ Ho and pa,on € Sa such that op = ®am. The following
TEA zEA
inequality holds:
D(palloa) <> Da(pallon).
zEA

(6)

The heat-bath dynamics, with product fixed point, has a positive
log-Sobolev constant.

tion of the relative entropy
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GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Ha = @ Ha and pa,oa € Sa such that op = ®am The following
TEA zEA

D(palloa) <Y Dalpallon). (6)
TEA

inequality holds:

The heat-bath dynamics, with product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Ly :=FE; -1, Li=) L;
zEA
Since
E;(p/\) = U}\/QO 12 Pze 0_01/2 = =0z @ pge

for every pa € Sa, we have

Li(pr) =Y (00 @ pac — pa).

TEA

orization of the relative entropy
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CONDITIONAL LOG-SOBOLEV CONSTANT

For z € A, we define the conditional log-Sobolev constant of £} in x by

L tr[ﬁ*(pA)(logpA—logaA)]
an(fz) = fof 2D, (palon)

where o, is the fixed point of the evolution, and D, (palloa) is the
conditional relative entropy.

factorization of the relative entropy
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CONDITIONAL LOG-SOBOLEV CONSTANT

For z € A, we define the conditional log-Sobolev constant of £} in x by

. o —tr[L£3(pa)(log pa —log O'A)]
L) = f
ar(la):= inf 2D, (palon)

where o, is the fixed point of the evolution, and D, (palloa) is the
conditional relative entropy.

LEMMA

an(Ly) >

pel (ICMAT-UAM, Madrid) a ctorization of the relative entropy
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a(Ly) >

N | =

ion of th
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POSITIVE LOG-SOBOLEV CONSTANT

. 1

D(palloa) <D Du(palloa)

zEA
—tr[£% (pa)(log pa — log o))
<
- a;\ 207 (L2)

1 *
- mz — tr[£%(pa)(log pa — log oa)]
zEA TEA

1

~ 2inf an(£3) (= tr[L3(pa)(log pa —logan)])

IN

(= tr[L3(pa)(log pa —logan)]) .

Angela Capel (ICMAT-UAM, Madrid) Qua ctorization of the relative entropy
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OPEN PROBLEMS

PROBLEM 1

Can we use any of the quasi-factorization results to prove log-Sobolev
constants in a more general setting?

(Kastoryano-Brandao, ’15) The heat-bath dynamics, with oa the Gibbs
state of a commuting Hamiltonian, has positive spectral gap. =
Log-Sobolev constant?

PROBLEM 2

Is there a better definition for conditional relative entropy?

PROBLEM 3

When do DA(pABHO'AB) and DE(PABHO'AB) coincide?

rization of the relative entropy
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FOR FURTHER KNOWLEDGE,
ARrxiv: 1705.03521 AND 1804.09525
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