# Quantum conditional relative entropy and quasi-factorization of the relative entropy

# Ángela Capel (ICMAT-UAM, Madrid)

# Joint work with Angelo Lucia (U. Copenhagen) and David Pérez-García (U. Complutense de Madrid).

Based on arXiv: 1705.03521 and 1804.09525



Beyond I.I.D. 2018, Cambridge, 27th July 2018



# 1 Conditional relative entropy

- Conditional relative entropy
- QUASI-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY
- CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS
- QUASI-FACTORIZATION FOR THE CRE BY EXPECTATIONS

# **2** Quantum spin lattices

- Quantum dissipative systems
- Log-Sobolev constant

# CLASSICAL CASE

# CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space  $(\Omega, \mathcal{F}, \mu)$  and define, for every f > 0, the **entropy** of f by

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Given a  $\sigma$ -algebra  $\mathcal{G} \subseteq \mathcal{F}$ , we define the **conditional entropy** of f in  $\mathcal{G}$  by

 $\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$ 

# LEMMA, Dai Pra et al. '02

Let  $(\Omega, \mathcal{F}, \mu)$  be a probability space, and  $\mathcal{F}_1, \mathcal{F}_2$  sub- $\sigma$ -algebras of  $\mathcal{F}$ . Suppose that there exists a probability measure  $\bar{\mu}$  that makes  $\mathcal{F}_1$  and  $\mathcal{F}_2$  independent,  $\mu \ll \bar{\mu}$  and  $\mu \mid \mathcal{F}_i = \bar{\mu} \mid \mathcal{F}_i$  for i = 1, 2. Then, for every  $f \ge 0$  such that  $f \log f \in L^1(\mu)$  and  $\mu(f) = 1$ ,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \, \mu \left[ \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where  $h = \frac{d\mu}{d\bar{\mu}}$ 

# CLASSICAL CASE

### CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space  $(\Omega, \mathcal{F}, \mu)$  and define, for every f > 0, the **entropy** of f by

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Given a  $\sigma$ -algebra  $\mathcal{G} \subseteq \mathcal{F}$ , we define the **conditional entropy** of f in  $\mathcal{G}$  by

 $\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$ 

# LEMMA, Dai Pra et al. '02

Let  $(\Omega, \mathcal{F}, \mu)$  be a probability space, and  $\mathcal{F}_1, \mathcal{F}_2$  sub- $\sigma$ -algebras of  $\mathcal{F}$ . Suppose that there exists a probability measure  $\bar{\mu}$  that makes  $\mathcal{F}_1$  and  $\mathcal{F}_2$  independent,  $\mu \ll \bar{\mu}$  and  $\mu \mid \mathcal{F}_i = \bar{\mu} \mid \mathcal{F}_i$  for i = 1, 2. Then, for every  $f \ge 0$  such that  $f \log f \in L^1(\mu)$  and  $\mu(f) = 1$ ,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[ \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where  $h = \frac{d\mu}{d\bar{\mu}}$ .

# STATEMENT OF THE PROBLEM

# CLASSICAL CASE

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \, \mu \left[ \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$
  
where  $h = \frac{d\mu}{d\overline{\mu}}$ .

### Problem

Let  $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$  and  $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$ . Can we prove something like

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$ 

Yes! (We will see several examples during this talk)

# STATEMENT OF THE PROBLEM

# CLASSICAL CASE

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \, \mu \left[ \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$
  
where  $h = \frac{d\mu}{d\overline{\mu}}.$ 

### Problem

Let  $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$  and  $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$ . Can we prove something like

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$ 

Yes! (We will see several examples during this talk)

# **Relative Entropy**

### QUANTUM RELATIVE ENTROPY

Let  $\rho_{\Lambda}, \sigma_{\Lambda} \in S_{\Lambda}$ . The **quantum relative entropy** of  $\rho_{\Lambda}$  and  $\sigma_{\Lambda}$  is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

### Properties of the relative entropy

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$  and  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ . The following properties hold:

- Continuity.  $\rho_{AB} \mapsto D(\rho_{AB} || \sigma_{AB})$  is continuous.
- **2** Additivity.  $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity.  $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$ .
- Monotonicity.  $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$  for every quantum channel T.

### CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If  $f: S_{AB} \times S_{AB} \to \mathbb{R}^+_0$  satisfies 1-4, then f is the relative entropy.

# **Relative Entropy**

### QUANTUM RELATIVE ENTROPY

Let  $\rho_{\Lambda}, \sigma_{\Lambda} \in S_{\Lambda}$ . The **quantum relative entropy** of  $\rho_{\Lambda}$  and  $\sigma_{\Lambda}$  is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

### Properties of the relative entropy

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$  and  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ . The following properties hold:

- Continuity.  $\rho_{AB} \mapsto D(\rho_{AB} || \sigma_{AB})$  is continuous.
- **2** Additivity.  $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity.  $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$ .
- Monotonicity.  $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$  for every quantum channel T.

### CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If  $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$  satisfies 1-4, then f is the relative entropy.

CONDITIONAL RELATIVE ENTROPY QUASE-FACTORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS QUASE-FACTORIZATION FOR THE CRE BY EXPECTATIONS

# CONDITIONAL RELATIVE ENTROPY

### CONDITIONAL RELATIVE ENTROPY

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ . We define a **conditional relative entropy** in A as a function

$$D_A(\cdot || \cdot) : \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$$

verifying the following properties for every  $\rho_{AB}, \sigma_{AB} \in S_{AB}$ :

- **O Continuity:** The map  $\rho_{AB} \mapsto D_A(\rho_{AB} || \sigma_{AB})$  is continuous.
- **2** Non-negativity:  $D_A(\rho_{AB}||\sigma_{AB}) \ge 0$  and

(2.1)  $D_A(\rho_{AB}||\sigma_{AB})=0$  if, and only if,  $\rho_{AB} = \sigma_{AB}^{1/2} \sigma_B^{-1/2} \rho_B \sigma_B^{-1/2} \sigma_{AB}^{1/2}$ .

**3** Semi-superadditivity:  $D_A(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A)$  and

(3.1) Semi-additivity: if  $\rho_{AB} = \rho_A \otimes \rho_B$ ,  $D_A(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A)$ .

• Semi-motonicity: For every quantum channel  $\mathcal{T}$ ,  $D_A(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB})) + D_B((\operatorname{tr}_A \circ \mathcal{T})(\rho_{AB})||(\operatorname{tr}_A \circ \mathcal{T})(\sigma_{AB}))$  $\leq D_A(\rho_{AB}||\sigma_{AB}) + D_B(\operatorname{tr}_A(\rho_{AB})||\operatorname{tr}_A(\sigma_{AB})).$ 

# Remark

Consider for every  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ 

$$D_{A,B}^+(\rho_{AB}||\sigma_{AB}) = D_A(\rho_{AB}||\sigma_{AB}) + D_B(\rho_{AB}||\sigma_{AB}).$$

Then,  $D_{A,B}^+$  verifies the following properties:

- Continuity:  $\rho_{AB} \mapsto D^+_{A,B}(\rho_{AB} || \sigma_{AB})$  is continuous.
- **2** Additivity:  $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity:  $D_{A,B}^+(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

However, it does not satisfy the property of monotonicity.

### Axiomatic characterization of the conditional relative entropy

The only possible conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ .

# Remark

Consider for every  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ 

$$D_{A,B}^+(\rho_{AB}||\sigma_{AB}) = D_A(\rho_{AB}||\sigma_{AB}) + D_B(\rho_{AB}||\sigma_{AB}).$$

Then,  $D_{A,B}^+$  verifies the following properties:

- Continuity:  $\rho_{AB} \mapsto D^+_{A,B}(\rho_{AB} || \sigma_{AB})$  is continuous.
- **2** Additivity:  $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity:  $D_{A,B}^+(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

However, it does not satisfy the property of monotonicity.

### AXIOMATIC CHARACTERIZATION OF THE CONDITIONAL RELATIVE ENTROPY

The only possible conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ .

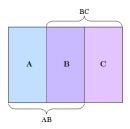


Figure: Choice of indices in  $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ .

Result of **quasi-factorization** of the relative entropy, for every  $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$ :

 $D(\rho_{ABC}||\sigma_{ABC}) \leq \\ \xi(\sigma_{ABC}) \left[ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$ 

where  $\xi(\sigma_{ABC})$  depends only on  $\sigma_{ABC}$  and measures how far  $\sigma_{AC}$  is from  $\sigma_A \otimes \sigma_C$ .

# QUASI-FACTORIZATION FOR THE CRE

Let  $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$  and  $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$ . Then, the following inequality holds

$$D(\rho_{ABC}||\sigma_{ABC}) \leq \frac{1}{1-2\|H(\sigma_{AC})\|_{\infty}} \left[ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that  $H(\sigma_{AC}) = 0$  if  $\sigma_{AC}$  is a tensor product between A and C.

### CLASSICAL CASE

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \, \mu \left[ \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where  $h = \frac{d\mu}{d\bar{\mu}}$ .

# QUASI-FACTORIZATION FOR THE CRE

Let  $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$  and  $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$ . Then, the following inequality holds

$$D(\rho_{ABC}||\sigma_{ABC}) \leq \frac{1}{1-2\|H(\sigma_{AC})\|_{\infty}} \left[ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that  $H(\sigma_{AC}) = 0$  if  $\sigma_{AC}$  is a tensor product between A and C.

### CLASSICAL CASE

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[ \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where  $h = \frac{d\mu}{d\bar{\mu}}$ .

# $\begin{aligned} (1 - 2 \|H(\sigma_{AC})\|_{\infty}) D(\rho_{ABC} || \sigma_{ABC}) &\leq \\ D_{AB}(\rho_{ABC} || \sigma_{ABC}) + D_{BC}(\rho_{ABC} || \sigma_{ABC}) &= \\ &= 2D(\rho_{ABC} || \sigma_{ABC}) - D(\rho_{C} || \sigma_{C}) - D(\rho_{A} || \sigma_{A}). \end{aligned}$

### $\Leftrightarrow$

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$ 

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

### $\Leftrightarrow$

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$ 

#### $\Leftrightarrow$

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$ 

$$\begin{aligned} (1-2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) &\leq \\ D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) &= \\ &= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}). \end{aligned}$$

### $\Leftrightarrow$

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$ 

### $\Leftrightarrow$

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$ 

This result is equivalent to:

 $\left| (1+2\|H(\sigma_{AB})\|_{\infty}) D(\rho_{AB} ||\sigma_{AB}) \ge D(\rho_A ||\sigma_A) + D(\rho_B ||\sigma_B) \right|.$ 

Recall:

• Superadditivity.  $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$ .

This result is equivalent to:

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) \, .$ 

Recall:

• Superadditivity.  $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$ 

Due to:

• Monotonicity.  $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$  for every quantum channel T.

we have

 $2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$ 

This result is equivalent to:

$$(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}\|\sigma_{AB}) \ge D(\rho_A\|\sigma_A) + D(\rho_B\|\sigma_B)$$

Recall:

• Superadditivity.  $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$ 

Due to:

• Monotonicity.  $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$  for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

Conditional relative entropy Quantum spin lattices Conditional relative entropy Quasi-factorization for the conditional relative entropy Conditional relative entropy by expectations Quasi-factorization for the CRE by expectations

# RELATION WITH THE CLASSICAL CASE

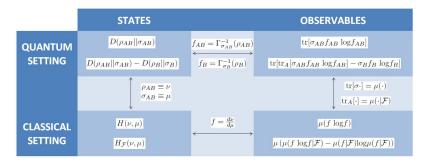


Figure: Identification between classical and quantum quantities when the states considered are classical.

# SKETCH OF THE PROOF OF QUASI-FACTORIZATION

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B}).$ 

### Step 1

$$D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) - \log \operatorname{tr} M, \tag{1}$$

where  $M = \exp \left[\log \sigma_{AB} - \log \sigma_A \otimes \sigma_B + \log \rho_A \otimes \rho_B\right]$ .

# SKETCH OF THE PROOF OF QUASI-FACTORIZATION

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$ 

### Step 1

$$D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) - \log \operatorname{tr} M, \tag{1}$$

where  $M = \exp \left[ \log \sigma_{AB} - \log \sigma_A \otimes \sigma_B + \log \rho_A \otimes \rho_B \right]$ .

It holds that:

$$D(\rho_{AB}||\sigma_{AB}) - [D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})] =$$

$$= \operatorname{tr} \left[ \rho_{AB} \left( \log \rho_{AB} - \underbrace{(\log \sigma_{AB} - \log \sigma_{A} \otimes \sigma_{B} + \log \rho_{A} \otimes \rho_{B})}_{\log M} \right) \right]$$

$$= D(\rho_{AB}||M) \ge -\log \operatorname{tr} M.$$

# SKETCH OF THE PROOF OF QUASI-FACTORIZATION

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$ 

### Step 1

$$D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) - \log \operatorname{tr} M, \tag{1}$$

where  $M = \exp \left[ \log \sigma_{AB} - \log \sigma_A \otimes \sigma_B + \log \rho_A \otimes \rho_B \right]$ .

It holds that:

$$\begin{split} D(\rho_{AB}||\sigma_{AB}) &- \left[D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})\right] = \\ &= \operatorname{tr}\left[\rho_{AB}\left(\log\rho_{AB} - \underbrace{\left(\log\sigma_{AB} - \log\sigma_{A}\otimes\sigma_{B} + \log\rho_{A}\otimes\rho_{B}\right)}_{\log M}\right)\right] \\ &= D(\rho_{AB}||M) \geq -\log\operatorname{tr} M. \end{split}$$

$$\log \operatorname{tr} M \leq \operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)], \qquad (2)$$

where

$$L(\sigma_{AB}) = \mathcal{T}_{\sigma_A \otimes \sigma_B} (\sigma_{AB}) - \mathbb{1}_{AB}.$$

# THEOREM (LIEB)

Let g a positive operator, and define

$$\mathcal{T}_g(f) = \int_0^\infty \mathrm{d}t \, (g+t)^{-1} f(g+t)^{-1}.$$

 $\mathcal{T}_g$  is positive-semidefinite if g is. We have that

$$\operatorname{tr}[\exp(-f+g+h)] \leq \operatorname{tr}\left[e^{h}\mathcal{T}_{e^{f}}(e^{g})\right].$$

We apply Lieb's theorem to the previous equation :

$$\operatorname{tr} M \leq \operatorname{tr}[\rho_A \otimes \rho_B \mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB})] = \operatorname{tr}\left[\rho_A \otimes \rho_B \underbrace{(\mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB}) - \mathbb{1}_{AB})}_{L(\sigma_{AB})}\right] + \underbrace{\operatorname{tr}[\rho_A \otimes \rho_B]}_{1}.$$

# THEOREM (LIEB)

Let g a positive operator, and define

$$\mathcal{T}_g(f) = \int_0^\infty \mathrm{d}t \, (g+t)^{-1} f(g+t)^{-1}.$$

 $\mathcal{T}_g$  is positive-semidefinite if g is. We have that

$$\operatorname{tr}[\exp(-f+g+h)] \le \operatorname{tr}\left[e^{h}\mathcal{T}_{ef}(e^{g})\right].$$

We apply Lieb's theorem to the previous equation :

$$\operatorname{tr} M \leq \operatorname{tr}[\rho_A \otimes \rho_B \mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB})] = \operatorname{tr}\left[\rho_A \otimes \rho_B \underbrace{(\mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB}) - \mathbb{1}_{AB})}_{L(\sigma_{AB})}\right] + \underbrace{\operatorname{tr}[\rho_A \otimes \rho_B]}_{1}.$$

By using the fact  $\log(x) \le x - 1$ , we conclude

$$\log \operatorname{tr} M \leq \operatorname{tr} M - 1 \leq \operatorname{tr}[L(\sigma_{AB}) \rho_A \otimes \rho_B].$$

# THEOREM (LIEB)

Let g a positive operator, and define

$$\mathcal{T}_g(f) = \int_0^\infty \mathrm{d}t \, (g+t)^{-1} f(g+t)^{-1}.$$

 $\mathcal{T}_g$  is positive-semidefinite if g is. We have that

$$\operatorname{tr}[\exp(-f+g+h)] \le \operatorname{tr}\left[e^{h}\mathcal{T}_{ef}(e^{g})\right].$$

We apply Lieb's theorem to the previous equation :

$$\operatorname{tr} M \leq \operatorname{tr}[\rho_A \otimes \rho_B \mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB})] = \operatorname{tr}\left[\rho_A \otimes \rho_B \underbrace{(\mathcal{T}_{\sigma_A \otimes \sigma_B}(\sigma_{AB}) - \mathbb{1}_{AB})}_{L(\sigma_{AB})}\right] + \underbrace{\operatorname{tr}[\rho_A \otimes \rho_B]}_{1}.$$

By using the fact  $\log(x) \le x - 1$ , we conclude

$$\log \operatorname{tr} M \leq \operatorname{tr} M - 1 \leq \operatorname{tr}[L(\sigma_{AB}) \rho_A \otimes \rho_B].$$

# LEMMA (SUTTER ET AL.)

For  $f \in S_{AB}$  and  $g \in A_{AB}$  the following holds:

$$\mathcal{T}_{g}(f) = \int_{-\infty}^{\infty} dt \,\beta_{0}(t) \, g^{\frac{-1-it}{2}} \, f \, g^{\frac{-1+it}{2}},$$

with

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

### Lemma

For every operator  $O_A \in \mathcal{B}_A$  and  $O_B \in \mathcal{B}_B$  the following holds:  $\operatorname{tr}[L(\sigma_{AB})\sigma_A \otimes O_B] = \operatorname{tr}[L(\sigma_{AB})O_A \otimes \sigma_B] = 0$ 

# LEMMA (SUTTER ET AL.)

For  $f \in S_{AB}$  and  $g \in A_{AB}$  the following holds:

$$\mathcal{T}_{g}(f) = \int_{-\infty}^{\infty} dt \,\beta_{0}(t) \, g^{\frac{-1-it}{2}} \, f \, g^{\frac{-1+it}{2}},$$

with

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

# Lemma

For every operator  $O_A \in \mathcal{B}_A$  and  $O_B \in \mathcal{B}_B$  the following holds:

 $\operatorname{tr}[L(\sigma_{AB}) \, \sigma_A \otimes O_B] = \operatorname{tr}[L(\sigma_{AB}) \, O_A \otimes \sigma_B] = 0.$ 

# $\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \le 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} ||\sigma_{AB}).$ (3)

In virtue of Hölder's inequality and tensorization of Schatten norms,

$$\begin{aligned} \operatorname{tr}[L(\sigma_{AB})\left(\rho_{A}-\sigma_{A}\right)\otimes\left(\rho_{B}-\sigma_{B}\right)] &\leq \\ \|L(\sigma_{AB})\|_{\infty}\|(\rho_{A}-\sigma_{A})\otimes\left(\rho_{B}-\sigma_{B}\right)\|_{1} \\ &= \|L(\sigma_{AB})\|_{\infty}\|\rho_{A}-\sigma_{A}\|_{1}\|\rho_{B}-\sigma_{B}\|_{1}. \end{aligned}$$

$$\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \le 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} || \sigma_{AB}).$$
(3)

In virtue of Hölder's inequality and tensorization of Schatten norms,

$$\begin{aligned} \operatorname{tr}[L(\sigma_{AB})\left(\rho_{A}-\sigma_{A}\right)\otimes\left(\rho_{B}-\sigma_{B}\right)] &\leq \\ \|L(\sigma_{AB})\|_{\infty}\|(\rho_{A}-\sigma_{A})\otimes\left(\rho_{B}-\sigma_{B}\right)\|_{1} \\ &= \|L(\sigma_{AB})\|_{\infty}\|\rho_{A}-\sigma_{A}\|_{1}\|\rho_{B}-\sigma_{B}\|_{1}. \end{aligned}$$

Using Pinsker's theorem and the data-processing inequality, we can conclude:

$$\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \leq 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} \| \sigma_{AB}).$$

$$\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \le 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} || \sigma_{AB}).$$
(3)

In virtue of Hölder's inequality and tensorization of Schatten norms,

$$\begin{aligned} \operatorname{tr}[L(\sigma_{AB})\left(\rho_{A}-\sigma_{A}\right)\otimes\left(\rho_{B}-\sigma_{B}\right)] &\leq \\ \|L(\sigma_{AB})\|_{\infty}\|(\rho_{A}-\sigma_{A})\otimes\left(\rho_{B}-\sigma_{B}\right)\|_{1} \\ &= \|L(\sigma_{AB})\|_{\infty}\|\rho_{A}-\sigma_{A}\|_{1}\|\rho_{B}-\sigma_{B}\|_{1}. \end{aligned}$$

Using Pinsker's theorem and the data-processing inequality, we can conclude:

$$\operatorname{tr}[L(\sigma_{AB})(\rho_A - \sigma_A) \otimes (\rho_B - \sigma_B)] \leq 2 \|L(\sigma_{AB})\|_{\infty} D(\rho_{AB} \| \sigma_{AB}).$$

### Step 4

$$\|L(\sigma_{AB})\|_{\infty} \le \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty}.$$
 (4)

### WEAK CONDITIONAL RELATIVE ENTROPY

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ . We define a weak conditional relative entropy in A as a function

$$D_A(\cdot || \cdot) : \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$$

verifying the following properties for every  $\rho_{AB}, \sigma_{AB} \in S_{AB}$ :

- **Q** Continuity: The map  $\rho_{AB} \mapsto D_A(\rho_{AB} || \sigma_{AB})$  is continuous.
- **2** Non-negativity:  $D_A(\rho_{AB}||\sigma_{AB}) \ge 0$  and

(2.1)  $D_A(\rho_{AB}||\sigma_{AB})=0$  if, and only if,  $\rho_{AB} = \mathbb{E}_A^*(\rho_{AB})$ .

- **3** Semi-superadditivity:  $D_A(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A)$  and
  - (3.1) Semi-additivity: if  $\rho_{AB} = \rho_A \otimes \rho_B$ ,  $D_A(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A)$ .

# CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

### CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$  and  $\rho_{AB}, \sigma_{AB} \in S_{AB}$ . We define the **conditional** relative entropy by expectations of  $\rho_{AB}$  and  $\sigma_{AB}$  in A by:

$$D_A^E(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\mathbb{E}_A^*(\rho_{AB})),$$

where  $\mathbb{E}_{A}^{*}(\rho_{AB}) := \sigma_{AB}^{1/2} \sigma_{B}^{-1/2} \rho_{B} \sigma_{B}^{-1/2} \sigma_{AB}^{1/2}$ .

### Property

 $D_A^E(\rho_{AB}||\sigma_{AB})$  is a weak conditional relative entropy.

# CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

### CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$  and  $\rho_{AB}, \sigma_{AB} \in S_{AB}$ . We define the **conditional** relative entropy by expectations of  $\rho_{AB}$  and  $\sigma_{AB}$  in A by:

$$D_A^E(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\mathbb{E}_A^*(\rho_{AB})),$$

where  $\mathbb{E}_{A}^{*}(\rho_{AB}) := \sigma_{AB}^{1/2} \sigma_{B}^{-1/2} \rho_{B} \sigma_{B}^{-1/2} \sigma_{AB}^{1/2}$ .

#### Property

 $D_A^E(\rho_{AB}||\sigma_{AB})$  is a weak conditional relative entropy.

### Problem

# Under which conditions holds $D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB})?$

### Examples

• If 
$$[\rho_B, \sigma_{AB}] = [\rho_B, \sigma_B] = [\sigma_B, \sigma_{AB}] = 0,$$
  
 $D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB}).$   
• If  $\sigma = \sigma_A \otimes \sigma_B$ , then

$$D_A(p_{AB}||0_{AB}) = D_A(p_{AB}||0_{AB}) = 0$$

 $D_A(\rho_{AB}||\sigma_{AB}) = 0 \Leftrightarrow D_A^E(\rho_{AB}||\sigma_{AB}) = 0.$ 

In general, it is an open question.

### Problem

Under which conditions holds  $D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB})?$ 

### EXAMPLES

If 
$$[\rho_B, \sigma_{AB}] = [\rho_B, \sigma_B] = [\sigma_B, \sigma_{AB}] = 0,$$
  
$$D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB}).$$

**2** If  $\sigma = \sigma_A \otimes \sigma_B$ , then

$$D_A(\rho_{AB}||\sigma_{AB}) = D_A^E(\rho_{AB}||\sigma_{AB}).$$

$$D_A(\rho_{AB}||\sigma_{AB}) = 0 \Leftrightarrow D_A^E(\rho_{AB}||\sigma_{AB}) = 0.$$

In general, it is an open question.

Conditional relative entropy Quasi-factorization for the conditional relative entropy Conditional relative entropy by expectations Quasi-factorization for the CRE by expectations

(5)

### QUASI-FACTORIZATION CRE BY EXPECTATIONS

Let  $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$  and  $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$ . The following inequality holds  $(1 - \xi(\sigma_{AB}))D(\rho_{AB}||\sigma_{AB}) \leq D_A^E(\rho_{AB}||\sigma_{AB}) + D_B^E(\rho_{AB}||\sigma_{AB}),$ 

where

$$\xi(\sigma_{AB}) = 2 (E_1(t) + E_2(t)),$$

and

$$E_{1}(t) = \int_{-\infty}^{+\infty} dt \,\beta_{0}(t) \left\| \sigma_{B}^{\frac{-1+it}{2}} \sigma_{AB}^{\frac{1-it}{2}} \sigma_{A}^{\frac{-1+it}{2}} - \mathbb{1}_{AB} \right\|_{\infty} \left\| \sigma_{A}^{-1/2} \sigma_{AB}^{\frac{1+it}{2}} \sigma_{B}^{-1/2} \right\|_{\infty},$$
$$E_{2}(t) = \int_{-\infty}^{+\infty} dt \,\beta_{0}(t) \left\| \sigma_{B}^{\frac{-1-it}{2}} \sigma_{AB}^{\frac{1+it}{2}} \sigma_{A}^{\frac{-1-it}{2}} - \mathbb{1}_{AB} \right\|_{\infty},$$

with

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

Note that  $\xi(\sigma_{AB}) = 0$  if  $\sigma_{AB}$  is a tensor product between A and B.

# MOTIVATION

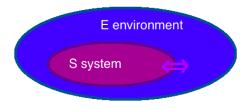


Figure: An open quantum many-body system.

- Interesting for information processing ⇒ Open (unavoidable interactions).
- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a **quantum** Markov semigroup.

# MOTIVATION

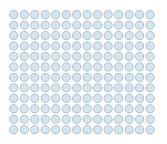


Figure: A quantum spin lattice system.

- Lattice  $\Lambda \subset \mathbb{Z}^d$ .
- To every site  $x \in \Lambda$  we associate  $\mathcal{H}_x$  (=  $\mathbb{C}^D$ ).
- The global Hilbert space associated to  $\Lambda$  is  $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ .

#### Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup  $\{\mathcal{T}_t^*\}_{t\geq 0}$  of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in  $\mathcal{S}_{\Lambda}$ .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

#### Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup  $\{\mathcal{T}_t^*\}_{t\geq 0}$  of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in  $\mathcal{S}_{\Lambda}$ .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

### Rapid mixing

We say that  $\mathcal{L}^*_{\Lambda}$  satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

#### Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup  $\{\mathcal{T}_t^*\}_{t\geq 0}$  of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in  $S_{\Lambda}$ .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

### RAPID MIXING

We say that  $\mathcal{L}^*_{\Lambda}$  satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

#### Problem

Find examples of rapid mixing!

#### Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup  $\{\mathcal{T}_t^*\}_{t\geq 0}$  of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in  $\mathcal{S}_{\Lambda}$ .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

### RAPID MIXING

We say that  $\mathcal{L}^*_{\Lambda}$  satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

#### Problem

Find examples of rapid mixing!

# Log-Sobolev constant

Let  $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$  be a primitive reversible Lindbladian with stationary state  $\sigma_{\Lambda}$ . We define the **log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If  $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ :

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}^*_\Lambda) t},$$

### LOG-SOBOLEV CONSTANT

Let  $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$  be a primitive reversible Lindbladian with stationary state  $\sigma_{\Lambda}$ . We define the **log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If  $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ :

# $D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}^*_\Lambda) t},$

and putting this together with **Pinsker's inequality**, we have:

 $\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$ 

### LOG-SOBOLEV CONSTANT

Let  $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$  be a primitive reversible Lindbladian with stationary state  $\sigma_{\Lambda}$ . We define the **log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If  $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ :

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and putting this together with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

Log-Sobolev constant  $\Rightarrow$  Rapid mixing.

### LOG-SOBOLEV CONSTANT

Let  $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$  be a primitive reversible Lindbladian with stationary state  $\sigma_{\Lambda}$ . We define the **log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If  $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ :

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and putting this together with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

# Log-Sobolev constant $\Rightarrow$ Rapid mixing.

#### Problem

# Find positive log-Sobolev constants!

Ángela Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy

### LOG-SOBOLEV CONSTANT

Let  $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$  be a primitive reversible Lindbladian with stationary state  $\sigma_{\Lambda}$ . We define the **log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If  $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ :

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and putting this together with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

# Log-Sobolev constant $\Rightarrow$ Rapid mixing.

### Problem

# Find positive log-Sobolev constants!

Ángela Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy

# QUANTUM SPIN LATTICES

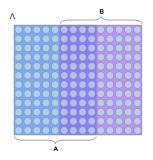


Figure: A quantum spin lattice system  $\Lambda$  and  $A, B \subseteq \Lambda$  such that  $A \cup B = \Lambda$ .

#### Problem

For a certain  $\mathcal{L}^*_{\Lambda}$ , can we prove  $\alpha(\mathcal{L}^*_{\Lambda}) > 0$  using the result of quasi-factorization of the relative entropy?

#### +

Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

### +

Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

### Positive (and size-independent) conditional log-Sobolev constant.

+

### +

Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

### +

Positive (and size-independent) conditional log-Sobolev constant.

### V

Positive log-Sobolev constant.

Ángela Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy

### +

Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

#### +

Positive (and size-independent) conditional log-Sobolev constant.

### ∜

Positive log-Sobolev constant.

Ángela Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy

### General quasi-factorization for $\sigma$ a tensor product

Let 
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and  $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$  such that  $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$ . The following inequality holds:  
$$D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$$
(6)

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

### General quasi-factorization for $\sigma$ a tensor product

Let 
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and  $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$  such that  $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$ . The following inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}).$$
(6)

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_\Lambda, \ \mathcal{L}_\Lambda^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every  $\rho_{\Lambda} \in S_{\Lambda}$ , we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

### General quasi-factorization for $\sigma$ a tensor product

Let 
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and  $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$  such that  $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$ . The following inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}).$$
(6)

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every  $\rho_{\Lambda} \in S_{\Lambda}$ , we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

### CONDITIONAL LOG-SOBOLEV CONSTANT

For  $x \in \Lambda$ , we define the **conditional log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  in x by

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

where  $\sigma_{\Lambda}$  is the fixed point of the evolution, and  $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$  is the conditional relative entropy.

Lemma

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \geq \frac{1}{2}.$$

### CONDITIONAL LOG-SOBOLEV CONSTANT

For  $x \in \Lambda$ , we define the **conditional log-Sobolev constant** of  $\mathcal{L}^*_{\Lambda}$  in x by

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

where  $\sigma_{\Lambda}$  is the fixed point of the evolution, and  $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$  is the conditional relative entropy.

Lemma

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \geq \frac{1}{2}.$$

# Positive log-Sobolev constant

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \frac{1}{2}.$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$
  
$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$
  
$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$
  
$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right)$$
  
$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

### Positive log-Sobolev constant

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \frac{1}{2}.$$

$$\begin{split} D(\rho_{\Lambda}||\sigma_{\Lambda}) &\leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda}) \\ &\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \\ &\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \\ &= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right) \\ &\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right). \end{split}$$

# **OPEN PROBLEMS**

### Problem 1

Can we use any of the quasi-factorization results to prove log-Sobolev constants in a more general setting?

(Kastoryano-Brandao, '15) The heat-bath dynamics, with  $\sigma_{\Lambda}$  the Gibbs state of a commuting Hamiltonian, has positive spectral gap.  $\Rightarrow$  Log-Sobolev constant?

### Problem 2

Is there a better definition for conditional relative entropy?

### Problem 3

When do  $D_A(\rho_{AB}||\sigma_{AB})$  and  $D_A^E(\rho_{AB}||\sigma_{AB})$  coincide?

# For further knowledge, Arxiv: 1705.03521 and 1804.09525



Ángela Capel (ICMAT-UAM, Madrid) Quasi-factorization of the relative entropy