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Tools and ideas — Solve problems

Storage and
transmision +— Models
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MAIN TOPIC OF THIS TALK

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems
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MAIN TOPIC OF THIS TALK

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.
= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
o The continuous-time evolution of a state on .S is given by a
q. Markov semigroup (Markovian approximation).
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QUANTUM DISSIPATIVE SYSTEMS

NOTATION

Figure: A quantum spin lattice system.

Finite lattice A CC Z%.

To every site © € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®$€A Ho.
The set of bounded linear endomorphisms on H, is denoted by
Ba = B(Ha).

The set of density matrices is denoted by

Sa :=8(Ha) ={pa € Ba : pa >0 and tr[pa] = 1}.

a Capel (ICMAT-UCM, Madrid) r 1D systems



QUANTUM DISSIPATIVE SYSTEMS

MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢t > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).
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Continuous-time description: For every ¢t > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

a Capel (ICMAT-UCM, Madrid) r 1D systems



QUANTUM DISSIPATIVE SYSTEMS

MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢t > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

Markovian approximation
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DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T¢" },>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T o TS = Tihs.
o 7o =1.

d * * * * *
th =T, oLy=LroT;.

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

L]
dt

tLy
TS =e" & Ly = —T |t=0-

Notation: p; := T (p).

t—o0

pa = poi=T; (pa) = €A (pa) =% o
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process
works in favor (protecting the system from noisy evolutions).
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QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process
works in favor (protecting the system from noisy evolutions).

Interesting problems:
o Computational power
o Conditions against noise
o Time to obtain certain states
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QUANTUM DISSIPATIVE SYSTEMS

We define the mixing time of {7;"} by

7(e) =minqt > 0: sup [|77(p) = T(p)lly <€

PAESA
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QUANTUM DISSIPA’

We define the mixing time of {7,*} by

PAESA

7(e) = min{t >0: sup |[|[7(p) — Tc(P)|l; < 5}.

RAPID MIXING

We say that £} satisfies rapid mixing if

sup [|ps — oall; < poly(|A)e™".
PAESA
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QUANTUM DISSIPATIVE SYSTEMS

We define the mixing time of {7;"} by

7(e) =minqt > 0: sup [|77(p) = T(p)lly <€

PAESA

RAPID MIXING

We say that £} satisfies rapid mixing if

sup [|ps — oall; < poly(|A)e™".
PAESA

PROBLEM
Find examples of rapid mixing!
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QUANTUM DISSIPATIVE SYSTEMS

CLASSICAL SPIN SYSTEMS

Log-Sobolev constant

Spectral gap Exponential

decay of correlations

Rapid mixing
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QUANTUM DISSIPATIVE

QUANTUM SPIN SYSTEMS

Wo,c<D, AcD~2

a=K>

Ric(£)> v == HWI (k) MLSI(a) ==

TCQ(CQ) ﬁ PI()\) ES E)(p.

Wy, <D, axD™2, c1=dc2ﬂ

(At)tzﬂ unital

TCi(¢1) == Gauss.




QUANTUM DISSIPATIVE

QUA TUM SPIN SYSTEMS

Wa,c <D, AxD™?
Kastoryano-Temme, 2013

ﬁ\g

Ric (£)> & —— HWI (k) MLSI() 252 TCy(e2) 5> PI(\) — Exp.
Wy, <D, axD 2, c1=dc2ﬂ

(A)¢q unital
#e20 TCy(c;) == Gauss.
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Liouville’s equation:
Oepr = LA (pt)-

Relative entropy of p; and oy:

D(pt|loa) = tr[pi(log pr — log op)].

Differentiating;:
Ot D(pilloa) = tr[L3(pr)(log pr —log oa)]- (1)
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QUANTUM DISSIPATIVE SYSTEMS

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Liouville’s equation:
Oepr = LA (pt)-

Relative entropy of p; and oy:

D(pt|loa) = tr[pi(log pr — log op)].

Differentiating;:
Ot D(pilloa) = tr[L3(pr)(log pr —log oa)]- (1)

We want to find a lower bound for the derivative of D(p||oa) in
terms of itself:

20D (pllon) < —te[Li(p) (log pr —logon). ()
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QUANTUM DISSIPATIVE SYSTEMS

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

. .« —tr[LA(pa)(log pa —logon)]
JEQ) = f
al£a) = inf 2D(pallon)




QUANTUM DISSIPATIVE SYSTEMS

LOG-SOBOLEV CONSTANT
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The log-Sobolev constant of £} is defined as:

. .« —tr[LA(pa)(log pa —logon)]
JEQ) = f
al£a) = inf 2D(pallon)

If a(L}) > O
D(pelloa) < D(palloa)e >R,
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LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

. .« —tr[LA(pa)(log pa —logon)]
JEQ) = f
al£a) = inf 2D(pallon)

If a(LR) > 0:
D(ptllon) < D(pallon)e 50",
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < \/210g(1/0min) ™ * DL,
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LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

« .« —tr[LA(pa)(log pa —logon)]
JEQ) = f
al£a) = inf 2D(pallon)

If a(L3) > O:
D(pslloa) < D(palloa)e™*FR)",

and with Pinsker’s inequality, we have:

o = oally < /2D(palloa) e~ Rt < /2Tog (1 mm) e ER)",

Log-Sobolev constant = Rapid mixing. )
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LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

. .« —tr[LA(pa)(log pa —logon)]
JEQ) = f
al£a) = inf 2D(pallon)

If a(LR) > 0:
D(ptllon) < D(pallon)e 50",
and with Pinsker’s inequality, we have:

llo: — oall, < v/2D(palloa) e~ *ER" < \/2Tog(1/amm) e 0",

Log-Sobolev constant = Rapid mixing. )

PROBLEM
Find positive log-Sobolev constants!
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QUANTUM DISSIPATIVE SYSTEMS

MAIN PROBLEM OF THIS TALK
Develop a strategy to find positive log Sobolev constants.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant for the
heat-bath dynamics in 1D.
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

_.I_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

_|_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
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L STRATEGY FOR LOG-SOBOLEV INEQUALITIES

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). |

v,

_|_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J

I

Positive log-Sobolev constant.
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LOG-SOBOLEV CONSTANT

Let £} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[L3(pa)(log pa —logoa)]
L) = f
al£h) = fuf 2D(pallon)
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CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let £} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

inf LA (pa)(log pa —logoa)]

Ly) =
al£h) = fuf 2D(pallon)

CONDITIONAL LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state opa, A C A. We define the conditional log-Sobolev constant of L}
on A by

f — LA (pa)(log pa —logaa)]
PAESA 2D a(palloa)

an(Ly) =

apel (ICMAT-UCM, Madrid) On the MLSI for the Heat-Bath dynamics for 1D systems



RAL STRATEGY FOR LOC

STRATEGY

On the MLSI fo



BOLEV INEQUALITIES

Decay of correlations

on the Gibbs state

On the MLSI for the H



BOLEV INEQUALITIES

Decay of correlations

on the Gibbs state

On the MLSI for the H



AL STRATEGY FOR LOG-SOBOLE

Decay of correlations

Quasi-factorization
of the

relative Definition
entropy conditional

Positive conditional
log-Sobolev constant

on the Gibbs state

On the M for the Heat-Bath



GENERAL STRATEGY FOR LOG-SOBOLEV INEQUALITIES

STRATEGY

Decay of correlations

Quasi-factorization

Geometric
of the

recursive

relative Definition argument
entropy conditional
Log-Sobolev
constant

Positive conditional
log-Sobolev constant

on the Gibbs state

On the



. DEFINITION OF THE CO!
QUASL-F

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY!

3. LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH
DYNAMICS FOR 1D SYSTEM

On the MLSI for the H.



DEFINITION OF THE CONDITIONAL «
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DEFINITION OF THE CONDITIONAL L(
2. QUASI-F TION THE RELATIVE ENTRO

The dynamics: For every pa € Sa,

* 1/2 _—-1/2 —-1/2 1/2
Cxton) = X (oA ez e — ).
zEA
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LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS

The dynamics: For every pa € Sa,
Eilpn) = X (o4 20m 2ot Pl )
zEA

Given A C A, can we prove something like

a(LR) = V(A)aa(Lh) 7
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LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS

The dynamics: For every pa € Sa,

£xon) = X (o405 Ppuearst )" — ).
zEA

Given A C A, can we prove something like
a(Lh) = ¥(A)aa(Ly) ?
If so, we could use it to prove

h}\n/lznfoz(ﬁ,\) > 0.

el (ICMAT-UCM, M d On the MLSI for the Heat-Bath dynamics for 1D sy



LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

The strategy is based on a solution for the following problem.

BC

/—/%

AB

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocaBc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(pasc|loasc) + Dec(pasc|loase)] ?

el (ICMAT-UCM, M d On the MLSI for the Heat-Bath dynamics for 1D sy
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PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(pasclloasc)]

On the MLSI fo



1. DEFINITION OF THF

2. QUASI-F

3. Cr

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D sYS§ 3

INDITIONAL LOC
N OF THE

+-SOBOLEV CONSTA

\CTORI RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(pasclloasc)]

CLASSICAL CASE, Dai Pra et al.

1
< - -
Ent#(f) -1 4||h _ 1”00 /’L[Entu(f ‘ ]:1) + Ent#(f | ]:2)]7
where h = d—"f
dpt

On the M

for the Heat-



LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(pasclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f) pEnty,(f | F1) + Ent,(f | F2)],

<
1—4|lh—1]l,

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Ent,(f) = p(flog f) — pu(f) log pu(f).

Conditional entropy:

Ent,(f|G) =p(flog f|G) — p(f|G)logu(f |G).

Angela Capel (ICMAT-UCM, Madrid) On the MLSI for the Heat-Bath dynamics for 1D systems
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CONSTANT

(1) DEFINITION OF THE CONDITIONAL LOG-SOBOLEV
CONSTANT

On the MLSI for the H



LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS RECT
5. POSITIVE CONDITIONA

RELATIVE ENTROPY

QUANTUM RELA’

Let pa,on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logoa)].

On the MLSI for the Heat-Bath dyn
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RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and o, is defined
by:

D(palloa) = tr [pa(log pa —logaa)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,oap € Sap. The following properties hold:
@ Continuity. pas — D(pag||oar) is continuous.
@ Additivity. D(pa ® pgl|loa ® 0B) = D(palloa) + D(psl|los)-
@ Superadditivity. D(pag|lca ® o) > D(pal|loa) + D(pgllos).

© Monotonicity. D(pasl|loas) > D(T (paB)||T (cag)) for every
quantum channel 7.

On the MLSI for the Heat-Bath dynam for 1D systems
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LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS A 7
. LOG-SOBOLEV

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and o, is defined
by:

D(palloa) = tr [pa(log pa —logaa)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,oap € Sap. The following properties hold:

@ Continuity. pas — D(pag||oar) is continuous.
@ Additivity. D(pa ® pg|loa ® o) = D(pal|oa) + D(psllor).
@ Superadditivity. D(pag|lca ® o) > D(pal|loa) + D(pgllos).

© Monotonicity. D(pasl|loas) > D(T (paB)||T (cag)) for every
quantum channel 7.

CHARACTERIZATION OF THE RE, Wilming et al. ’17, Matsumoto '10

If f:S4aB X Sap — Rg satisfies 1 — 4, then f is the relative entropy.

el (ICMAT-UCM, Madrid) On the MLSI for the Heat-Bath dynamics for 1D systems
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CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as
a function
DA(H) :SaB X Sap — Rg
verifying the following properties for every pap,oap € Sap:
@ Continuity: The map pap — Da(par||loar) is continuous.
@ Non-negativity: Da(pas|loar) > 0 and
P . _1/2 _—1/2 ~1/2_1/2
(2.1) Da(paBlloap)=0 if, and only if, pap = o /05" “pBog AR
@ Semi-superadditivity: Da(pag|loa ® o) > D(pal|loa) and
(3.1) Semi-additivity: if pap = pa ® pB,
Da(pa ®pglloa®op) = D(palloa).
@ Semi-motonicity: For every quantum channel T,
Da(T(paB)l|T(04B)) + Da((traoT)(pas)||(traoT)(caB))

< Da(paslloas) + Dp(tra(pas)||tra(ocas)).

el (ICMAT-UCM, Madrid) On the MLSI for the Heat-Bath dynamics for 1D systems
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REMARK

Consider for every pap,cap € Sap
D} p(paslloar) = Da(paslloar) + De(paslloan).

Then, DX, p verifies the following properties:
QO Continuity: pap — D;B(pABHUAB) is continuous.
@ Additivity: DX,B(PA ® pBlloa ® o) = D(pal|loa) + D(ps||os).

@ Superadditivity: D} (pas|loa ® o) > D(palloa) + D(psllos).
However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE (C-Lucia-Pérez Garcia, ’

The only possible conditional relative entropy is given by:
Da(paslloas) = D(paslloas) — D(psllos)

for every pap,oaB € SaB.

On the MLSI for the H
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CONDITIONAL LOG-SOBOLEV CONSTANT

CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of £} in A
by

)

inf LA (pa)(log pa —log oa)]

LY) =
ar(Ld) = inf 2D (pallon)

where o, is the fixed point of the evolution, and

Da(palloa) = D(palloa) — D(pac|loac).

On the MLSI for the H
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(2) QUASI-FACTORIZATION OF THE RELATIVE ENTROPY |
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DEFINITION OF THE CONDITIONAL LOG-SOBOLEV CONSTA
0 TORIZATION OF THE RELATIVE ENTROPY

LATIO!
LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY!

BC

AB
Figure: Choice of indices in Hapc = Ha @ Hg @ He-

Result of quasi-factorization of the relative entropy, for every
PABC,0ABC € SaBC:

D(pasclloasc) < &(oasc) [Dap(pascl|loasc) + Dec(pasc|loasc)],

where £(0capc) depends only on oapc and measures how far cac is from
oA ®oc.

On the MLSI for the H



. DEFINITION OF THE CONDITIONAL LOG-SOBOLEV CONSTAN
TORIZATION OF THE RELATIVE ENTROPY

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

OBOLEV CONSTANT

Let Hapc = Ha @ Hp ® Heo and papc,ocasc € Sapc. Then, the following
inequality holds

D(pasclloasc) <
1

m [DAB(PABCHUABC) = DBC(pABCHUABC)] 5

where

H(oac) = 021/2 ® 051/2 oAC 0'A1/2 ® 051/2 —Tac.

Note that H(cac) =0 if cac is a tensor product between A and C.

On the MLSI for the Heat-Bath dyn
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0 TORIZATION OF THE RELATIVE ENTROPY

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY!

(1 =2[|H(cac)llo)D(pasclloasc) <
Dag(pasclloapc) + Dec(pasc|loasc) =
= 2D(pasclloasc) — D(pclloc) — D(palloa).

On the MLSI for the H
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(1 =2[|H(cac)llo)D(pasclloasc) <
Dag(pasclloapc) + Dec(pasc|loasc) =
= 2D(pasclloasc) — D(pclloc) — D(palloa).

54

(1 +2||H(cac)llo)D(pasclloasc) > D(palloa) + D(pclloc).

Angela Capel (ICMAT-UCM, Madrid) On the MLSI for the Heat-Bath dynamics for 1D systems



IONAL LOG-SOBOLEV CONSTA
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(1 =2[|H(cac)llo)D(pasclloasc) <
Dag(pasclloapc) + Dec(pasc|loasc) =
= 2D(pasclloasc) — D(pclloc) — D(palloa).

=4
(1 +2||H(cac)llo)D(pasclloasc) > D(palloa) + D(pclloc).
=

(1+2||H(oac)ll)D(paclloac) = D(palloa) + D(pclloc).

Angela Capel (ICMAT-UCM, Madrid) On the MLSI for the Heat-Bath dynamics for 1D systems
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This result is equivalent to:

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |




DEFINITION OF THE CONDITIONAL LOG-SOBOLE\
0 TORIZATION OF THE RELATIVE ENTROPY

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY!

This result is equivalent to:

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

On the MLSI for the H
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This result is equivalent to:

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

Due to:

o Monotonicity. D(pag|loas) > D(T(paB)||T(caB)) for every
quantum channel 7.

we have

2D(paslloas) = D(palloa) + D(psllos).

apel (ICMAT-UCM, Madrid On the MLSI for the Heat-Bath dynamics for 1D



1. DEFINITION OF THE CONDITIONAL LOG-SOBOLEV C(
p TORIZATION OF THE RELATIVE ENTROPY

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS RECU
5. POSITIVE CONDITIONA

Let Hapc and paBc,dasc € Sapc. The following holds

D(pasclloasc) < &(oac) [Das(pasclloasc) + Dec(pascl|loasc)],

where
g(UAC) = —1/2 —1/2 : —1/2 —1/2
1—2HUA ®og 'Toaco, T ®og —]lAcH
e}
D(papclloasc) Dag(pasclloaso) Dpc(pasclloasc)

ANBN c | <E(BQ) |Palsl ¢ + | 4 BBl e

On the MLSI for the Heat-Bath dynami
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QUASI—FACTORIZATION OF THE REL/ /E ENTROPY

STEP 1 J

On the MLSI for the H



)G-SOBOLEV CONSTA

ELATIVE ENTROPY

STEP 1

A= OAZ and B = LnJBj
i=1 j=1

1
1= 2f[h(oaso)ll,
/

D(pallon) <

[Da(palloa) + Dr(palloa)],

—1/2

—1/2 —1/2 —1/2
h(oacpe) :=0,:"" @ 0ge “0acpeo ' @oge’ ™ — Lacpe.

a Capel (ICMAT-UCM, Mad

r 1D systems



DEFINITION OF THE CONDITIO

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

QUASI-FACTORIZATION FOR QMC (Bardet-C-Lucia-Pérez Garcia-Rouzé,
’19)
Let Hapep = Ha ® He @ He ® Hp, where system C' shields A from BD

and papcp,oaBcD € SaBcD, such that capcp is a quantum Markov
chain between A <> C' <+ BD. Then, the following holds

Dap(paBeplloasep) < [Da(pasepl||loasep) + De(pasep||loasep)] .

Dap(pascolloascn) Dalpapoplloasco) Dg(papcolloascp)

On the MLSI for the H.




. DEFINITION OF THE CONDITIONAL LOG-SOBOLEV CONS

. ASI-FACTORIZATION OF THE RELATIVE ENTROPY
CLUSTERING OF CORRELATIONS
LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D sy: ] {. GEOMETRIC A
POSITIVE

SKETCH OF THE PROOF

STEP 2

Da(palloa) < Da,(palloa)

i=1

On the MLSI fo



. DEFINITION OF THE CONDITIONAL LOG-SOBOLEV CONSTA

TORIZATION OF THE RELATIVE ENTROPY
« LATIONS

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY!

SKETCH OF THE PROOF

STEP 2

Da(palloa) < Da,(palloa)

i=1

oa is a QMC between A1 <> 0A1 <> A\ (A1 UOJAL)

on = @"Amaanf ® O(9ay)RA\(41U04:)

On the MLSI for the H



DEFINITION OF THF

SLATIVE ENTROPY

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

(3) CLUSTERING OF CORRELATIONS ON THE GIBBS
STATE

Decay of correlations

on the Gibbs state




LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

5. POSITIVE CO

CLUSTERING OF CORRELATIONS ON THE GIBBS STATE

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc @ Hi, A and B not connected, we
have

_ _ 1
Ih(oas)llo = H 2 @05 ?0ap0 ? @ og'? —]lABH <K< 3

oo

In particular, classical Gibbs states satisfy this.

On the MLSI for the Heat-Bath dy



1 DEFINITION OF THE CONDITIONA

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS
>OSITIVE CONDITIO!

CLUSTERING OF CORRELATIONS ON THE GIBBS STATE

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc @ Hi, A and B not connected, we
have

_ _ 1
Ih(oas)llo = H 2 @05 ?0ap0 ? @ og'? —]lABH <K< 3

oo

In particular, classical Gibbs states satisfy this.

| A\

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

Dg(palloa) < f(osa) (Dp, (palloa) + De,(palloa)) -

In particular, tensor products satisfy this (with f = 1).

a Capel (ICMAT-UCM, Mad

r 1D systems



1. DEFINITION OF THE CONDITIO! LOG-SOBOLEV CONSTANT
Qt FACTORIZATION OF THE RELATIVE ENTROPY
CLUSTER OF CORRELATION:

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMIC 3 . GEOMETRIC RECURSIVE ARGUMENT
POSITIVE CONDITIONAL LOG-SOBOLEV CONSTANT

(4) GEOMETRIC RECURSIVE ARGUMENT ]

el (ICM/



. DEFINITION OF THE CONDITIONAL L
THE REL
ONS
LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY! 3 R E /E ARGUMENT
> 3OLEV CONSTA

GEOMETRIC RECURSIVE ARGUMENT

STEP 3 J

Using locality of the Lindbladian
Ly +Ls =Laus + Lans

and quasi-factorization:

Assumption 1 = a(L}) > K ?lln {aa(Lh,), an(LE,)}

On the MLSI for the H



. DEFINITION OF THE CONDITIONAL L
THE REL
ONS
LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SY! 3 ARGUMENT
5. P VE CO! ONA 30LEV CONSTA

GEOMETRIC RECURSIVE ARGUMENT

STEP 3 J

Using locality of the Lindbladian
L4+ L =Laus + Lans
and quasi-factorization:

Assumption 1 = a(L}) > K ?lln {aa(Lh,), an(LE,)}

Recursion appears in a possible extension to larger dimension.

On the MLSI for the H




LOG-SOBOLEV CONSTAN
ATIO o} TIVE ENTROPY
OF CORF

OLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS x Cl

(5) POSITIVE CONDITIONAL LOG-SOBOLEV CONSTANT ]

On the MLSI f
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QUASI-FACTORI
NG OF C(

Loc 30LEV QUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D v

SKETCH OF THE PROOF

STEP 4 J

Assumption 2 = aa(Lh,) > g(oa,0) > 0.




1. DEFINI
2. QUASI-F
3. CLUSTE
LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS . GEOMET
5. PosITIv TIONAL BOLEV CONSTANT

POSITIVE LOG-SOBOLEV CONSTANT FOR THE HEAT-BATH DYNAMICS IN
1D

THEOREM (Bardet-C-Lucia-Pérez Garcia-Rouzé, ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

el (ICMAT-UCM, M d On the MLSI for the Heat-Bath dynamics for 1D sy



FINITION OF THE CO
QUASI-FAC
3. CLUS
LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D sy: ] 1. GEO!

OPEN PROBLEMS

PROBLEM 1

Does this hold for larger dimension?

PROBLEM 2

Is there a better definition for conditional relative entropy?

PROBLEM 3

Can we do something similar for different dynamics?

On the MLSI for the H th dynami
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