On the modified logarithmic Sobolev inequality for the Heat-Bath dynamics for 1D systems

Ángela Capel (ICMAT-UCM, Madrid)

Joint work with Ivan Bardet (INRIA, Paris), Angelo Lucia (Caltech), Cambyse Rouzé (T. U. München) and David Pérez-García (U. Complutense de Madrid).

Based on arXiv: 1908.09004.

Workshop in Quantum Innovators in Computer Science and Mathematics, 22 October 2019

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Storage and transmision \leftarrow Models f information

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Storage and

transmision \longleftarrow Models

of information

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete Problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete Problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

CONTENTS

- QUANTUM DISSIPATIVE SYSTEMS
- 2 General Strategy for log-Sobolev inequalities
- 3 Log-Sobolev inequality for the heat-bath dynamics for 1D systems
 - 1. Definition of the conditional log-Sobolev constant
 - 2. Quasi-factorization of the relative entropy
 - 3. Clustering of Correlations
 - 4. Geometric recursive argument
 - 5. Positive conditional log-Sobolev constant

QUANTUM DISSIPATIVE SYSTEMS GENERAL STRATEGY FOR LOG-SBOBLEV INEQUALITIES OG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR ID SYSTEM.

1. Quantum dissipative systems

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

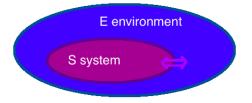


Figure: An open quantum many-body system.

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

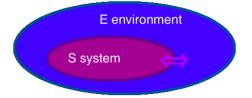


Figure: An open quantum many-body system.

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

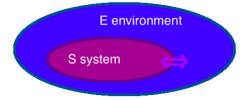


Figure: An open quantum many-body system.

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

NOTATION

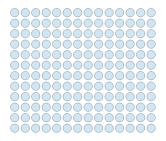


Figure: A quantum spin lattice system.

- Finite lattice $\Lambda \subset \subset \mathbb{Z}^d$.
- To every site $x \in \Lambda$ we associate \mathcal{H}_x (= \mathbb{C}^D).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.
- The set of bounded linear endomorphisms on \mathcal{H}_{Λ} is denoted by $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda}).$
- The set of density matrices is denoted by $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation

DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\bullet \ \mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*.$
- $\mathcal{T}_0^* = 1$.

DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- T_t^{*} ∘ T_s^{*} = T_{t+s}^{*}.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^*.$$

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \xrightarrow{t \to \infty} \sigma_{\Lambda}$$

DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\bullet \ \mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*.$
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^*.$$

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \xrightarrow{t \to \infty} \sigma_{\Lambda}$$

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states
- o ...

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states
- ...

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \| \mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho) \|_{1} \leq \varepsilon \right\}.$$

Rapid mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \| \mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho) \|_{1} \leq \varepsilon \right\}.$$

Rapid mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

PROBLEM

Find examples of rapid mixing

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \| \mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho) \|_{1} \leq \varepsilon \right\}.$$

Rapid mixing

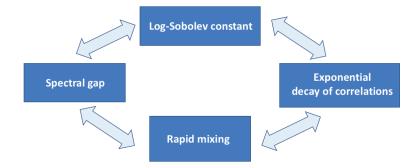
We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

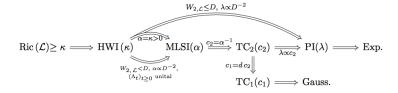
Problem

Find examples of rapid mixing!

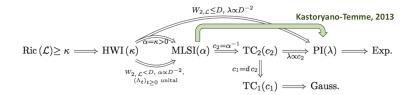
CLASSICAL SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]. \tag{1}$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]. \tag{1}$$

We want to find a lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]. \tag{2}$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]. \tag{1}$$

We want to find a lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]. \tag{2}$$

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \le D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

PROBLEM

Find positive log-Sobolev constants

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

PROBLEM

Find positive log-Sobolev constants!

Main problem of this talk

Develop a strategy to find positive log Sobolev constants.

Concrete problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant for the heat-bath dynamics in 1D.

Main problem of this talk

Develop a strategy to find positive log Sobolev constants.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant for the heat-bath dynamics in 1D.

QUANTUM DISSIPATIVE SYSTEMS GENERAL STRATEGY FOR LOG-SOBOLEV INEQUALITIES LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS FOR 1D SYSTEMS

2. General strategy for log-Sobolev inequalities

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

Positive log-Sobolev constant

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

Positive log-Sobolev constant.

CONDITIONAL LOG-SOBOLEV CONSTANT

Log-Sobolev Constant

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} , $A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Log-Sobolev Constant

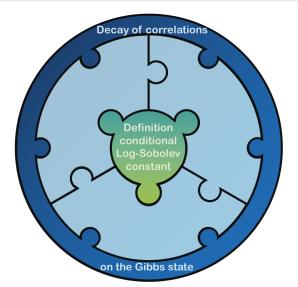
Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

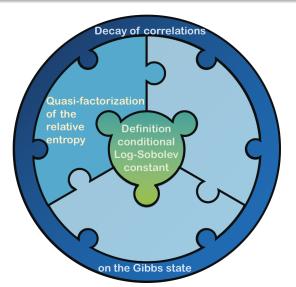
$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

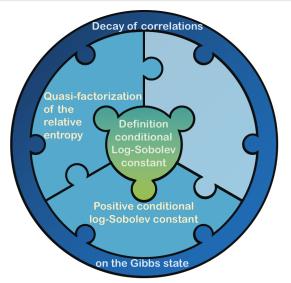
CONDITIONAL LOG-SOBOLEV CONSTANT

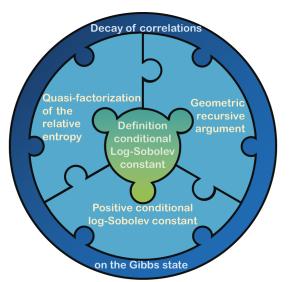
Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} , $A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$









3. Log-Sobolev inequality for the heat-bath DYNAMICS FOR 1D SYSTEM

The dynamics: For every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$\mathcal{L}_{\Lambda}^*(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right).$$

The dynamics: For every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$\mathcal{L}_{\Lambda}^*(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right).$$

Given $A \subset \Lambda$, can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(A) \alpha_{\Lambda}(\mathcal{L}_{A}^*) ?$$

The dynamics: For every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$\mathcal{L}_{\Lambda}^*(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right).$$

Given $A \subset \Lambda$, can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(A) \alpha_{\Lambda}(\mathcal{L}_{A}^*)$$
?

$$\lim_{\Lambda \nearrow \mathbb{Z}} \inf \alpha(\mathcal{L}_{\Lambda}^*) > 0.$$

- Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - 3. Clustering of Correlations
 - POSITIVE CONDITIONAL LOG-SOBOLEV CONSTANT

The dynamics: For every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$\mathcal{L}_{\Lambda}^*(\rho_{\Lambda}) := \sum_{x \in \Lambda} \Big(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \Big).$$

Given $A \subset \Lambda$, can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(A) \alpha_{\Lambda}(\mathcal{L}_{A}^*)$$
?

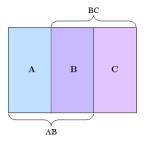
If so, we could use it to prove

$$\lim_{\Lambda \nearrow \mathbb{Z}} \inf \alpha(\mathcal{L}_{\Lambda}^*) > 0.$$

- . Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
- 4. Crovering degunder and and
 - 5. Positive conditional log-Sobolev constant

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

The strategy is based on a solution for the following problem.



Problem

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) [D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})]$$
?

- 1. Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
 - Geometric recursive argumen
- 5. Positive conditional log-Sobolev constant

PROBLEM

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where
$$h = \frac{d\mu}{d\bar{\mu}}$$
.

Problem

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4||h - 1||_{\mathfrak{S}^{n}}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f)$$

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

Problem

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4||h - 1||_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

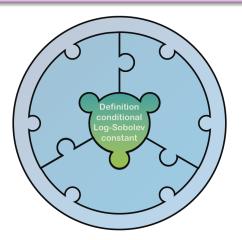
$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

- 1. Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - CEOMETRIC DECUREVE ARGUM
 - POSITIVE CONDITIONAL LOG-SORGLEV CONSTANT

(1) Definition of the conditional log-Sobolev Constant



- 1. Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
 - Geometric recursive argumi
 - Positive conditional log-Soboley constant

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr}\left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **1** Continuity. $\rho_{AB} \mapsto D(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.
- **① Monotonicity.** $D(\rho_{AB}||\sigma_{AB}) \ge D(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB}))$ for every quantum channel \mathcal{T} .

- . Definition of the conditional log-Sobolev constant
- 2. QUASI-FACTORIZATION OF THE RELATIVE ENT
- 3. Clustering of correlations
 - Positive conditional log-Soroley constant

Relative entropy

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The quantum relative entropy of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr}\left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **①** Continuity. $\rho_{AB} \mapsto D(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.
- **3** Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \geq D(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB}))$ for every quantum channel \mathcal{T} .

CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

- Definition of the conditional log-Sobolev constant
- . Quasi-factorization of the relative entropy
- 3. Clustering of correlations
 - Positive conditional log-Sobolev constant

Relative entropy

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The quantum relative entropy of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr}\left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **①** Continuity. $\rho_{AB} \mapsto D(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.
- **3** Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \geq D(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB}))$ for every quantum channel \mathcal{T} .

CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

- Definition of the conditional log-Sobolev constant
- 2. QUASI-FACTORIZATION OF THE RELATIVE ENTR
- 3. Clustering of correlations
 - GEOMETRIC RECURSIVE ARGUMENT

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. We define a **conditional relative entropy** in A as a function

$$D_A(\cdot||\cdot): \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$$

verifying the following properties for every ρ_{AB} , $\sigma_{AB} \in \mathcal{S}_{AB}$:

- **① Continuity:** The map $\rho_{AB} \mapsto D_A(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Non-negativity: $D_A(\rho_{AB}||\sigma_{AB}) \ge 0$ and

(2.1)
$$D_A(\rho_{AB}||\sigma_{AB})=0$$
 if, and only if, $\rho_{AB}=\sigma_{AB}^{1/2}\sigma_B^{-1/2}\rho_B\sigma_B^{-1/2}\sigma_{AB}^{1/2}$.

- **3** Semi-superadditivity: $D_A(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)$ and
 - (3.1) **Semi-additivity:** if $\rho_{AB} = \rho_A \otimes \rho_B$, $D_A(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A)$.
- **9 Semi-motonicity:** For every quantum channel \mathcal{T} ,

$$D_A(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB})) + D_B((\operatorname{tr}_A \circ \mathcal{T})(\rho_{AB})||(\operatorname{tr}_A \circ \mathcal{T})(\sigma_{AB}))$$

$$\leq D_A(\rho_{AB}||\sigma_{AB}) + D_B(\operatorname{tr}_A(\rho_{AB})||\operatorname{tr}_A(\sigma_{AB})).$$

- Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
- 5. Positive conditional log-Sobolev constant

REMARK

Consider for every ρ_{AB} , $\sigma_{AB} \in \mathcal{S}_{AB}$

$$D_{A,B}^{+}(\rho_{AB}||\sigma_{AB}) = D_{A}(\rho_{AB}||\sigma_{AB}) + D_{B}(\rho_{AB}||\sigma_{AB}).$$

Then, $D_{A,B}^+$ verifies the following properties:

- Continuity: $\rho_{AB} \mapsto D_{A,B}^+(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity: $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity: $D_{A,B}^+(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.

However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE (C-Lucia-Pérez García, '18)

The only possible conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every ρ_{AB} , $\sigma_{AB} \in \mathcal{S}_{AB}$.

- Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
 - Geometric recursive argumen
- 5. FOSITIVE CONDITIONAL LOG-SOBOLEV CONST

CONDITIONAL LOG-SOBOLEV CONSTANT

CONDITIONAL LOG-SOBOLEV CONSTANT

For $A \subset \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* in A by

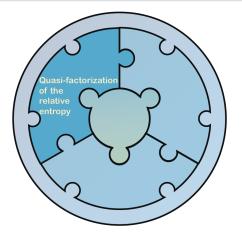
$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

where σ_{Λ} is the fixed point of the evolution, and

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) = D(\rho_{\Lambda}||\sigma_{\Lambda}) - D(\rho_{A^c}||\sigma_{A^c}).$$

- Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
 - CEOMETRIC DECURENCE ARGUM
- 5 Positive conditional log-Soroley constant

(2) Quasi-factorization of the relative entropy



- 1. Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - 5. CLUSTERING OF CORRELATIONS
 - 5. Positive conditional log-Sobolev constant

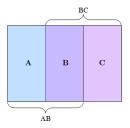


Figure: Choice of indices in $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Result of quasi-factorization of the relative entropy, for every ρ_{ABC} , $\sigma_{ABC} \in \mathcal{S}_{ABC}$:

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.

- 1. Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
 - . Clustering of correlations
 - . Geometric recursive argument
- 5. Positive conditional log-Sobolev constant

QUASI-FACTORIZATION FOR THE CRE (C-Lucia-Pérez García, '18)

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$D(\rho_{ABC}||\sigma_{ABC}) \le \frac{1}{1 - 2||H(\sigma_{AC})||_{\infty}} \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

$$\Leftrightarrow$$

$$(1 - 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}\|\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}\|\sigma_{ABC}) + D_{BC}(\rho_{ABC}\|\sigma_{ABC}) = 2D(\rho_{ABC}\|\sigma_{ABC}) - D(\rho_{C}\|\sigma_{C}) - D(\rho_{A}\|\sigma_{A}).$$

$$\Leftrightarrow (1 + 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}\|\sigma_{ABC}) \geq D(\rho_{A}\|\sigma_{A}) + D(\rho_{C}\|\sigma_{C}).$$

$$\Leftrightarrow (1 + 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}\|\sigma_{AC}) \geq D(\rho_{A}\|\sigma_{A}) + D(\rho_{C}\|\sigma_{C}).$$

$$(1 - 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}\|\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}\|\sigma_{ABC}) + D_{BC}(\rho_{ABC}\|\sigma_{ABC}) = 2D(\rho_{ABC}\|\sigma_{ABC}) - D(\rho_{C}\|\sigma_{C}) - D(\rho_{A}\|\sigma_{A}).$$

$$\Leftrightarrow (1 + 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}\|\sigma_{ABC}) \geq D(\rho_{A}\|\sigma_{A}) + D(\rho_{C}\|\sigma_{C}).$$

$$\Leftrightarrow (1 + 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}\|\sigma_{AC}) \geq D(\rho_{A}\|\sigma_{A}) + D(\rho_{C}\|\sigma_{C}).$$

- 2. Quasi-factorization of the relative entropy

This result is equivalent to:

$$\boxed{(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})}.$$

• Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B) > D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$.

- DEFINITION OF THE CONDITIONAL LOG-SOBOLEV CONSTANT
- 2. Quasi-factorization of the relative entropy
 - Clustering of correlations
 - Geometric recursive argument

This result is equivalent to:

$$\boxed{\left(1+2\|H(\sigma_{AB})\|_{\infty}\right)D(\rho_{AB}||\sigma_{AB})\geq D(\rho_{A}||\sigma_{A})+D(\rho_{B}||\sigma_{B})}.$$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.

Due to

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

- Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
 - . Clustering of correlations
 - DOGETHER GOVERNMENT AND CONCERNS

This result is equivalent to:

$$\boxed{(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})}.$$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B).$

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

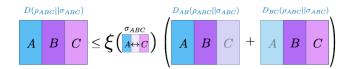
Quasi-factorization for the CRE (C-Lucia-Pérez García, '18)

Let \mathcal{H}_{ABC} and ρ_{ABC} , $\sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

$$D(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

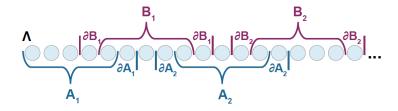
$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|_{\infty}}.$$



- 1. Definition of the conditional log-Sobolev constant
 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
 - POSITIVE CONDITIONAL LOG-SOBOLEV CONSTANT

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

STEP 1

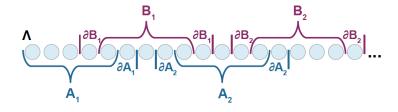


$$A = \bigcup_{i=1}^{n} A_i$$
 and $B = \bigcup_{j=1}^{n} B_j$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \frac{1}{1 - 2||h(\sigma_{A^cB^c})||_{\infty}} [D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda})],$$
$$h(\sigma_{A^cB^c}) := \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}.$$

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

STEP 1



$$A = \bigcup_{i=1}^{n} A_i$$
 and $B = \bigcup_{j=1}^{n} B_j$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \frac{1}{1 - 2\|h(\sigma_{A^{\circ}B^{\circ}})\|_{\infty}} \left[D_{A}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

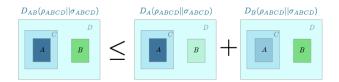
$$h(\sigma_{A^cB^c}) := \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}.$$

- 1. Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
- Geometric recursive argument
- 5. Positive conditional log-Sobolev constant

QUASI-FACTORIZATION FOR QMC (Bardet-C-Lucia-Pérez García-Rouzé, '19)

Let $\mathcal{H}_{ABCD} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_D$, where system C shields A from BD and ρ_{ABCD} , $\sigma_{ABCD} \in \mathcal{S}_{ABCD}$, such that σ_{ABCD} is a quantum Markov chain between $A \leftrightarrow C \leftrightarrow BD$. Then, the following holds

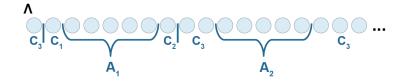
 $D_{AB}(\rho_{ABCD}||\sigma_{ABCD}) \le [D_A(\rho_{ABCD}||\sigma_{ABCD}) + D_B(\rho_{ABCD}||\sigma_{ABCD})].$



- 1. Definition of the conditional log-Sobolev constant
 2. Quasi-factorization of the relative entropy
- 3. Clustering of correlations
 - GEOMETRIC RECURSIVE ARCHMI
 - Positive conditional log-Sobolev constant

SKETCH OF THE PROOF

STEP 2



$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{i=1}^n D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda})$$

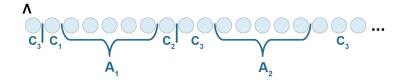
 σ_{Λ} is a QMC between $A_1 \leftrightarrow \partial A_1 \leftrightarrow \Lambda \setminus (A_1 \cup \partial A_1)$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A_1(\partial a_1)_i^L} \otimes \sigma_{(\partial a_1)_i^R \Lambda \setminus (A_1 \cup \partial A_1)}$$

- Definition of the conditional log-Sobolev constant
- 2. QUASI-FACTORIZATION OF THE RELATIVE ENTROPY
- 3. Clustering of correlations
 - POSITIVE CONDITIONAL LOC-SOROLEY CONSTANT

SKETCH OF THE PROOF

STEP 2



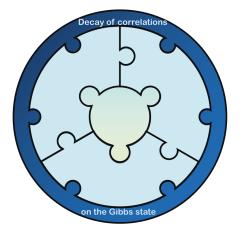
$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_{i=1}^n D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda})$$

 σ_{Λ} is a QMC between $A_1 \leftrightarrow \partial A_1 \leftrightarrow \Lambda \setminus (A_1 \cup \partial A_1)$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A_1(\partial a_1)_i^L} \otimes \sigma_{(\partial a_1)_i^R \Lambda \setminus (A_1 \cup \partial A_1)}$$

- Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - Geometric recursive argume
 - 5. Positive conditional log-Sobolev constant

(3) Clustering of correlations on the Gibbs state



Clustering of Correlations on the Gibbs state

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|h(\sigma_{AB})\right\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, classical Gibbs states satisfy this.

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \leq f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

- DEFINITION OF THE CONDITIONAL LOG-SOBOLEV CONSTANT
- 3. Clustering of correlations
 - . Geometric recursive argume
 - 5. Positive conditional log-Sobolev constant

CLUSTERING OF CORRELATIONS ON THE GIBBS STATE

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\|h(\sigma_{AB})\|_{\infty} = \|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\|_{\infty} \le K < \frac{1}{2}.$$

In particular, classical Gibbs states satisfy this.

Assumption 2

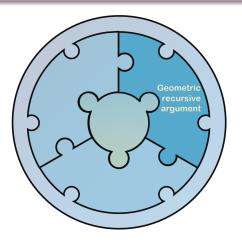
For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \leq f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

- Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative entropy
 - CEOMETRIC DECURENT ARGUMEN
 - Geometric recursive argument

(4) Geometric recursive argument



- Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - 4. Geometric recursive argument
 - . Positive conditional log-Sobolev constant

GEOMETRIC RECURSIVE ARGUMENT

STEP 3

Using locality of the Lindbladian

$$\mathcal{L}_A^* + \mathcal{L}_B^* = \mathcal{L}_{A \cup B}^* + \mathcal{L}_{A \cap B}^*$$

and quasi-factorization:

Assumption
$$1 \Rightarrow \alpha(\mathcal{L}_{\Lambda}^*) \geq \tilde{K} \min_{i \in \{1, \dots n\}} \left\{ \alpha_{\Lambda}(\mathcal{L}_{A_i}^*), \alpha_{\Lambda}(\mathcal{L}_{B_i}^*) \right\}$$

Recursion appears in a possible extension to larger dimension.

- Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - Geometric recursive argument
 - . Positive conditional log-Sobolev constant

GEOMETRIC RECURSIVE ARGUMENT

STEP 3

Using locality of the Lindbladian

$$\mathcal{L}_A^* + \mathcal{L}_B^* = \mathcal{L}_{A \cup B}^* + \mathcal{L}_{A \cap B}^*$$

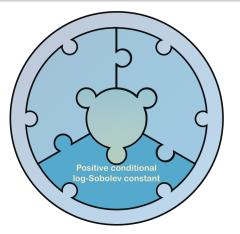
and quasi-factorization:

$$\text{Assumption } 1 \Rightarrow \alpha(\mathcal{L}_{\Lambda}^*) \geq \tilde{K} \min_{i \in \{1, \dots n\}} \left\{ \alpha_{\Lambda}(\mathcal{L}_{A_i}^*), \alpha_{\Lambda}(\mathcal{L}_{B_i}^*) \right\}$$

Recursion appears in a possible extension to larger dimension.

- . Definition of the conditional log-Sobolev constant
- 2. Quasi-factorization of the relative en:
- 4. Crowrenia proupour angular
- 5. Positive conditional log-Sobolev constant

(5) Positive conditional log-Sobolev constant



- Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - 4 Geometric recursive argumen
 - 5 POSITIVE CONDITIONAL LOG-SOBOLEV CONSTANT

SKETCH OF THE PROOF

STEP 4

Assumption
$$2 \Rightarrow \alpha_{\Lambda}(\mathcal{L}_{A_i}^*) \geq g(\sigma_{A_i\partial}) > 0$$
.

- Definition of the conditional log-Sobolev constant
- 3 Chieffeding of Coppelations
- J. CLUSTERING OF CORRELATIONS
 - 5. Positive conditional log-Sobolev constant

POSITIVE LOG-SOBOLEV CONSTANT FOR THE HEAT-BATH DYNAMICS IN 1D

Theorem (Bardet-C-Lucia-Pérez García-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

- OHASI FACTORIZATION OF THE BELATIVE ENTROPY
- 3. Clustering of correlations
- 4. Crometric recureive argument
- 5. Positive conditional log-Sobolev constant

OPEN PROBLEMS

Problem 1

Does this hold for larger dimension?

Problem 2

Is there a better definition for conditional relative entropy?

Problem 3

Can we do something similar for different dynamics?

- Definition of the conditional log-Sobolev constant
- 3. Clustering of correlations
 - GEOMETRIC RECURSIVE ARGUMEN
- 5 Positive conditional log-Soboley constant

