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completely shielded from noise.

= Open quantum many-body systems.
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o Dynamics of S is dissipative!

o The continuous-time evolution of a state on S is given by a q. Markov
semigroup (Markovian approximation).
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The MLSI constant of £} is defined as:

* .o —tr[L3(pa)(log pa —logon)]
L)) = f
olla) = Jof, 2D (pallon)

If lim inf a(L}) > O:
A7

D(ptlloa) < D(pallon)e 50",

and with Pinsker’s inequality, we have:
lpe = oally < v/2D(pallon) e D" < \/2Tog(1/omn) e~ * D).

For thermal states, omin ~ exp(|A]).

Log-Sobolev constant = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

loe — oally < v/Imim e MR,
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the Gibbs state of Ha, such that it has a positive MLSI constant which is
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MAIN RESULT (INFORMAL)

Let Ha be a local commuting Hamiltonian such that one of the following
conditions holds:

@ H, is classical for 5 < (..

@ In 1D, Hy is a nearest neighbour Hamiltonian for § < f..
Then, there exists a local quantum Markov semigroup with fixed point oa,

the Gibbs state of Ha, such that it has a positive MLSI constant which is
independent of the system size.

It constitutes the first unconditional proof of MLSI for quantum lattice
systems at high temperature.
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We say that a MILSI holds for £} if there exists a positive a such that for
all PA € SA,

2aD(palloa) < —tr[Li(pa)(log pa —logoa)]

CONDITIONAL MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

For A C A, we say that a conditional MLSI on A holds for £} if there
exists a positive a4 such that for all pa € Sa,

2aa D(pallEa(pa)) < —tr[Lh(pa)(log pa — logaa))]
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STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez
Garcia-Rouzé, '19).

Decay of correlations

on the Gibbs state
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Define E4 := [lim etfh, Then,
L— 00
D(pl|Eaus(p)) < D(pllEa(p))+D(pll EB(p)) < EaoEp = EpoEa = Eaus

In general, we present conditions in (Bardet-C.-Rouzé ’20) for which

D(pl|Eaus(p)) < c[D(pl|Ealp)) + D(plEs(p))] + d

Here, we show that a condition on the fixed points of the generator and a
condition of decay of correlations imply

d=0,c~1+ e CUNEANED
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Chain rule for the relative entropy:
D(palloa) = D(pallEc(pa)) + D(Ec(pa)lloa) -

For D(Ec(pa)lloa), we use positivity of the complete MLSI
(Junge-Gao-Laracuente '19)

Qe = égga (LA ®1pg).
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c
For D(pal||Ec(pa)), we define a pinched MLSI
29¢c D(Ea(pa)l|Ec 0 Ea(pa)) < —tr[L&(pa)(log pa — log o))

and apply the approximate tensorization result on such quantity.
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For further information, see 2009.11817.
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