The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions

Ángela Capel (Technische Universität München)

Joint work with: Cambyse Rouzé (T. U. München) Daniel Stilck França (U. Copenhagen).

Based on arXiv: 2009.11817.

20th Asian Quantum Information Science Conference, 7-9 December 2020

Munich Center for Quantum Science and Technology

MOTIVATION			
•0	0000	000000	
OPEN OUA	NTUM SVSTEMS		

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

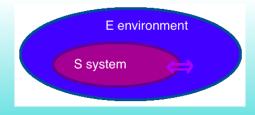
MOTIVATION		
••		
Open qua	NTUM SYSTEMS	

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



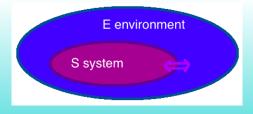
MOTIVATION			
•0	0000	000000	
Open qua	NTUM SYSTEMS		

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



• Dynamics of S is dissipative!

• The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

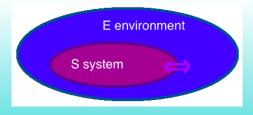
MOTIVATION			
•0	0000	000000	
Open qua	NTUM SYSTEMS		

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

	MADKOV SEMICDOUDS		
00	0000	000000	0
Motivation			

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := \mathcal{T}_t^*(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} \sigma_{\Lambda}$$

MOTIVATION			
00	0000	000000	0

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Rapid mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

MOTIVATION			
00	0000	000000	0

QUANTUM MARKOV SEMIGROUPS

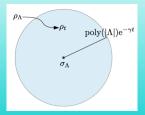
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



MOTIVATION			
00	0000	000000	0

QUANTUM MARKOV SEMIGROUPS

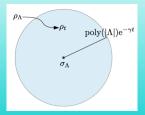
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Modified logarithmic Sobolev inequality	
0000	

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

 $D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$

Modified logarithmic Sobolev inequality	
0000	

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

 $\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}.$

	Modified logarithmic Sobolev inequality		
00	0000	000000	

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}^*_\Lambda) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

	Modified logarithmic Sobolev inequality		
00	0000	000000	

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

Log-Sobolev constant \Rightarrow Rapid mixing.

	Modified logarithmic Sobolev inequality		
00	0000	000000	

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

Log-Sobolev constant \Rightarrow Rapid mixing.

Using the spectral gap (Kastoryano-Temme '13):

 $\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_{\Lambda}^*) \, t}.$

	Modified logarithmic Sobolev inequality		
00	0000	000000	

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$$

and with **Pinsker's inequality**, we have:

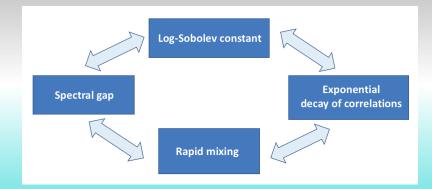
$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

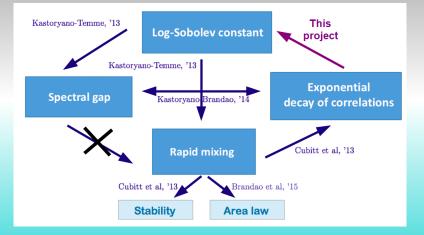
For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

Log-Sobolev constant \Rightarrow Rapid mixing.

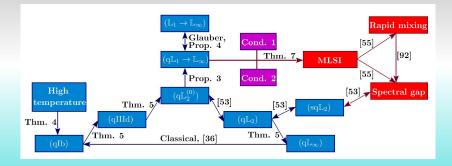
Using the spectral gap (Kastoryano-Temme '13):

 $\|\rho_t - \sigma_\Lambda\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_\Lambda) t}.$





	Modified logarithmic Sobolev inequality	
	0000	
Quantum spi	N SYSTEMS	



MAIN DECU			U III
Motivation 00	Modified logarithmic Sobolev inequality 0000	Main result	Applications

MAIN RESULT (INFORMAL)

Let H_{Λ} be a local commuting Hamiltonian such that one of the following conditions holds:

• H_{Λ} is classical for $\beta < \beta_c$.

2 In 1D, H_{Λ} is a nearest neighbour Hamiltonian for $\beta < \beta_c$.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

It constitutes the first unconditional proof of MLSI for quantum lattice systems at high temperature.

MAIN DECI	II D		
		00000	
		Main result	

MAIN RESULT (INFORMAL)

Let H_{Λ} be a local commuting Hamiltonian such that one of the following conditions holds:

• H_{Λ} is classical for $\beta < \beta_c$.

2 In 1D, H_{Λ} is a nearest neighbour Hamiltonian for $\beta < \beta_c$.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

It constitutes the first unconditional proof of MLSI for quantum lattice systems at high temperature.

		Main result	
00	0000	00000	

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_A : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t \mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E(\rho_{\Lambda}) \quad .$$

		Main result	
00	0000	00000	
3.5	a		

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_A : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := e^{t\mathcal{L}_{A}^{*}}(\rho_{\Lambda}) \stackrel{t\to\infty}{\longrightarrow} E(\rho_{\Lambda}) \quad .$$

Modified logarithmic Sobolev inequality

We say that a **MLSI** holds for \mathcal{L}^*_{Λ} if there exists a positive α such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

 $2 \alpha D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$

ъ			
00	0000	00000	0
		Main result	

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_A : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t \mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E(\rho_{\Lambda})$$
.

Modified logarithmic Sobolev inequality

We say that a **MLSI** holds for \mathcal{L}^*_{Λ} if there exists a positive α such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$2 \alpha D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

Conditional modified logarithmic Sobolev inequality

For $A \subseteq \Lambda$, we say that a **conditional MLSI** on A holds for \mathcal{L}^*_{Λ} if there exists a positive α_A such that for all $\rho_{\Lambda} \in S_{\Lambda}$,

 $2 \alpha_A D(\rho_\Lambda || E_A(\rho_\Lambda)) \leq -\operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)]$

ъ			
00	0000	00000	0
		Main result	

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_A : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t \mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E(\rho_{\Lambda})$$
.

Modified logarithmic Sobolev inequality

We say that a **MLSI** holds for \mathcal{L}^*_{Λ} if there exists a positive α such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$2 \alpha D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

CONDITIONAL MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

For $A \subseteq \Lambda$, we say that a **conditional MLSI** on A holds for \mathcal{L}^*_{Λ} if there exists a positive α_A such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

 $2 \alpha_A D(\rho_\Lambda || E_A(\rho_\Lambda)) \leq -\operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)]$.

		Main result	
00	0000	000000	
Strategy			

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).

		Main result	
00	0000	000000	

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d\mu_{AC}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_{C}}{d\mu_{C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_{A}}{d\mu_{A}} \right)\right)$$

Define $E_A := \lim_{t \to \infty} e^{t \mathcal{L}_A^*}$. Then,

 $D(\rho \| E_{A \cup B}(\rho)) \le D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho)) \Leftrightarrow E_A \circ E_B = E_B \circ E_A = E_{A \cup B}$

		Main result	
00	0000	000000	

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_C}{d_{\mathcal{H}_C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_A}{d_{\mathcal{H}_A}} \right)\right)$$

Define $E_A := \lim_{t \to \infty} e^{t\mathcal{L}_A^*}$. Then, $D(\rho \| E_{A \cup B}(\rho)) \leq D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho)) \Leftrightarrow E_A \circ E_B = E_B \circ E_A = E_{A \cup B}$ In general, we present conditions in (Bardet-C.-Rouzé '20) for which $D(\rho \| E_{A \cup B}(\rho)) \leq c [D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho))] + d$

		Main result	
00	0000	000000	

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_{C}}{d_{\mathcal{H}_{C}}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_{A}}{d_{\mathcal{H}_{A}}} \right)\right)$$

Define $E_A := \lim_{t \to \infty} e^{t\mathcal{L}_A^*}$. Then, $D(\rho \| E_{A \cup B}(\rho)) \leq D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho)) \Leftrightarrow E_A \circ E_B = E_B \circ E_A = E_{A \cup B}$ In general, we present conditions in (Bardet-C.-Rouzé '20) for which $D(\rho \| E_{A \cup B}(\rho)) \leq c [D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho))] + d$

Here, we show that a condition on the **fixed points** of the generator and a condition of **decay of correlations** imply

 $d = 0, c \sim 1 + \kappa e^{-\operatorname{d}(\Lambda \setminus A, \Lambda \setminus B)}$

		Main result	
00	0000	000000	

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

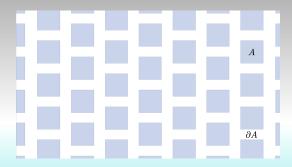
$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_C}{d_{\mathcal{H}_C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_A}{d_{\mathcal{H}_A}} \right)\right)$$

Define $E_A := \lim_{t \to \infty} e^{t\mathcal{L}_A^*}$. Then, $D(\rho \| E_{A \cup B}(\rho)) \le D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho)) \Leftrightarrow E_A \circ E_B = E_B \circ E_A = E_{A \cup B}$ In general, we present conditions in (Bardet-C.-Rouzé '20) for which $D(\rho \| E_{A \cup B}(\rho)) < c [D(\rho \| E_A(\rho)) + D(\rho \| E_B(\rho))] + d$

Here, we show that a condition on the **fixed points** of the generator and a condition of **decay of correlations** imply

$$d = 0, c \sim 1 + \kappa e^{-d(\Lambda \setminus A, \Lambda \setminus B)}$$

		Main result	
00	0000	000000	
DEELING OF	τ π		



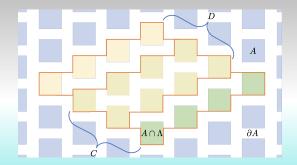
Chain rule for the relative entropy:

 $D(\rho_{\Lambda} \| \sigma_{\Lambda}) = D(\rho_{\Lambda} \| E_C(\rho_{\Lambda})) + D(E_C(\rho_{\Lambda}) \| \sigma_{\Lambda}) .$

For $D(E_C(\rho_\Lambda) \| \sigma_\Lambda)$, we use positivity of the complete MLSI (Junge-Gao-Laracuente '19)

$$\alpha_c := \inf_{k \in \mathbb{N}} \alpha \left(\mathcal{L}^*_\Lambda \otimes \mathbb{1}_k \right)$$

Motivation	Modified logarithmic Sobolev inequality	Main result	Applications
00	0000	000000	0
DEELING O			



For $D(\rho_{\Lambda} || E_C(\rho_{\Lambda}))$, we define a pinched MLSI $2 \gamma_C D(E_A(\rho_{\Lambda}) || E_C \circ E_A(\rho_{\Lambda})) \leq -\operatorname{tr}[\mathcal{L}_C^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$. and apply the approximate tensorization result on such quantity.

		Applications
		•
Applications		

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.

			Applications
00	0000	000000	•
Applications	3		

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

			Applications
00	0000	000000	•
Applications	3		

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

			Applications
00	0000	000000	•
Applications			

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

For further information, see 2009.11817.