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Motivation Modified logarithmic Sobolev inequality Main result Applications

Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be
completely shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov
semigroup (Markovian approximation).
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup
{T ∗t }t≥0 of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in SΛ.

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

For thermal states, σmin ∼ exp(|Λ|).

Log-Sobolev constant ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Classical spin systems
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Main result

Main result (informal)

Let HΛ be a local commuting Hamiltonian such that one of the following
conditions holds:

1 HΛ is classical for β < βc.

2 In 1D, HΛ is a nearest neighbour Hamiltonian for β < βc.

Then, there exists a local quantum Markov semigroup with fixed point σΛ,
the Gibbs state of HΛ, such that it has a positive MLSI constant which is
independent of the system size.

It constitutes the first unconditional proof of MLSI for quantum lattice
systems at high temperature.
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Modified logarithmic Sobolev inequality

Let
{

etL
∗
Λ

}
t≥0

be a quantum Markov semigroup with L∗Λ(σΛ) = 0.

For A ⊂ Λ, let EA : B(H)→ Ker(L∗A) be a conditional expectation, and

ρΛ
t−→ ρt := etL

∗
A(ρΛ)

t→∞−→ E(ρΛ) .

Modified logarithmic Sobolev inequality

We say that a MLSI holds for L∗Λ if there exists a positive α such that for
all ρΛ ∈ SΛ,

2αD(ρΛ||σΛ) ≤ − tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)] .

Conditional modified logarithmic Sobolev inequality

For A ⊆ Λ, we say that a conditional MLSI on A holds for L∗Λ if there
exists a positive αA such that for all ρΛ ∈ SΛ,

2αAD(ρΛ||EA(ρΛ)) ≤ − tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)] .
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez
Garćıa-Rouzé, ’19).
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Approximate tensorization of the relative entropy

In terms of the relative entropy, the strong subadditivity of entropy
(Lieb-Ruskai ’73) takes the form

D

(
ρABC

∥∥∥ρB ⊗ 1AC

dHAC

)
≤ D

(
ρABC

∥∥∥ρAB ⊗ 1C

dHC

)
+D

(
ρABC

∥∥∥ρBC ⊗ 1A

dHA

)
.

Define EA := lim
t→∞

etL
∗
A . Then,

D(ρ‖EA∪B(ρ)) ≤ D(ρ‖EA(ρ))+D(ρ‖EB(ρ)) ⇔ EA◦EB = EB◦EA = EA∪B

In general, we present conditions in (Bardet-C.-Rouzé ’20) for which

D(ρ‖EA∪B(ρ)) ≤ c [D(ρ‖EA(ρ)) +D(ρ‖EB(ρ))] + d

Here, we show that a condition on the fixed points of the generator and a
condition of decay of correlations imply

d = 0, c ∼ 1 + κ e− d(Λ\A,Λ\B) .
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Peeling out

Chain rule for the relative entropy:

D(ρΛ‖σΛ) = D(ρΛ‖EC(ρΛ)) +D(EC(ρΛ)‖σΛ) .

For D(EC(ρΛ)‖σΛ), we use positivity of the complete MLSI
(Junge-Gao-Laracuente ’19)

αc := inf
k∈N

α (L∗Λ ⊗ 1k).
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Peeling out

For D(ρΛ‖EC(ρΛ)), we define a pinched MLSI

2 γC D(EA(ρΛ)||EC ◦ EA(ρΛ)) ≤ − tr[L∗C(ρΛ)(log ρΛ − log σΛ)] .

and apply the approximate tensorization result on such quantity.
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Applications

The output energy of an Ising quantum annealer subject to finite
range classical thermal noise at high enough temperature outputs a
state whose energy is close to that of the thermal state of the noise
after an annealing time that is constant in system-size.

In the context of quantum asymmetric hypothesis testing, we show a
decay estimate on the type II error for two Gibbs states corresponding
to commuting potentials in the finite blocklength regime.

We obtain efficient quantum Gibbs samplers for certain Gibbs
states corresponding to commuting potentials, only requiring the
implementation of a circuit of local quantum channels of logarithmic
depth.

For further information, see 2009.11817.
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