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No experiment can be executed at zero temperature or be
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MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS e

Open quantum many-body system.

No experiment can be executed at zero temperature or be
completely shielded from noise.

» Finite lattice A CC Z9.

e aa 20 » Hilbert space associated to A is
Ha = ®me/\ He.

: » Density matrices: Sp := S(Ha) =
t y {pr € Ba : pa > 0 and tr[pa] = 1}.

E

» Dynamics of S is dissipative!

» The continuous-time evolution of a state on S is given by a q.
Markov semigroup (Markovian approximation).
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semigroup {7;"},~, of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in Sa.
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Eﬁ =Ti oLh=LroT;.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.
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QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous
semigroup {7;"},~, of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in Sa.

Semigroup:
> T o TS =T
> 75 =1.

d * * * * *
Eﬁ =Ti oLh=LroT;.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

@
dt

For pa € Sa, Li(pa) = —i[Ha,pal + 3. L;(pa) GKLS equation.
ke

* tL * *
7; =e A<:>£A: 7; |t:0-
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MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrIMITIVE QMS

We assume that {7;"},., has a unique full-rank invariant state which
we denote by oa. B

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is
reversible, i.e., it satisfies the detailed balance condition:

(fsL£a(9))y = (La(f),9),

for every f,g € Ba and Hermitian, where

(f.9), = tr[f 01/2901/2} :

Notation: p; := T (p).

t—o0

pa = pr == "T¢" (pa) = €3 (pa) =5 o




MIXING TIME
» Under the previous conditions, there is always convergence to ox.
» How fast does convergence happen?

Note 75 (p) := oa for every p.

MIXING TIME

We define the mixing time of {7;"} by

tmix(€) = min{t >0: sup |77 (p) — Tu(p)|l; < 5}.
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RAPID MIXING

MIXING TIME

We define the mixing time of {7;"} by
i) = min{t >0: sup ||p:—oall; < E}.
PAESA

Remember: p: := T;"(p), oa := Tox(p).
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RAPID MIXING

MIXING TIME
We define the mixing time of {7;"} by

i) = min{t >0: sup ||p:—oall; < E}.
PAESA

Remember: p: := T;"(p), oa := Tox(p).

RAPID MIXING

We say that L} satisfies rapid mixing if

INTRODUCTION AND
MOTIVATION

sup ||ps — oall; < poly(|A])e™".
PAESA

tmix(€) ~ poly log(|A]).

p.
A‘—\.p

© poly(jA)e

gA
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Relative entropy of p; and ox:
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Recall: p: := T (p).

Master equation:
Orpe = L7 (pt)-

Relative entropy of p; and ox:

D(pelloa) = tr[pi(log pr — log oa)].

Differentiating:

9:D(pellon) = tr[Lh (pe)(log pr — logaa)].

Lower bound for the derivative of D(pt||oa) in
terms of itself:

2aD(pellon) < — tr[L2(pe) (log pr — log o).

Modified logarithmic Sobolev inequality
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MLSI CONSTANT

The MLSI constant of £} is defined as:

" o —tr[LA(pa)(log pa —logoa)]
Ly) = f
olla) = ik, 2D(pallon)

If lim inf a(L}) > 0:
A7d
D(ptHJA) < D(pA||0_A)672o¢(£}k\)t7 : TIME AND

and Pinsker’s inequality (%Hp — 0|2 < D(pllo) for || A := tr[\AH)

llo — oally < v/2D(palloa) e~ ERt < /2Tog(1Jomm) e (R,

For thermal states op = e ?# /tr[e_ﬂH], Rapid mixing
Omin ~ 1/exp(|A]). lloe—oally <poly(|Ae™ 7t

MLSI = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

lps = oally € V/1/omin e 2 ERL




QUANTUM SPIN SYSTEMS

Kastoryano-Temme, "13 This

/ Log-Sobolev constant V&'ect
Kastoryano-Temme, ’13

< T— Exponential
Spectlal gap Kastoryanchrandao. ’14 decay of correlations
B
8 ) =5 U,X Rapid mixing Aj o, 13 LSS

Cubitt et al, 113/ \andao et al, '15 Hy= Y 00) ox= .n_‘(;,',',j")
b

Stability Area law

Exp. decay of correlations:

sup [tr[Oa ® O(caB —0a ® oB)]| < Ke YHAB)
[Ooall=lOpll=1
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DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.
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DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.
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Hamiltonian: Hy = Ha + Hp + Haup)e + Hoa + Hop ,
oa(B) = emPHA / Ta[ePHA] .
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DECAY OF CORRELATIONS ON (GIBBS STATE Modified

logarithmic

VATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

(Univ itat
I'iibingen)

> Hamiltonian: Hy = Ha + Hp + Haup)c + Hoa + Hop ,
Gibbs state: o5 (8) = e #HA /Tr[e=AHA] .
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DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Corry (A : B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
[Oall=lOBl=1
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DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION
[tr[O4 ® Op(caB — 04 Q@ o)

Corry(A: B) := sup
l0al=l0OBlI=1

MUTUAL INFORMATION

I5(A: B) := D(pagllpa ® pB)

DECAY OF
CORRELATIONS

for D(pl|o) = Tr[p(logp — logo)]

MIXING CONDITION

—-1/2 —1/2 —1/2 —-1/2
_HO'A/ ®og Poapo " ®ap —11ABHoo

h(eaB)lle =

444444444444444 o

Relation:

Corry(A: B)2 < I,(A: B)
/2 1/2®‘71§1/271A3Hw

1
2
< OABO 4

—1/2 -1
H"A ®op



QUANTUM SPIN SYSTEMS

Thermalization Decay of
correlations

D(p1o5) < D(pyl|op)e™ R Mixing condition

MLSI (log-Sobolev)

” '@ ozlous— 14p ” < Ke~7d(A.B)
©
Rapid Mixing

Mutual information
. D Y OF
sup || p=as | JE poly(| A |)e™"* M LA : B) < Ke-144.B) CORRELATIONS

PAES)

Operator correlation
Spectral gap
4 Pa) = o) Corr,(A : B) < Ke-rd(4.B)

Var(p,,6,) < Var(p, ,6,)e” *ZR*
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OBJECTIVE

MLSI CONSTANT

« o —tr[LA(pa)(log pa —logon)]
Ly) = f
o(£a) = il 2D(pallon)

What do we want to prove?
lim inf a(L3) > ¥(|A]) > 0.
A zd

DECAY OF
A CORRELATIONS

A

Can we prove something like

a(Lh) = ¥(JA]) a(Ls) > 07
No, but we can prove

a(L3) =2 V(JA]) aa(£a) > 0.
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MLSI CONSTANT
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CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The MLSI constant of £} = > £, is defined by
kEA

inf = tr[L3 (pa)(log pa — log oa)] DrcaY or

* = CORRE] ONS
a(l:A) E = 5D (pA | |0’A) CORRELATIONS

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

. o —tr[Lh(pa)(log pa —logoa)]
L) = f
an(Ld) = inf 2Da(pallon)




STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez
Garcia-Rouzé, ’19).

Decay of correlations

Quasi-factorization Geometie

of the recursive
relative Definition argument

entropy conditional

DECAY OF
CORRELATIONS

| Log-Sobolev

log-Sobolev constant

on the Gibbs state




QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

BC

AB

DECAY OF
CORRELATIONS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)]

for pa,on € D(Hapc), where £(capc) depends only on capc and
measures how far ocac is from o4 ® oc.




ExXaAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia ’18) ﬁj\(p/\) = Z (Uﬂﬂ ® pae — pA) heat-bath

(Beigi-Datta-Rouzé '18) TN
Dz (palloa) := D(palloa) — D(pze||oze)

orn=Q 0a, @

TEA
D(palloa) <
2)
Y < S D (pallow)
zEA
s < 3~ 12208 1~ log o)
- — 20&/\ (E;) EXAMPLES OF MLSI

: Z — tr[L5 (pa)(log pa — logon)] JENeRATRS 7 1D

G

& 1 .
Y — W (—tr[LA(pa)(log pa — logon)])

& < (— tr[Ch(pa) (log pa — logon)]).




DyNAMICS

—BH
Let op = tifﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
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The heat-bath generator is defined as:
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DyNAMICS

—BH
Let op = tiﬁﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
T

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

£ o) ==Y (042078 Ppacartay/? — 1)
TEA

DAVIES GENERATOR

The Davies generator is given by:

LR(X) = i[Ha, X]+ > LD(X),
TEA

ExAMPLES OF MLSI

where the £D are defined in terms of the Fourier coefficients of the

correlation functions in the bath and the ones of the system couplings. 8l




DyNAMICS

—BH
Let op = “Tfﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
rle

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

H; 1/2 _—1/2 —1/2 1/2
Ly (pa) == Z (O'A/ crxc/ pmcdmc/ O'A/ —pA)
TEA

DAVIES GENERATOR

The Davies generator is given by:

LR(X) = i[Ha, X]+ > LD(X),
TEA

ExAMPLES OF MLSI

where the £D are defined in terms of the Fourier coefficients of the
correlation functions in the bath and the ones of the system couplings. 1S ron D

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:
5x) =3 (BEx) - x),

TEA

where the conditional expectations do not depend on system-bath couplings.
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Let us recall: For a(L£}) a MLSI constant,
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SPECTRAL GAP FOR DAVIES AND HEAT-BATH

(Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £37
has a positive spectral gap that is independent of the system size, for i G NS
every temperature. ILSI FOR DAVIE




PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,
o = oally < v/ZToR(1fomm) e~ ER".

Using the spectral gap A\(L}):

loe = oally < v/Tfomin e XER®,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH

(Kastoryano-Brandao, ’16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £37
has a positive spectral gap that is independent of the system size, for i G NS
every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia, Beigi-Datta-Rouzé ’18)

Let Ef;* be the heat-bath generator with tensor product fixed point.
Then, it has a positive MLSI constant.




QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Results of Quasi-Factorization

Results of Modified Logarithmic
or Approximate Tensorization Sobolev Inequality

A
D(/);\ IUA) <c ¢
Classical quasi-factorization Strong subadditivity
Ent(f) < cp[Ent(f|F1) + Ent(f|7)] S(pasc) +S(pp) < S(pag) + S(pac)
NN N A )
D = D(p| EM(p)
vy M (Pl EX(p)
um quasi-factorization ) f‘j,l’m
1 A Pinching onto
T 2Hon= [Dan(A) + Dpc(A)] S m .
: L(X) == Exy(X)
CRS20 +Ex(X) = 2X
Y

Local commuting Hamiltonian, high T, Schmidt:
- Classical

1D Heat-bath generator,

2 H

\feneralized depolarizing

AlpA) = 0w ® pac — pa

-1

D
- Nearest neighbour

EXAMPLES OF MLSI




Modifie

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY Modified

(Uni

I'iibinge

'\"'\JC'\A ‘nw D(IEM(p))

Da(palloa) == D(palloa) = D(paclloac) .
MCNNNY

>

tum quasi-factorization
DE(pallon) = D(pall Ex(pa))

<

Pinching onto
148(A) + Dpc(A)] » different bases

LX) = Er(X)
+Ey(X) —

Local commuting Hamiltonian, high T, Schmidt:
- Classical
D

Generalized depolarizing

1D Heat-bath generator,
LA(pr) = 0z ® pae — pa

2 assumptions

- Nearest neighbour

1D Davies generator, Davies generator
every temperature -« Da< kAZ D,

i€A




QUASI-FACTORIZATION OF

BC
4 ¢
—
p
Da(palloa) = D(pallor) = Dpaclloac)
= 4

Quantum quasi-factorization

D(A) < [DaB(A) + Dpc(A)]

1
1-2[H(oa)

\4

1D Heat-bath generator,
2 assumptions

Generalized depolarizing
LA(pa) = 02 @ pze = pa

1D Davies generator,
every temperature

Any D Davies generator,
high temperature

D

THE RELATIVE ENTROPY

Dpq := D(p| EM(p))

% (pallon) = D(pal Ex(on) \/ Pinching onto
‘ - different bases
Y L(X) = By(X)

+E2(X) —2X

ocal commuting Hamiltonian, high T, Schmidt:
- Classical

1D
- Nearest neighbour

Davies generator

Modifie
logarithmic

ExAMPLES OF MLSI




MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS,

(Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let Ef;* be a Davies generator with unique fixed point oa given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, £f;* satisfies a positive
MLST a(L5*) = Q(In(]A]) 7).
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Let Ef;* be a Davies generator with unique fixed point oa given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, Ef;* satisfies a positive
MLST a(L5*) = Q(In(]A]) 7).

(Kastoryano-Brandao, '16) ﬁf?* has a positive spectral gap that is
independent of the system size, for every temperature.
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MLSI FOR 1D DAVIES GENERATORS,

(Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let Ef;* be a Davies generator with unique fixed point oa given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, Ef;* satisfies a positive
MLST a(L5*) = Q(In(]A]) 7).

(Kastoryano-Brandao, '16) ﬁf?* has a positive spectral gap that is
independent of the system size, for every temperature.
Rapid mixing:
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For a(L}) a MLSI constant:

e — oall, < +/2108(1/0min) e~ *FA) ¢,

RAPID MIXING

In the setting above, Ef;* has rapid mixing.




Modified

PrROOF: CONDITIONAL RELATIVE ENTROPIES + el
QUASI-FACTORIZATION ) '

quantum

——— y-body

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DX (pallon) := D(pallEA(pa)) -

Heat-bath cond. expectation: E () := lim (03\/2022/2 tral-] U;i/za}\/z)" .
n-—oo
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PrROOF: CONDITIONAL RELATIVE ENTROPIES +
QUASI-FACTORIZATION

Be
X
P—

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DX (pallon) := D(pallEA(pa)) - .
_ ion: B () — 1 1/2 _—1/2 . —1/2 1/2)
Heat-bath cond. expectation: E (-) : nlew (O'A o “tral-lo,e oy .

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,oasc € Sapc. The following holds

D(pasclloasc) < €&(oac) [Das(pascl|loasc) + Dec(papc|loasc)],

MLSI For DAVIES

where GENERATORS IN 1D
§(UAC) - —1/2 —1/2 : —1/2 —1/2
172HGA ®os'"oaco, T ®oa *LACHOO
D(papclloasc) Dap(pasclloasc Dpc(pasclloasc)
0ABC
A8l c | <E(Ed) [fapB o + 4Bl ¢




PROOF: QUASI-FACTORIZATION

B By

g N - - A
20000000000000000
S

~—— M

Ay Aa

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian Hjy .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1

&(oacpe) =
1— 2”0’23/2 ®a’§i/2

—1/2 —1/2
UACBCUAC/ ®UBC/ 71[ACBC
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By By

~ ~ ~ ~ A
9990000090 090000000000
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Ay A
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oA = m is the Gibbs state of a k-local, commuting Hamiltonian Hjy .

QUASI-FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1
&(ocacpe) = 72

—1/2

—1 —1/2
1-— 2HCTAC ®ope

—1/2
UACBCUAC/ X ope — 1 pgcpe
oo
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QUASI-FACTORIZATION FOR, QUANTUM MARKOV CHAINS

(Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)
Since op is a QMC between A; <> 9(A;) <> (A; U9DA;)¢, then:

Da(palloa) < D Da,(palloa).
7

oA = D0 4,00:)F B T(9a;)F(A;004,)°
JjeJ




PROOF: DECAY OF CORRELATIONS

B By

— - - A
90000000000000000
29%98 2200

1y Ay

QUASI FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,

7

where 1

£(gacpe) =
1—2HUAcl/2®0'};iNUAcBLU /®071/ — T gcpe
o0

000000202020 00000000
g—oN P N N —
e i D, B Dy

09000090000000000
= >

X
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By

B, 2
Y A
00000000000000000
N — S —
1y 1o

QUASI—FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,

7

where 1
&(oacpe) =

1/2

1-— 2HUAC ®0’§i/2 O AcBe O’AC/ ®071/2

—]lAch
oo

OOOOOOOOOOOOOOOOO
A

& E D, ("_, E, n_,
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Let oxyz be the Gibbs state of a finite-range, translation-invariant
Hamiltonian. There is £ — §(¢) with exponential decay such that:

Hﬂ;(l ® Uglaxz = ]lszoo < o([Y ).




PROOF: GEOMETRIC RECURSIVE ARGUMENT

B, By

/—/% /—/%
0990900000000 0000000
— N >

~
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4 12

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -
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PROOF: GEOMETRIC RECURSIVE ARGUMENT
B, By

/—/% /—/%
0990900000000 0000000
— N >

~

"

4 12

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -

COMPARISON CONDITIONAL REL. ENT. (Bardet-C.-Rouzé, ’20)

Da(palloa) < DX (palloa)

®
Therefore, by this and + \,// , we have:

D(palloa) < &(oacne) Y [Dfi (pallon) + DE, (pA||0’A)} ;

3

smnin (o, (£577)am, (577},
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and thus g
a(LyT) >
( A ) = g(UACBC

for

[H* inf _tr[ﬁgz*(PA)(lnpA—lnaA)}
aa; (Ly )_p/\lgsA D(pA||E:‘i(pA))




Proor: PosiTiveE CMLSI

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)
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Proor: PosiTiveE CMLSI

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pal|E4, (pa)) < 4ka, Z D(pallE5 (pa))

REDUCTION FROM CMLSI TO GAP

o« L
A N

where A < 1 is a constant related to the spectral gap by the
detectability lemma.

k

As a consequence of the non-closure of the spectral gap proved for 1D

MLSI FOR DAVIES

commuting Gibbs samplers (Kastoryano-Brando '16), ka, = O(In|A|) GENERATORS IN 1D
for A; = O(In|AJ).

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

Dixy - D;x
ac(Ly) = égga(ﬁj ®Idg) > 0.
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Heat-bath cond. expectation:
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Davies cond. expectation: EY™ () := thm etfa ().
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The conditional expectations associated to Davies and heat-bath
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1 As

= MfA) is the Gibbs state of a k-local, commuting Hamiltonian H}y .

tr(e
QUASI—FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds
D(pallon) < &@acpe) [Daloallon) + Da(palloa)],

where e 1 e 1/ 1
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oo
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Last step: Spectral gap
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CONSEQUENCES
Consequences of this result:

The Davies generator converging to the Gibbs state of a local,
commuting, translation-invariant Hamiltonian in 1D has rapid mixing
for every 5 > 0.

» Dissipative phase transitions: Absence of dissipative phase
transitions in 1D for Davies evolutions over translation-invariant
spin chains.

> Symmetry Protected Topological phases: Example of a
non-trivial interacting SPT phase with decoherence time of
O(log [A]).

Corollary for SPT phases MLSTI For DavIEs

GENERATORS IN 1D
For every 8 > 0, 1D SPT phases thermalize in time logarithmic in [A],
even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian
with 3-local interactions given by Z ® X ® Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong
symmetry.




CONCLUSIONS Modifie

logarithmic

In this talk:

FOR DAVIES
GENERATORS IN 1D




CONCLUSIONS

In this talk:

» We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

MLSI For DAVIES
SENERATORS IN 1D




CONCLUSIONS

In this talk:

» We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

» We have reviewed modified logarithmic Sobolev constants as a tool
to prove rapid mixing.

MLSI For DAVIES
SENERATORS IN 1D




CONCLUSIONS

In this talk:

» We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

» We have reviewed modified logarithmic Sobolev constants as a tool
to prove rapid mixing.

» We have shown that some results of quasi-factorization and decay

of correlations imply positivity of MLSI constants. MLSI FOR DAVIES
SENERATORS IN 1D
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OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
» In the last result, can the MLSI be independent of the system size?

» Extension to more dimensions.

»> 2D, quantum double models (positive spectral gap recently proven
in (Lucia-Perez Garcia-Perez Hernandez, '21) ).

» Improve results of quasi-factorization for the relative entropy:
More systems?

» New functional inequalities for different quantities, such as the

. . . MLSI For DAVIES
Belavkin-Staszewski relative entropy: GENERATORS IN 1D

Das (pllo) = tr[plog(p'/*0~p'"?)] -




WE’RE HIRING!

We’re looking for candidates to fill the following positions within the
CRC ”Mathematics of Many-Body Quantum Systems and
Their Collective Phenomena” (UT-LMU-TUM):

» 1 PhD student in co-supervision with Cambyse Rouzé (T. U.
Munich).

» 1 postdoc in co-supervision with Stefan Teufel (U. Tibingen).

The positions could start on January 1st, 2023.
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If you’re interested, please get in touch! (or send an email to
angela.capelQuni-tuebingen.de)




Thank you for your attention!

Do you have any questions?

David Pérez-Garcia .
U. Complutense Angelo Lucia
Madrid U. Complutense Cambyse Rouzé
Madrid T. U. Munich

Ivan Bardet
Inria Paris
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Andreas Bluhm

Daniel Stilck Franca ) Antoni(? U. Copenhagen
ENS Lyon Pérez-Hernandez

UNED Madrid

Li Gao
U. Houston
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