Spectral gap implies rapid mixing for commuting Hamiltonians

Modified logarithmic Sobolev inequalities for quantum many-body systems

Ángela Capel

(Eberhard Karls Universität Tübingen)

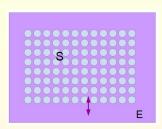
Joint work with A. Alhambra, J. Kochanowski and C. Rouzé

Quantum Computing and Related Topics Seminar Hamburg University of Technology 29 November 2023

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system.

No experiment can be executed at zero temperature or be completely shielded from noise.



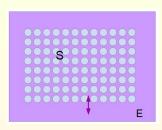
- Finite lattice $\Lambda \subset \subset \mathbb{Z}^d$.
- Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{x}$.
- Density matrices: $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system.

No experiment can be executed at zero temperature or be completely shielded from noise.



- Finite lattice $\Lambda \subset \mathbb{Z}^d$.
- Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{x}$.
- Density matrices: $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

$$\frac{d}{dt}\mathcal{T}_t = \mathcal{T}_t \circ \mathcal{L}_{\Lambda} = \mathcal{L}_{\Lambda} \circ \mathcal{T}_t.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t = e^{t\mathcal{L}_{\Lambda}} \Leftrightarrow \mathcal{L}_{\Lambda} = \frac{d}{dt}\mathcal{T}_t \mid_{t=0}.$$

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

$$\frac{d}{dt}\mathcal{T}_t = \mathcal{T}_t \circ \mathcal{L}_{\Lambda} = \mathcal{L}_{\Lambda} \circ \mathcal{T}_t.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t = e^{t\mathcal{L}_{\Lambda}} \Leftrightarrow \mathcal{L}_{\Lambda} = \frac{d}{dt}\mathcal{T}_t \mid_{t=0}.$$

For
$$\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$$
, $\mathcal{L}_{\Lambda}(\rho_{\Lambda}) = -i[H_{\Lambda}, \rho_{\Lambda}] + \sum_{k \in \Lambda} \widetilde{\mathcal{L}}_{k}(\rho_{\Lambda})$ GKLS equation.

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

$$\frac{d}{dt}\mathcal{T}_t = \mathcal{T}_t \circ \mathcal{L}_{\Lambda} = \mathcal{L}_{\Lambda} \circ \mathcal{T}_t.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t = e^{t\mathcal{L}_{\Lambda}} \Leftrightarrow \mathcal{L}_{\Lambda} = \frac{d}{dt}\mathcal{T}_t \mid_{t=0}.$$

For
$$\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$$
, $\mathcal{L}_{\Lambda}(\rho_{\Lambda}) = -i[H_{\Lambda}, \rho_{\Lambda}] + \sum_{k \in \Lambda} \widetilde{\mathcal{L}}_{k}(\rho_{\Lambda})$ GKLS equation.

Mixing ⇔ Convergence

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ}

$Mixing \Leftrightarrow Convergence$

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

Detailed balance condition

We also assume that the quantum Markov process studied is **reversible**, i.e., it satisfies the **detailed balance condition** w.r.t. $\sigma \equiv \sigma_{\Lambda}$:

$$\langle f, \mathcal{L}_{\Lambda}^*(g) \rangle_{\sigma} = \langle \mathcal{L}_{\Lambda}^*(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\langle f, g \rangle_{\sigma} = \operatorname{tr} \left[f \, \sigma^{1/2} \, g \, \sigma^{1/2} \right]$$

$Mixing \Leftrightarrow Convergence$

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is **reversible**, i.e., it satisfies the **detailed balance condition** w.r.t. $\sigma \equiv \sigma_{\Lambda}$:

$$\langle f, \mathcal{L}_{\Lambda}^*(g) \rangle_{\sigma} = \langle \mathcal{L}_{\Lambda}^*(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\langle f, g \rangle_{\sigma} = \operatorname{tr} \left[f \, \sigma^{1/2} \, g \, \sigma^{1/2} \right] \, .$$

Notation: $\rho_t := \mathcal{T}_t(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

$Mixing \Leftrightarrow Convergence$

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is **reversible**, i.e., it satisfies the **detailed balance condition** w.r.t. $\sigma \equiv \sigma_{\Lambda}$:

$$\langle f, \mathcal{L}_{\Lambda}^*(g) \rangle_{\sigma} = \langle \mathcal{L}_{\Lambda}^*(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\langle f, g \rangle_{\sigma} = \operatorname{tr} \left[f \, \sigma^{1/2} \, g \, \sigma^{1/2} \right] \, .$$

Notation: $\rho_t := \mathcal{T}_t(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

MIXING TIME

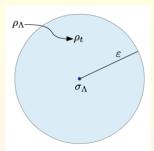
- Under the previous conditions, there is always convergence to σ_{Λ} .
- How fast does convergence happen?

Note $\mathcal{T}_{\infty}(\rho_{\Lambda}) := \sigma_{\Lambda}$ for every ρ_{Λ} .

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t\}$ by

$$t_{\mathrm{mix}}(\varepsilon) = \min \bigg\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \| \mathcal{T}_{t}(\rho_{\Lambda}) - \mathcal{T}_{\infty}(\rho_{\Lambda}) \|_{1} \leq \varepsilon \bigg\}.$$



RAPID MIXING

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t\}$ by

$$t_{\min}(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \varepsilon \right\}.$$

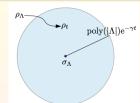
Recall: $\rho_t := \mathcal{T}_t(\rho_{\Lambda}), \ \sigma_{\Lambda} := \mathcal{T}_{\infty}(\rho_{\Lambda}).$

RAPID MIXING

We say that \mathcal{L}_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

 $t_{\text{mix}}(\varepsilon) \sim \text{poly log}(|\Lambda|).$



RAPID MIXING

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t\}$ by

$$t_{\min}(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \varepsilon \right\}.$$

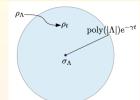
Recall: $\rho_t := \mathcal{T}_t(\rho_{\Lambda}), \ \sigma_{\Lambda} := \mathcal{T}_{\infty}(\rho_{\Lambda}).$

RAPID MIXING

We say that \mathcal{L}_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \text{poly}(|\Lambda|)e^{-\gamma t}.$$

 $t_{\text{mix}}(\varepsilon) \sim \text{poly log}(|\Lambda|).$



Applications to quantum information/quantum computing

What are the implications of rapid mixing?

$$\begin{split} & \underset{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})}{\operatorname{Rapid mixing}} \\ & \sup_{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})} \|T_t(\rho) - \sigma\|_1 \leq \operatorname{poly}(|\Lambda|) \mathrm{e}^{-\gamma t} \\ & \text{Mixing time: } \tau(\varepsilon) = \mathcal{O}(\operatorname{polylog}(|\Lambda|)) \end{split}$$

"Negative" point of view:

• Quantum properties that hold in the ground state but not in the Gibbs state are suppressed too fast for them to be of any reasonable use.

"Positive" point of view:

- Thermal states with short mixing time can be **constructed efficiently** with a quantum device that simulates the effect of the thermal bath.
- This has important implications as a self-studying open problem as well as in optimization problems via simulated annealing type algorithms.

Applications to quantum information/quantum computing

If rapid mixing, no error correction:

Rapid mixing	Easy $t_{\text{mix}} \sim \log(n)$	$t_{\rm mix} \sim {\rm poly}(n)$	$t_{ m mix} \sim \exp(n)$ Hard
$\sup_{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})} \ T_t(\rho) - \sigma\ _1 \le \text{poly}(\Lambda) e^{-\gamma t}$		Error correction	Self-correction
Mixing time: $\tau(\varepsilon) = \mathcal{O}(\operatorname{polylog}(\Lambda))$	Efficient prediction Speed-up for	Topological order SDP solvers	Quantum memories

Main applications or consequences:

- Robust and efficient preparation of topologically ordered phases of matter via dissipation.
- Design of more efficient quantum error-correcting codes optimized for correlated Markovian noise models.
- Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-García '15)
- Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-García '15)
- Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca '20)
- Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca '20)
- Quantum annealers: Output an energy closed to that of the fixed point after short time (C., Rouzé, Stilck Franca '20)
- Preparation Gibbs states: Existence of local quantum circuits with logarithmic depth to prepare the Gibbs state (C., Rouzé, Stilck Franca '20)
- Establish the absence of dissipative phase transitions (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)
- Examples of interacting SPT phases with decoherence time growing logarithmically with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)
 and many more an

Applications to quantum information/quantum computing

If rapid mixing, no error correction:

Easy $t_{\rm mix} \sim \log(n)$	$t_{\rm mix} \sim {\rm poly}(n)$	$t_{ m mix} \sim \exp(n)$ Hard
	Error correction	Self-correction
Efficient prediction	Topological order	Quantum memories
	Efficient prediction	Error correction

Main applications or consequences:

- Robust and efficient preparation of topologically ordered phases of matter via dissipation.
- Design of more efficient quantum error-correcting codes optimized for correlated Markovian noise models.
- Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-García '15)
- Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-García '15)
- Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca '20)
- Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca '20)
- Quantum annealers: Output an energy closed to that of the fixed point after short time (C., Rouzé, Stilck Franca '20)
- Preparation Gibbs states: Existence of local quantum circuits with logarithmic depth to prepare the Gibbs state (C., Rouzé, Stilck Franca '20)
- Establish the absence of **dissipative phase transitions** (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)
- Examples of interacting **SPT phases** with decoherence time growing logarithmically with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21) And many more...

Recall:
$$\rho_t := \mathcal{T}_t(\rho)$$
.

Master equation

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

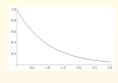
$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) < -\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]$$



Modified logarithmic Sobolev inequality

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

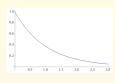
$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t||\sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$



Modified logarithmic Sobolev inequality

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \to \mathbb{Z}_d} \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \le D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t},$$

and Pinsker's inequality
$$\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \text{tr}[|A|]\right)$$

 $\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}\|\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \to \mathbb{Z}_d} \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}) t},$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

For thermal states
$$\sigma_{\Lambda} = e^{-\beta H} / \text{tr}[e^{-\beta H}],$$

 $\sigma_{\text{min}} \sim 1/\text{exp}(|\Lambda|)$

Rapid mixing $_{t}-\sigma_{\Lambda}\|_{1} \leq \operatorname{poly}(|\Lambda|)e^{-\gamma t}$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t}$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

For thermal states $\sigma_{\Lambda} = e^{-\beta H} / \text{tr}[e^{-\beta H}],$ $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

Rapid mixing
$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \text{poly}(|\Lambda|)e^{-\gamma t}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t}$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

For thermal states
$$\sigma_{\Lambda} = e^{-\beta H} / tr[e^{-\beta H}],$$

 $\sigma_{\min} \sim 1/exp(|\Lambda|).$

Rapid mixing
$$\|\rho_t \! - \! \sigma_{\Lambda}\|_1 \! \leq \! \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

 $MLSI \Rightarrow Rapid mixing.$

$$|\rho_t - \sigma_{\Lambda}||_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t}$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\left\|\rho_t - \sigma_\Lambda\right\|_1 \leq \sqrt{2D(\rho_\Lambda||\sigma_\Lambda)}\,e^{-\alpha(\mathcal{L}_\Lambda)\,t} \leq \sqrt{2\log(1/\sigma_{\min})}\,e^{-\alpha(\mathcal{L}_\Lambda)\,t}.$$

For thermal states
$$\sigma_{\Lambda} = e^{-\beta H} / tr[e^{-\beta H}],$$

 $\sigma_{\min} \sim 1/exp(|\Lambda|).$

Rapid mixing
$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \text{poly}(|\Lambda|)e^{-\gamma t}$$

 $MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

Rapid mixing

$$\sup_{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})} \|T_t(\rho) - \sigma\|_1 \le \text{poly}(|\Lambda|) e^{-\gamma t}$$

Mixing time: $\tau(\varepsilon) = O(\text{polylog}(|\Lambda|))$

$$e^{t\mathcal{L}}(\rho) \stackrel{t\to\infty}{\longrightarrow} \sigma$$

Notation: $\Lambda \subset \subset \mathbb{Z}^d$ lattice

 $\{T_t\}_{t\geq 0}$ Quantum Markov semigroup $\mathcal L$ Inf. generator (Lindbladian)

$$\begin{aligned} & \underbrace{ \text{Mixing time}}_{\tau(\varepsilon)} \text{ of the semigroup } \{T_t\}_{t \geq 0} \\ & \tau(\varepsilon) = \min \left\{ t > 0: \sup_{\rho \in \mathcal{S}(\mathcal{H}_{\lambda})} \|T_t(\rho) - \sigma\|_1 \leq \varepsilon \right\} \end{aligned}$$

Modified Logarithmic Sobolev Inequality (MLSI)

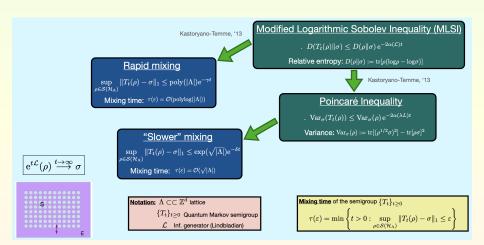
 $D(T_t(\rho)||\sigma) \le D(\rho||\sigma) e^{-2\alpha(\mathcal{L})t}$

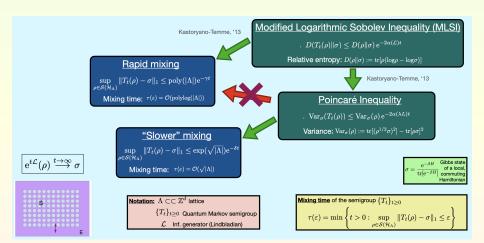
Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

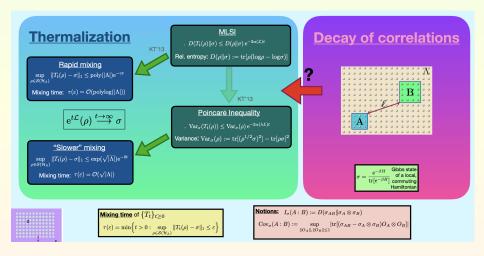
$$\begin{array}{c}
e^{t\mathcal{L}}(\rho) \stackrel{t \to \infty}{\longrightarrow} \sigma \\
s
\end{array}$$

Notation: $\Lambda \subset\subset \mathbb{Z}^d$ lattice $\{T_t\}_{t\geq 0}$ Quantum Markov semigroup \mathcal{L} Inf. generator (Lindbladian)

Mixing time of the semigroup $\{T_t\}_{t\geq 0}$ $\tau(\varepsilon) = \min\left\{t>0: \sup_{\rho\in\mathcal{S}(\mathcal{H}_\Lambda)}\|T_t(\rho) - \sigma\|_1 \leq \varepsilon\right\}$







DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

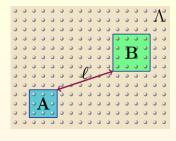
- Hamiltonian: $H_{\Lambda} = H_A + H_B + H_{(A \cup B)^c} + H_{\partial A} + H_{\partial B}$,
- Gibbs state: $\sigma_{\Lambda}(\beta) = e^{-\beta H_{\Lambda}} / \text{Tr}[e^{-\beta H_{\Lambda}}]$.

DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

- Hamiltonian: $H_{\Lambda} = H_A + H_B + H_{(A \cup B)^c} + H_{\partial A} + H_{\partial B}$,
- Gibbs state: $\sigma_{\Lambda}(\beta) = e^{-\beta H_{\Lambda}} / \text{Tr}[e^{-\beta H_{\Lambda}}]$.



$$\ell := \operatorname{dist}(A, B)$$

Questions:

For non-commuting Hamiltonians:

$$e^{-\beta H_{A\cup B}} \approx e^{-\beta H_A} e^{-\beta H_B}$$
?

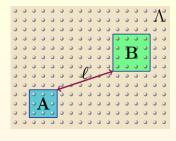
$$\operatorname{tr}_{A^c}[\sigma_{\Lambda}] \otimes \operatorname{tr}_{B^c}[\sigma_{\Lambda}] := (\sigma_{\Lambda})_A \otimes (\sigma_{\Lambda})_B \approx \operatorname{tr}_{(A \cup B)^c}[\sigma_{\Lambda}] := (\sigma_{\Lambda})_{A \cup B}$$
?

DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

- Hamiltonian: $H_{\Lambda} = H_A + H_B + H_{(A \cup B)^c} + H_{\partial A} + H_{\partial B}$,
- Gibbs state: $\sigma_{\Lambda}(\beta) = e^{-\beta H_{\Lambda}} / \text{Tr}[e^{-\beta H_{\Lambda}}]$.



$$\ell := \operatorname{dist}(A, B)$$

Questions:

For non-commuting Hamiltonians:

$$e^{-\beta H_{A\cup B}} \approx e^{-\beta H_A} e^{-\beta H_B}$$
?

$$\begin{split} \operatorname{tr}_{A^c}[\sigma_{\Lambda}] \otimes \operatorname{tr}_{B^c}[\sigma_{\Lambda}] &:= \left(\sigma_{\Lambda}\right)_A \otimes \left(\sigma_{\Lambda}\right)_B \approx \\ \operatorname{tr}_{(A \cup B)^c}[\sigma_{\Lambda}] &:= \left(\sigma_{\Lambda}\right)_{A \cup B} ? \end{split}$$

DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

$$\operatorname{Cov}_{\sigma}(A:B) := \sup_{\|O_A\| = \|O_B\| = 1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]|$$

Mutual information

$$I_{\sigma}(A:B) := D(\sigma_{AB}||\sigma_A \otimes \sigma_B)$$

for
$$D(\rho || \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$$

DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

$$\operatorname{Cov}_{\sigma}(A:B) := \sup_{\|O_A\| = \|O_B\| = 1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]|$$

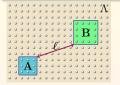
MUTUAL INFORMATION

$$I_{\sigma}(A:B) := D(\sigma_{AB}||\sigma_A \otimes \sigma_B)$$

for $D(\rho || \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$

MIXING CONDITION

$$\|h(\sigma_{AB})\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty}$$



Relation

$$\frac{1}{2}\operatorname{Cov}_{\sigma}(A:B)^{2} \leq I_{\sigma}(A:B)$$

$$\leq \left\| \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB} \right\|_{\infty}.$$

DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

$$\operatorname{Cov}_{\sigma}(A:B) := \sup_{\|O_A\| = \|O_B\| = 1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]|$$

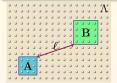
MUTUAL INFORMATION

$$I_{\sigma}(A:B) := D(\sigma_{AB}||\sigma_A \otimes \sigma_B)$$

for $D(\rho \| \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$

MIXING CONDITION

$$\left\|h(\sigma_{AB})\right\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty}$$

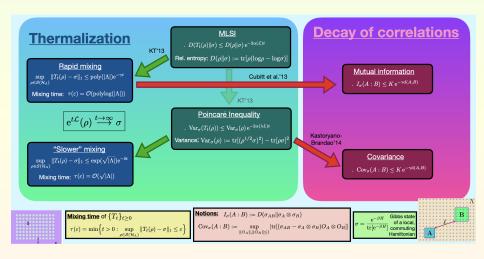


Relation:

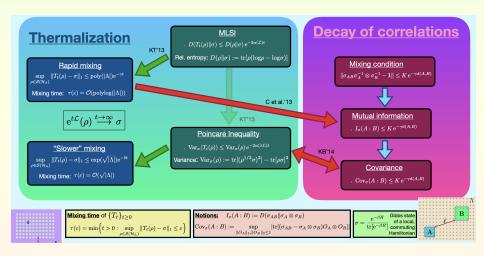
$$\frac{1}{2}\operatorname{Cov}_{\sigma}(A:B)^{2} \leq I_{\sigma}(A:B)$$

$$\leq \left\| \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB} \right\|_{\infty}.$$

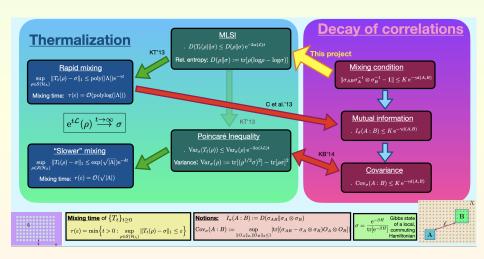
QUANTUM SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



SETTING AND QUESTIONS

Given:

- H_{Λ} local (commuting) Hamiltonian \mapsto $\sigma_{\Lambda} := \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}[e^{-\beta H_{\Lambda}}]}$ Gibbs state .
- \mathcal{L}_{Λ} local Lindbladian with unique stationary state σ_{Λ} ($\mathcal{L}_{\Lambda}(\sigma_{\Lambda}) = 0$).

Questions

- Does \mathcal{L}_{Λ} have a positive, constant (or poly log) MLSI?
- How do correlations decay in σ_{Λ} between spatially separated regions?

SETTING AND QUESTIONS

Given:

- H_{Λ} local (commuting) Hamiltonian \mapsto $\sigma_{\Lambda} := \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}[e^{-\beta H_{\Lambda}}]}$ Gibbs state .
- \mathcal{L}_{Λ} local Lindbladian with unique stationary state σ_{Λ} ($\mathcal{L}_{\Lambda}(\sigma_{\Lambda}) = 0$).

Questions:

- Does \mathcal{L}_{Λ} have a positive, constant (or poly log) MLSI?
- How do correlations decay in σ_{Λ} between spatially separated regions?

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\lim_{\Lambda \nearrow \mathbb{Z}^d} \inf \alpha(\mathcal{L}_\Lambda) \ge \Psi(|\Lambda|) > 0 \qquad \text{ (or } = 0 \text{ very "slowly", like } \Omega\left(\frac{1}{\operatorname{poly log}(|\Lambda|)}\right))$$

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_\Lambda) \ge \Psi(|\Lambda|) > 0 \qquad \text{ (or = 0 very "slowly", like } \Omega\left(\frac{1}{\operatorname{poly} \log(|\Lambda|)}\right))$$

Can we prove something like

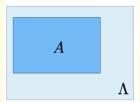
$$\alpha(\mathcal{L}_{\Lambda}) > \Psi(|A|) \alpha(\mathcal{L}_{A}) > 0$$
?

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_\Lambda) \ge \Psi(|\Lambda|) > 0 \qquad \text{ (or = 0 very "slowly", like } \Omega\left(\frac{1}{\operatorname{poly} \log(|\Lambda|)}\right))$$



Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}) > 0 \ ?$$

No, but we can prove

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}_{A}) > 0 \ .$$

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_\Lambda) \ge \Psi(|\Lambda|) > 0 \qquad \text{ (or = 0 very "slowly", like } \Omega\left(\frac{1}{\operatorname{poly} \log(|\Lambda|)}\right))$$

Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}) > 0 \ ?$$

No, but we can prove

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}_{A}) > 0 \ .$$

CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The MLSI constant of $\mathcal{L}_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}_k$ is defined by

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_A) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_A(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_A(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The MLSI constant of $\mathcal{L}_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}_k$ is defined by

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

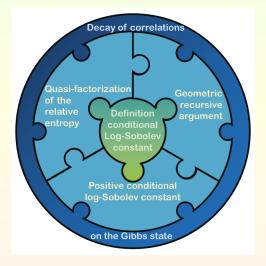
CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}_{Λ} on $A \subset \Lambda$ is defined by

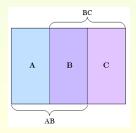
$$\alpha_{\Lambda}(\mathcal{L}_A) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_A(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_A(\rho_{\Lambda}||\sigma_{\Lambda})}$$

STRATEGY

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

$$D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right],$$

for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_{A} \otimes \sigma_{C}$.

HOW DOES THE STRATEGY WORK?

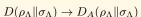
We want to prove:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

$$\alpha(\mathcal{L}_{\Lambda}) \ge \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}_{A}) > 0$$

$$\alpha_{\Lambda}(\mathcal{L}_A) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_A(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_A(\rho_{\Lambda}||\sigma_{\Lambda})}$$

, we prove the following:



$$\Psi(|A|) > 0$$

$$\alpha_{\Lambda}(\mathcal{L}_A) > 0$$

Example: Tensor product fixed point

(C.-Lucia-Pérez García '18) (Beigi-Datta-Rouzé '18)

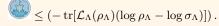
$$egin{aligned} \mathcal{L}_{\Lambda}(
ho_{\Lambda}) &= \sum_{x \in \Lambda} \left(\sigma_x \otimes
ho_{x^c} -
ho_{\Lambda}
ight) \quad ext{heat-bath} \ D_x(
ho_{\Lambda} \| \sigma_{\Lambda}) &:= D(
ho_{\Lambda} \| \sigma_{\Lambda}) - D(
ho_{x^c} \| \sigma_{x^c}) \end{aligned}$$

$$\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x,$$

$$\begin{split} D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \\ & \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda}) \\ & \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda}) \\ & \leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}(\rho_{\Lambda})]}{2D(\rho_{0}|\sigma_{\Lambda})} \leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}(\rho_{\Lambda})]}{2D(\rho_{0}|\sigma_{\Lambda})} \end{split}$$

$$\begin{split} \frac{\sum_{x \in \Lambda} \frac{x \in \Lambda}{2D_{(R)|RS|}} \leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_x(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)]}{2\alpha_\Lambda(\mathcal{L}_x)} \\ \leq \frac{1}{2\inf_{x \in \Lambda} \alpha_\Lambda(\mathcal{L}_x)} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_x(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)] \end{split}$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_x)} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \right)$$



DYNAMICS

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}\left[e^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^{c}}^{-1/2} \rho_{x^{c}} \sigma_{x^{c}}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Dynamics₁

Let $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}\left[\mathrm{e}^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

DAVIES GENERATOR

The Davies generator is given by:

$$\mathcal{L}_{\Lambda}^{D;*}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \widetilde{\mathcal{L}}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

DYNAMICS

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}\left[e^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D,*}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \widetilde{\mathcal{L}}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S,*}(X) = \sum_{x \in \Lambda} \left(E_x^{S,*}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

DYNAMICS

Let $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}\left[\mathrm{e}^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D,*}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \widetilde{\mathcal{L}}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S,*}(X) = \sum_{x \in \Lambda} \left(E_x^{S,*}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}$$

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D}$ has a positive spectral gap that is independent of the system size, for every temperature.

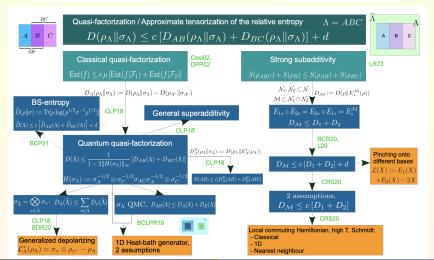
MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García, Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

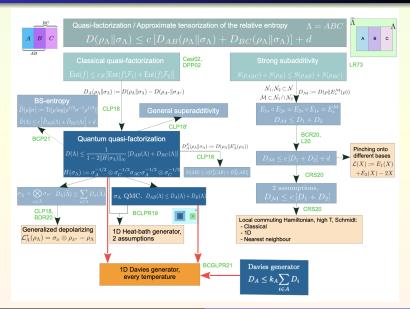
QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Results of Quasi-Factorization or Approximate Tensorization

Results of Modified Logarithmic Sobolev Inequality



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda})t}.$$

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

RAPID MIXING

In the setting above, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

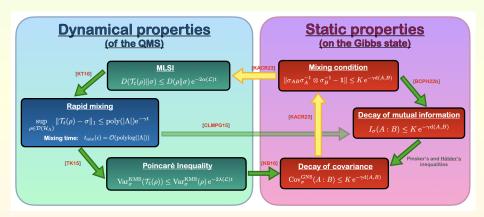
For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda})t}.$$

Rapid mixing

In the setting above, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing.

Main result



MLSI FOR 2-COLORABLE GRAPHS

MLSI FOR 2-COLORABLE GRAPHS, (Alhambra-C.-Kochanowski-Rouzé, '23)

Let Λ be a 2-colorable graph and $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, 2-local Hamiltonian. If:

- i) The Lindbladian is **gapped**.
- ii) The Gibbs state satisfies exponential decay of covariance.

Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a **MLSI** with constant

- 1) $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(1)_{|\Lambda| \to \infty}$, when Λ is a sub-exponential graph (e.g. hypercubic lattice), or
- 2) $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega\left((\ln |\Lambda|)^{-1}\right)_{|\Lambda| \to \infty}$, if the correlation length of the fixed point is sufficiently small (e.g. *b*-ary trees).

RAPID MIXING

- i) $\Lambda = \mathbb{Z}$ is 1-dimensional, H_{Λ} is k-local and $\beta > 0 \Rightarrow \mathcal{L}_{\Lambda}^{D}$ has a constant MLSI.
- ii) $\Lambda = \mathbb{Z}^D$ is D-dimensional, H_{Λ} is 2-local and $\beta < \beta_* \Rightarrow \mathcal{L}_{\Lambda}^D$ has a constant MLSI.
- iii) $\Lambda = \mathbb{T}_b$ is an inf. b-ary tree, H_{Λ} is 2-local and $\beta < \beta_* \Rightarrow \mathcal{L}_{\Lambda}^D$ has a log-size MLSI. In all cases, \mathcal{L}_{Λ}^D satisfies **rapid mixing**.

MLSI FOR 2-COLORABLE GRAPHS

MLSI FOR 2-COLORABLE GRAPHS, (Alhambra-C.-Kochanowski-Rouzé, '23)

Let Λ be a 2-colorable graph and $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, 2-local Hamiltonian. If:

- i) The Lindbladian is **gapped**.
- ii) The Gibbs state satisfies exponential decay of covariance.

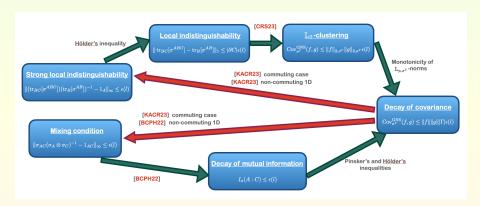
Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a **MLSI** with constant

- 1) $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(1)_{|\Lambda| \to \infty}$, when Λ is a sub-exponential graph (e.g. hypercubic lattice), or
- 2) $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega\left((\ln|\Lambda|)^{-1}\right)_{|\Lambda| \to \infty}$, if the correlation length of the fixed point is sufficiently small (e.g. *b*-ary trees).

RAPID MIXING

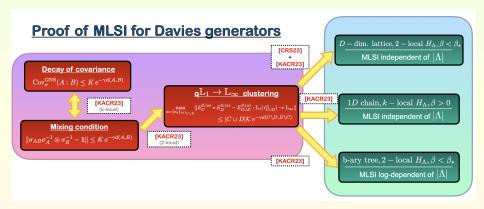
- i) $\Lambda = \mathbb{Z}$ is 1-dimensional, H_{Λ} is k-local and $\beta > 0 \Rightarrow \mathcal{L}_{\Lambda}^{D}$ has a constant MLSI.
- ii) $\Lambda = \mathbb{Z}^D$ is D-dimensional, H_{Λ} is 2-local and $\beta < \beta_* \Rightarrow \mathcal{L}_{\Lambda}^D$ has a constant MLSI.
- iii) $\Lambda = \mathbb{T}_b$ is an inf. b-ary tree, H_{Λ} is 2-local and $\beta < \beta_* \Rightarrow \mathcal{L}_{\Lambda}^D$ has a log-size MLSI. In all cases, \mathcal{L}_{Λ}^D satisfies **rapid mixing**.

Ingredients of the proof



For k-local, commuting Hamiltonians, exponential decay of covariance implies mixing condition.

Ingredients of the proof



The last part uses "divide and conquer" arguments for the relative entropy.

+

Equivalence between dynamics:

$$D(\rho || E_X^D(\rho)) < D(\rho || E_X^S(\rho)) < D(\rho || E_{X\partial}^D(\rho))$$

In this talk:

 We have discussed dissipative evolutions of quantum many-body systems and their mixing time.

In this talk:

- We have discussed dissipative evolutions of quantum many-body systems and their mixing time.
- We have reviewed modified logarithmic Sobolev constants as a tool to prove rapid mixing.

In this talk:

- We have discussed dissipative evolutions of quantum many-body systems and their mixing time.
- We have reviewed modified logarithmic Sobolev constants as a tool to prove rapid mixing.
- We have shown that some results of quasi-factorization and decay of correlations imply positivity of MLSI constants.

In this talk:

- We have discussed dissipative evolutions of quantum many-body systems and their mixing time.
- We have reviewed modified logarithmic Sobolev constants as a tool to prove rapid mixing.
- We have shown that some results of quasi-factorization and decay of correlations imply positivity of MLSI constants.

Open problems:

• Extend the chain of implications (in particular, decay of correlations \Rightarrow MLSI) to k-local interactions.

- Extend the chain of implications (in particular, decay of correlations ⇒ MLSI) to k-local interactions.
- Extension to specific models.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).

- Extend the chain of implications (in particular, decay of correlations ⇒ MLSI) to k-local interactions.
- Extension to specific models.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Extension to non-commuting Hamiltonians.

- Extend the chain of implications (in particular, decay of correlations ⇒ MLSI) to k-local interactions.
- Extension to specific models.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Extension to non-commuting Hamiltonians.
- Improve results of quasi-factorization for the relative entropy: More systems?

- Extend the chain of implications (in particular, decay of correlations ⇒ MLSI) to k-local interactions.
- Extension to specific models.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Extension to non-commuting Hamiltonians.
- Improve results of quasi-factorization for the relative entropy: More systems?
- New functional inequalities for different quantities, such as the Belavkin-Staszewski relative entropy:

$$D_{\rm BS}(\rho \| \sigma) = \operatorname{tr} \left[\rho \log \left(\rho^{1/2} \sigma^{-1} \rho^{1/2} \right) \right].$$

Open problems:

- Extend the chain of implications (in particular, decay of correlations ⇒ MLSI) to k-local interactions.
- Extension to specific models.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Extension to non-commuting Hamiltonians.
- Improve results of quasi-factorization for the relative entropy: More systems?
- New functional inequalities for different quantities, such as the Belavkin-Staszewski relative entropy:

$$D_{\rm BS}(\rho \| \sigma) = \operatorname{tr}\left[\rho \log\left(\rho^{1/2}\sigma^{-1}\rho^{1/2}\right)\right].$$

Thank you for your attention!

Open problems:

- Extend the chain of implications (in particular, decay of correlations ⇒ MLSI) to k-local interactions.
- Extension to specific models.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Extension to non-commuting Hamiltonians.
- Improve results of quasi-factorization for the relative entropy: More systems?
- New functional inequalities for different quantities, such as the Belavkin-Staszewski relative entropy:

$$D_{\rm BS}(\rho \| \sigma) = \operatorname{tr} \left[\rho \log \left(\rho^{1/2} \sigma^{-1} \rho^{1/2} \right) \right].$$

Thank you for your attention!