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INTRODUCTION AND MOTIVATION

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system. J

No experiment can be executed at zero temperature or be completely
shielded from noise.
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INTRODUCTION AND MOTIVATION

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system. J

No experiment can be executed at zero temperature or be completely
shielded from noise.

@ Finite lattice A CC Z%.

S =SS @ Hilbert space associated to A is
( Ha = Qpep Ha-

"""" ‘ St @ Density matrices: Sy := S(Ha) =
1 ) {pr € Ba : pao > 0 and tr[pa] = 1}.

o Dynamics of S is dissipative!

@ The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.
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QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
57?=7§O£A=EAO7§-

QMS GENERATOR

The infinitesimal generator £ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

d
T =eh o L = %7; [t=o0.
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
57?=7§O£A=EAO7§-

QMS GENERATOR

The infinitesimal generator £ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

d
T =eh o L = %7; [t=o0.

For pa € Sa, La(pa) = —i[Ha,pal + 32 Lr(ps) GKLS equation.
keA
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition w.r.t. o = oa:

(£, £5(9))5 = (LA(F) 9)6

for every f,g € Ba and Hermitian, where

(f9), = tx[f g7 .
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition w.r.t. o = oa:

(£, £5(9))5 = (LA(F) 9)6

for every f,g € Ba and Hermitian, where

(f9), = tx[f g7 .

Notation: p; := T¢(p).
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INTRODUCTION AND MOTIVATION

MIXING TIME

@ Under the previous conditions, there is always convergence to oa.
o How fast does convergence happen?
Note T (pa) := oa for every pa.

We define the mixing time of {7;} by

thrwiss((B) = min{t >0: sup [[Te(pa) — Toolpa)ll; < a}.

PAESA
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INTRODUCTION AND MOTIVATION

RAPID MIXING

We define the mixing time of {7;} by

tmix(e) =mind t > 0: sup |pt —oal; <e
PAESA

Recall: pt := Te(pa), oa = Too(pa)-

PA
XPL

poly(JA[)e "

oA
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INTRODUCTION AND MOTIVATION

RAPID MIXING

We define the mixing time of {7;} by

tmix(€) =mind t > 0: sup |pt —oall; <ep.
PAESA

Recall: pt := Te(pa), oa = Too(pa)-

RAPID MIXING

We say that £ satisfies rapid mixing if

R lloe = oall; < poly(JA)e™7".
PAESA

tmix () ~ poly log(|Al).

ﬂ
AXP

oA
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFOR.MATION/QUANTUM COMPUTING

Rapid mixing

sup || T3(p) — ol < poly(|A[)e™
PES(Ha)

What are the implications
of rapid mixing?

Mixing time: 7(€) = O(polylog(|A]))

“Negative” point of view:

e Quantum properties that hold in the ground state but not in the Gibbs state are
suppressed too fast for them to be of any reasonable use.

“Positive” point of view:

o Thermal states with short mixing time can be constructed efficiently with a
quantum device that simulates the effect of the thermal bath.

o This has important implications as a self-studying open problem as well as in
optimization problems via simulated annealing type algorithms.
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If rapid mixing, no error correction:
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFOR.MATION/QUANTUM COMPUTING

If rapid mixing, no error correction:

Rapid mixing Easy tmix ~ log(n) tmix ~ poly(n) tmix ~ exp(n) Hard,>
an [T200) — ol < polv(lAne=" T — .
,,es(%\) IT2(e) Il < poly(JAD Error correction Self-correction
Mixing time: () = O(polylog(AD) Efficient prediction Topological order Quantum memories

Speed-up for SDP solvers
Main applications or consequences:
@ Robust and efficient preparation of topologically ordered phases of matter via
dissipation.

@ Design of more efficient quantum error-correcting codes optimized for correlated
Markovian noise models.

@ Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-Garcia ‘15)

@ Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-Garcia ’15)

@ Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca ’20)

@ Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca '20)

@ Quantum annealers: Output an energy closed to that of the fixed point after short
time (C., Rouzé, Stilck Franca ’20)

@ Preparation Gibbs states: Existence of local quantum circuits with logarithmic

depth to prepare the Gibbs state (C., Rouzé, Stilck Franca ’20)
o Establish the absence of dissipative phase transitions (Bardet, C., Gao, Lucia,
Pérez-Garcia, Rouzé '21)
@ Examples of interacting SPT phases with decoherence time growing logarithmically
with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-Garcia, Rouzé '21)
And many more. ..
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).
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MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Ocpe = La(pt).

Relative entropy of p; and o,:

D(ptlloa) = tr[pi(log pr — log on)].
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TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS hedp—

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Ocpe = La(pt).

Relative entropy of p; and o,:

D(ptlloa) = tr[pt(log pr — log oa)].
Differentiating:

9:D(pel|oa) = tr[La(pe)(log pr — logoa)].
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IE AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS hedp—

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Ocpe = La(pt).

Relative entropy of p; and o,:

D(ptlloa) = tr[pi(log pr — log on)].

Differentiating:

9:D(pel|oa) = tr[La(pe)(log pr — logoa)].

Lower bound for the derivative of D(pt||oa) in terms of
itself:

2aD(pelloa) < —tr[La(pe)(log pr —logon)].

Modified logarithmic Sobolev inequality

Angela Capel (Eberhard U en) Gap implies rapid mixing for comm. Hamiltonians



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

NCTIONAL INEQUALITIES AND CORRELATIONS Di : e

MODIFIED LOGARITHMIC SOBOLEV INEQUALIT

The MLSI constant of £, is defined as:

o —tr[La(pa)(log pa —logon)]
Lp) = f
clta)i= 2D(pallon)

iltonians
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,

76H]7 Rapid mixing
llpt—oall; <poly(|A)e=7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-

Gap implies rapid mixing for comm. Hamiltonians
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,

For thermal states oy = e ?H /tr[efBH]7 Rapid mixing
Omin ~ 1/exp(|A]). llos—oall, <poly(|Ae=7*

MLSI = Rapid mixing. J
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

ORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,

76H]7 Rapid mixing
llpt—oall; <poly(|A)e=7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-

MLSI = Rapid mixing. J

Using the spectral gap (Kastoryano-Temme ’13):

Hpt - 0A||1 S \Y4 1/Umin e_A(EX)t-

Gap implies rapid mixing for comm. Hamiltonians
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF hedp—

UM SPIN SYSTEMS

Rapid mixing

sup [ Ti(p) — oly < poly(|A])e
PES(HA)

Mixing time: 7(e) = O(polylog(|A[))

s Notation: A CC Z“ lattice Mixing time of the semigroup {T}} ;>
T} e i
{ t)t_o Quantum Markov semigroup r(e)=min{t>0: sup |Tu(p)—ocli<e
t L Inf. generator (Lindbladian) PES(Ha)
E
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES
DECAY OF CORRELATIONS

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

UM SPIN SY

Kastoryano-Temme, ‘13
{ . D(Tp)llo) < Dpllo) e2)"
Rapid mixin Relative entropy: D(p||o) := tr[p(logp — logo)]

sup [ Ty(p) — oll1 < poly(|A)e™
S(Ha)

Mixing time: 7(€) = O(polylog(|A]))

s ion: A CC Z lattice Mixing time of the semigroup {7} }>0
Ti}ixo t i
{ t}i, Quantum Markov semigroup T(E) —mindt>0: sup HTi(P) _ UHl <e
1 L Inf. generator (Lindbladian) PES(Ha)
E

Hamil



3 TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

NCTIONAL INEQUALITIES AND CORRELATIONS

TUM SPIN SYSTEMS

PRTme——a— Modified Logarithmic Sobolev Inequalit
{ . DIT(p)lr) < Dlpllo) o2
Rapid mixi Relative entropy: D(p||o) := tr[p(logp — logo)]
sup || Ty(p) — olx < poly(|Al)e™ * N e,
PES(Ha)

Mixing time: 7(€) = O(polylog(|A|)) Poincaré Inequality

. Varg(Ti(p)) < Vary(p) e~ 2200

2 Variance: Var, (p) := tz[(p"/20)?] - tr[po]?

“‘Slower” mixing

sup [ T3(p) — o1 < exp(v/[Al)e="
PES(Ha)

Mixing time: 7(e) = O(v/|Al)

MLSI

Notation: A CC Z lattice Mixing time of the semigroup {7 };>¢
T} i
{T3}+>0 Quantum Markov semigroup (€)=min{t>0: sup |Tu(p)—ocls<e
t """ L Inf. generator (Lindbladian) PES(Ha)
E

Gap impli




MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

3 TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS Di : e —

UM SPIN SY

. D(Ty(p)llo) < D(pllo) e=2O*

Relative entropy: D(p||o) := tr[p(logp — logo)]

Kastoryano-Temme, ‘13

sup [ T3(p) — ollr < poly(|A)e™*
PES(Ha)

Mixing time: 7(€) = O(polylog(|A]) Poincaré Inequality
. Var,(Ti(p)) < Var,(p) =20t

. Variance: Vars (p) := tr[(p"/?0)] - tr[p

‘Slower” mixin:

[Te(p) = ollx < ex

sup
PES(HaA) 7
o-an  Gibbs state

of alocal,
trfe#7] commuting
Hamiltonian

Mixing time: 7(¢) = O(v/[A]) =

Notation: A CC Z Iattice Mixing time of the semigroup {7} }1>0

{Tt}tzu Quantum Markov semigroup

7(e)=min{t>0: sup |[|Ty(p)—ol1<e
PES(Ha)

""" L Inf. generator (Lindbladian)




FUNCTIONAL INEQUALITI

UM SPIN S

Thermalization

Rapid mixing
sup ||Ti(p) —ofls < poly(|Af)e™™
PES(HA)

Mixing time: 7(¢) = O(polylog(|A[))

“Slower” mixing
sup [|Ti(p) — ol < exp(v/|A[)e™
PES(Ha)

Mixing time: 7(€) = O(v/|A[)

MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

AND CORRELATIONS

TEMS

- D(T(p)llo) < D(pllo) =2

Rel. entropy: D(pl|o) := tr[p(logp — logo)]

caré Inequal
Var, (Ty(p)) < Vary (p) e 220t

Variance: Var,(p) := tr[(0"/%0)?] — tr[po]?

Decay of correlation

tr[e=PH] commuting
Hamiltonian

Mixing time of {7} },>0

(e) = min{t >0 s T(e) — ol < 5}
peStiia

Covy(A: B) =

L(A:

B) = Doaslloa ® o5)

sup  |tr[(04p — 04 ® 05)04 ® O5|
loallll0sl<1

S
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DECAY OF CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.




) MODIFIED LOGAR

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
ORRELATIONS

Y OF CORRELATIONS ON GIBBS STAT

Describe the correlation properties of Gibbs states of local Hamiltonians.

@ Hamiltonian: Hy = H4 + Hp + H(AUB)C + Hpa + Hyp,
@ Gibbs state: o5 (3) = e #HA / Tr[e=PHA] .

JJJJJJJJJ)JJJJJAJ
PEES RS IS D I I D - D RS DS IS I e
CRESEES IS D I I B S B N F DS R R ) RS )
SRS S S e I S S A s ) | 9
"I IS S I I e QG IV 9 9 I 9
QI D J9 99 9999V IVVY
JJ.)A.)JJJJJJJJJJJJ
SRS ¢ % ¢ ESRESEES S S S I I B S e )

Hamil



M a AND MODIFIED LOGARITI

NCTIONAL INEQUALITIES AND CORRELATIONS
DECAY OF CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.

@ Hamiltonian: Hy = H4 + Hp + H(AUB)C + Hpa + Hyp,
@ Gibbs state: o5 (3) = e #HA / Tr[e=PHA] .

9000000000000 00 I
JJJJJJJJJ.).)JJJJAJ

S e R R S I ) Questions:

F NSRS RS RS B D I I I Rl B D R R N S ) ——

SIS IS DN D I I D IS s R B D] 9

5000000000 ,,B, 35 & For non-commuting Hamiltonians:

IS RS I D I I - DIV 9 9 99 9

JJJJJJJ[: Fo 00000 e BHAUB xx ¢~ PHA ¢—FHEB 7
900002 #T 0000000090

QI Y 9 99 IVIIIIV9

JJ.)A.)JJJJJJJJJJJJ

o ofllo 0000000000 trAc[UA](X)tch[aA]::(g—A)A(@(o—A)Bz
90 0V000V0V00V200009 0

trcausyeloa] := (0a) 4up ?

£ := dist(A, B)




) MODIFIED LOGARITHMIC SOBOLEV

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
RRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

Covg(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
Ioal=l0Bll=1

miltonian



) MODIFIED LOGARITHMIC SOB(
CORRELATIONS

NCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Covg(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
Ioal=l0Bll=1

A\,

MUTUAL INFORMATION

I;(A: B):=D(ocaBl|lca ® oB)
for D(pl|o) = Tr[p(logp — logo)]

.

N

iltonians



M G TIME AND MODIFIED LOGARITH
DECAY OF CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Covg(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
Ioal=l0Bll=1

v,
MUTUAL INFORMATION

I;(A: B):=D(ocaBl|lca ® oB)
for D(pl|o) = Tr[p(logp — logo)]

v
MIXING CONDITION

Ih(@4B)loo = [[03"? ® 05 2045052 ® 05 /?

.

Relation:

1
> Covy(A: B)2 <I,(A:B)

< H021/2®a§1/2m30 1/2 ®oy 1/2 _ﬂABHOO
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) MODIFIED LOGAR
CORRELATIONS

NCTIONAL

QUANTUM SPIN SY

Thermalization MLSI Decay of correlations

- D(Ti(p)ll0) < D(pllo) >

Rel. entropy: D(p|| r[p(logp — loga)]
Rapid mixing
sup |[Ty(p) ~ ol < poly(JA)e™" Cubitt et al."13
PES(HA)

Mixing time: 7(:

. Var,(Ty(p)) < Var,(p) e 220t
Variance: Var, (p) : Lr[(ﬂllza)2] — trfpo]?

“Slower” mixing

sup ||Ty(p) — o] Covariance
PES(HA)

. Covy(A: B) < Ke74(45)

Mixing time of {T}}¢>0 Notions: 7,(A: B) := D(gaplloa ® o) o G s
- = f a local,
Covo(A: B) = tz[(oAB — 04 ® 05)0A ® O] of alocal

i . _ , &
o= mm{t o I7i(e) = olh < } [0l I0slI<1

Gap impli



) MODIFIED LOGAR
CORRELATIONS

QUANTUM SPIN SY

S MLSI Decay of correlations
Thermalization . D) < Do) e
Rel. entropy: D(p||o) := tr[p(logp — logo)]
Rapid mixing
sup [ Ti(p) — ofls < poly(|A])e~ ™
PES(HA)
Mixing time: 7(€) = O(polylog(|A])) *
Cetal'13

Mutual information

Poincaré Inequal

“Slower” mixing - Var, (T3(p)) < Varg (p) e~ "
sup [|Ti(p) — ol < exp(v/[Al)e™?* Variance: Var,(p) := tr[(p"/20)?] — tr[po]?
€S(HA)

Mixing time: 7(¢) = O(V/|Al)

Mixing time of {7} };>0 Notions: 1,(A : B) i= D(ca5llo4 ® 05) pn Gbbsstate
- of a local,

[tr((oaB — 04 ® 08)0A ® O

7(5)=min{t>(]: s yHTg(p)faH\Ss} Covy(A: B) = ot
pes(ia 0l




) MODIFIED LOGAR
CORRELATIONS

QUANTUM SPIN SY

el Decay of correla S

- D(Ty(p)llo) < D(plo) e=>**

Thermalization

This project
Rel. entropy: D(p||o) := tr[p(logp — logo)]
Rapid mixing Mixing condition
sup |Ti(p) — ollx < poly(|Al)e™ loapoy! ® o5 — 1] < K ¢~ 74AB)
PES(HA) -

Mixing time: 7(g) = O(polylog(|A[))
Cetal’13
Mutual information
. I,(A:B) < Ke 1448
“Slower” mixing . Var, (Ti(p)) < Var,(p) e=2e0)t *

sup || Tu(p) — ollx < exp(v/[A])e % Variance: Var,(p) := tr[(p"/20)?] — tr[po]?
)

p
PES(Ha,

Mixing time: =O0(VIA])

Covariance

. Covo(A: B) < Ke

Mixing time of {7} };>0 Notions: I,(A: B) := D(caglloa ® o)

7(5):min{t>0: sup nn(/.)ﬂ,u,gg} Cov,(A: B):
PES(HA)

_sm  Gibbs state|
d of alocal
rfo—PH] o

[trl(cas — 04 ®95)04 ® O]

= sup
04l12:105 l2<1




) MODIFIED LOGARITHMIC SOBC(

MIXING NCTIONAL INEQUALITIES AND CORRELATIONS
CORRELATIONS

SETTING AND QUESTIONS

Given:
e~ PHA

e Hj local (commuting) Hamiltonian +—  op := Sle=PHA] Gibbs state .

@ L4 local Lindbladian with unique stationary state oa (La(oa) = 0).

gela Capel (E < i ) i i id ixi f nm. amiltonians



TIME AND MODIFIED LOGAR

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
OF CORRELATIONS

SETTING AND QUESTIONS

Given:

o Hj local (commuting) Hamiltonian +— o = % Gibbs state .

@ L4 local Lindbladian with unique stationary state oa (La(oa) = 0).

Questions:
e Does L have a positive, constant (or poly log) MLSI?

e How do correlations decay in oa between spatially separated regions?

Angela Capel (Eberhard K U ) Gap impli omm. Hamiltoniar
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NCTIONAL INEQUALITIES AND CORRELATIONS

.o —tr[La(pa)(log pa —logon)]
LA) = f
olln) = Tof, 2D(palon)

Gap impli



TIME AND MODIFIED LOGAR

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
OF CORRELATIONS

OBJECTIVE

.o —tr[La(pa)(log pa —logon)]
LA) = f
olln) = Tof, 2D(palon)

‘What do we want to prove?

lim inf a(LA) > Y(JA]) >0 (or = 0 very “slowly”, like Q (

-1
A zd poly log(|A]) ))

Angela Capel (Eberh U ) Gap impli omm. Hamiltoniar



TIME AND MODIFIED LOGAR

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
OF CORRELATIONS

OBJECTIVE

.o —tr[La(pa)(log pa —logon)]
LA) = f
olln) = Tof, 2D(palon)

‘What do we want to prove?

lim inf a(LA) > Y(JA]) >0 (or = 0 very “slowly”, like Q (

-1
A zd poly log(|A]) ))

A

Can we prove something like
a(Lna) > V(|A]) a(La)>07

Angela Capel (Eberh U ) Gap impli omm. Hamiltoniar



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
DECAY OF CORRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) = f
)= o 2D(pallon)

‘What do we want to prove?

lim inf a(Lr) > Y(|A]) >0 (or = 0 very “slowly”, like Q (

1 ))
AT poly log(|A[)

A
Can we prove something like
a(Lna) > V(|A]) a(La)>07

No, but we can prove

a(La) > (|A|) an(La)>0.

Angela Capel (Eberhard Ka i Gap implies rapid mixing for comm. Hamiltonians




AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
)F CORRELATIONS

CONDITIONAL MLSI CONSTANT

The MLSI constant of Lo = > L is defined by
kEA

.o —tr[La(pa)(log pa —logon)]
L) = f
et = 2D(pallon)
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TIME AND MODIFIED LOGARITHMIC SOBOLEV IN

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
OF CORRELATIONS

CONDITIONAL MLSI CONSTANT

The MLSI constant of Lo = > L is defined by
kEA

.« —tr[La(pa)(log pa —logon)]
Lp) = f
et = 2D(pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £4 on A C A is defined by

—tr[La(pa)(log pa —logon)]
PAESA 2D a(palloa)

Gap implies rapid mixing for comm. Hamiltonians



MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS

STRATEG

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

Quasi-factorization
of the
relative Definition
entropy conditional
Log-Sobolev
constant

Geometric
recursive
argument

Positive conditional
log-Sobolev cons

on the Gibbs state




MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV QUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS .
DECAY OF CORRELATIONS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

BC
A B C
%/—/

AB

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pa,on € S(Hapc), where £(capc) depends only on oapc and measures how far
oac is from o4 ® oc.

Angela Capel (Eberh < i i ap impli id comm. Hamiltonians



AND MODIFIED LOGARITHMIC SOB(

MIXING FUNCTIONAL INEQUALITIES AND CORRELATIONS
CORRELATIONS

How DOES THE STRATEGY WORK?

We want to prove:

(e = jaf =HEAGIBE iosen) ‘a(ﬁA) > U(|A]) an(La) > O‘ anlln) = g =SHEaGRlonpn —logon)]
After choosing and , we prove the following:
D(palloa) = Da(palloa) ¥(lA]) >0 an(La) >0

gela Capel (E < i ) ap i i i ixi f amiltonians



ODUCT FI
I FOR DAVIF

ExampLEs OF MLSI . DAVIES GEN

ExXAMPLE: TENSOR PRODUCT FIXED POINT
Lalpa) = Z (02 ® pze — pa)  heat-bath

(C.-Lucia-Pérez Garcia ’18)

(Beigi-Datta-Rouzé '18) S
Da(palloa) == D(palloa) — D(pze||owe)
or= Q oq, @
zEA
D(palloa) <
-
@ <> Dau(pallon)
TEA
i gl < N T tr[ﬁz(pAQ) (log ﬁpA —logaa)]
zEA OCA( 1)
1
S — tr[C.(pa)(log pa — 1
< T an () > —tr[La(pa)(log pa — logaa)]
TEA TzEA
®. .
€ - A 1 = 1
2inf OCA(EI) ( tr[ﬁA(pA)( Og PA OgUA)])

TEA

< (= tr[La(pa)(log pa —logan)]) .

Gap implies rapid mixing for comm. Hamiltonians

Angela Capel (Eberhard Ka



ENSOR PRODUCT FI POINT
LSI FOR DAVIES ¢ ATOF
ExampLEs OF MLSI AL DAVIES GE

DyNAMICS

—BH
Let op = tffﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
rfe

ngela Capel (E



ExampLEs OF MLSI

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucari 2okl — o)
xEA

gela Capel (E < i i ) i i i ixi f n miltonian



ExampLEs OF MLSI

DyNAMICS

—BH
Let oa = trTc*ﬂffA}

be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucari 2okl — o)
xEA

DAVIES GENERATOR

The Davies generator is given by:
L07(X) = ilHa, X] + Y L2 (X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

Angela Capel (Et



ExampLEs OF MLSI

DyNAMICS

—BH
Let op = % be the Gibbs state of finite-range, commuting Hamiltonian.
trfe ™/

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucari 2okl — o)
xEA

DAVIES GENERATOR

The Davies generator is given by:
L07(X) = ilHa, X] + Y L2 (X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

e =3 (B0 -X),

TEA

where the conditional expectations do not depend on system-bath couplings.

Angela Capel (Eberh Uni ) ap i i api o omm. Hamiltonian



ExampLEs OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

miltonian



R PRODUCT
LSI FOR DAVIES ¢

XAMPLES OF MLSI 21 AL Da

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

Using the spectral gap A(La):

e~ oally < v/Tomin e AEDL,

gela Capel (E < i ) i i id ixi f amiltonians



ExampLEs OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

Using the spectral gap A(La):

ot — oally < v/Iomm e AED®,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let C/}\I’D be the heat-bath or Davies generator in 1D. Then, L'f’D has a positive
spectral gap that is independent of the system size, for every temperature.

Angela Capel (Eberhard Uni Tiibingen) Gap implies rapid mixing for comm. Hamiltonians



PRODUCT FIXED POINT

ExampLEs OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

Using the spectral gap A(La):

ot = aally < v/Tomm e >ERE,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let £f’D be the heat-bath or Davies generator in 1D. Then, L'f’D has a positive
spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,
Beigi-Datta-Rouzé '18)

Let £ be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.

Angela Capel (Eberhard Ka i bingen) Gap implies rapid mix or comm. Hamiltonians



TENSOR PRODUCT FIXED POINT

Results of Quasi-Factorization Results of Modified Logarithmic

or Approximate Tensorization Sobolev Inequality

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC A

D(palloa) < c[Dap(palloa) + Dec(palloa)]l +d A ©

Classical quasi-factorization Effr:gzz Strong subadditivity

Ent(f) < cpu[Ent(f|F1) + Ent(f|F2)] S(pasc) +S(ps) < S(pas) + S(psc)

LR73

NNy N
BS-entropy MCNMNN,

D(p|lo) = Tr[plog General superadditivity By, 0By, = B!
B(A) < c[Dap(d)+ D Dy < Dy + D2

"~ CLP18'

) == D(palloa) = D(paclloac) D = D(p| EM(p))

BCR20,
L20
Pinching onto
P different bases
L(X) = Ey(X)
CRS20 +Ep(X) - 2X

ssumptions,

CRS20

BDR20 Local commuting Hamiltonian, high T, Schmidt:

- Classical

\LGsnsralized depolarizing 1D Heat-bath generator,

=
A(pA) = 04 @ pae — pa 2 assumptions - Nearest neighbour




EN PRODUCT FI
LSI FOR DAVIE
2-LOCAL DA

POINT

ExampLEs OF MLSI

QUASI—FACTORIZATION OF THE REL

Da(palloa) == D(palloa) = D(paclloac)

- |
v Y

tum quasi-factorization

D5 (pallon) = D(pall Ex(pa)) Y

Pinching onto
[Das(A) + Dpc(A)] .

- ; ‘ » different bases
: Y L(X) = Ey(X)
A i 7 ¢
< ]

+E5(X) —2X

<!

I
Generalized depolarizing
L3 (pa) = 0z ® pae — pa

Local commuting Hamiltonian, high T, Schmidt:
- Classical
1D Heat-bath generator, D

2 assumptions

- Nearest neighbour

1D Davies generator,
every temperature <

Davies generator

Ds<kay, D;
i€EA




ExampLEs OF MLSI

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

Angela Capel (Eberhard F Uni iibi ) Gap implies rapid mixing for comm. Hamiltonians



ExampLEs OF MLSI

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.
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ExampLEs OF MLSI

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

sup ||pt — oall, < poly(|A)e™".
PAESA

Angela Capel (Eberhard i bingen) Gap implies rapid mixing for comm. Hamiltonians
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ExampLEs OF MLSI 2-1.0C

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

—o

sup ||pr — oall; < poly(JA])e
PAESA

For a(L£x) a MLSI constant:

ot — oall, < v/210g(1/min) e 540t

Angela Capel (Eberhard i bingen) Gap implies rapid mixing for comm. Hamiltonians
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is OF MLSI -LOCAL DAVIES GENERATORS

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let L% be a Davies generator with unique fixed point o given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

—o

sup |[lpt —oall; < poly(|A])e
PAESA

For a(L£x) a MLSI constant:

ot — oall, < v/210g(1/min) e 540t

RAPID MIXING

In the setting above, £ has rapid mixing.

Angela Capel (Eberhard Ka i t Tiibingen) Gap implies rapid mix or comm. Hamiltonians



ODUCT FIXED

ExampLEs OF MLSI

MAIN RESULT

Dynamical properties Static properties
(of the QMS) (on the Gibbs state)

MLSI [KACR23] Mixing condition
[KT16]

loapog ® o5t — 1| < K e~ 144B) [BCPH22b]

D(Tu(p)llo) < D(pllo) e~

Rapid mixing

sup [[75(p) = olls < poly(JAl)e="" [KACR23] Decay of mutual information
pED(Ha) -

I,(A: B) < Ke 74AB)

[CLMPG15]
Mixing time: tmix(€) = O(polylog(|A[))
Pinsker’s and Holder’s
Poincaré Inequality Decay of covariance R
Vark¥S (7 (o)) < VarkMS(p) = O R A




MLSI Fc
ExampLEs OF MLSI 2-LOCAL Davr

MLSI FOR 2-COLORABLE GRAPHS

MLSI FOR 2-COLORABLE GRAPHS, (Alhambra

Let A be a 2-colorable graph and £X be a Davies generator with unique fixed point
o given by the Gibbs state of a commuting, finite-range, 2-local Hamiltonian. If:

i) The Lindbladian is gapped.
ii) The Gibbs state satisfies exponential decay of covariance.
Then, £X satisfies a MLSI with constant
1) a(LR) = Q(1)|A|»o0, Wwhen A is a sub-exponential graph (e.g. hypercubic
lattice), or
2) a(£R) = 2 (], ..
sufficiently small (e.g. b-ary trees).

, if the correlation length of the fixed point is

Angela Capel (Eberhard Univ en) Gap implies rapid mixing for comm. Hamiltonians



MLST Fc
ExampLEs OF MLSI 2-LOCAL DAVIES G

MLSI FOR 2-COLORABLE GRAPHS

MLSI FOR 2-COLORABLE GRAPHS, (Alhambra

Let A be a 2-colorable graph and £X be a Davies generator with unique fixed point
o given by the Gibbs state of a commuting, finite-range, 2-local Hamiltonian. If:

i) The Lindbladian is gapped.
ii) The Gibbs state satisfies exponential decay of covariance.
Then, £ satisfies a MLSI with constant
1) a(L®) = Q(1)|A|»o0, Wwhen A is a sub-exponential graph (e.g. hypercubic
lattice), or
2) a(£R) = 2 (], ..
sufficiently small (e.g. b-ary trees).

, if the correlation length of the fixed point is

RAPID MIXING
i) A =7 is 1-dimensional, Hx is k-local and 8 > 0 = £¥ has a constant MLSI.
ii) A = ZP is D-dimensional, H is 2-local and 8 < 8. = L£X has a constant MLSI.
iii) A =T, is an inf. b-ary tree, Hy is 2-local and 8 < 8. = £X has a log-size MLSI.

In all cases, £% satisfies rapid mixing.

Angela Capel (Eberhard Univ en) Gap implies rapid mixing for comm. Hamiltonians



MPLES OF MLSI

INGREDIENTS OF THE PROOF

[CRS23]

Holder’s inequality
CovtS(£,9) < 1 flz,0v l9lla,ore®)

Monotonicity of
L, ,r-norms

[KACR23] commuting case
[KACR23] non-commuting 1D

lIerselo*ZN (tralo? )™ ~ 1]l < €t)

[KACR23] commuting case

[BCPH22] non-commuting 1D CoveN(£,9) < [I£lllglITIe(t)

'Deca mutual information Pinsker’s and Halder’s

inequalities

7 Miing conation

lloeac(oa @ oc)™ = 1acllo < €(t)

[BCPH22) I(A:C) <))

For k-local, commuting Hamiltonians, exponential decay of covariance implies
mixing condition.

niltonian



LES OF MLSI

INGREDIENTS OF THE PROOF

Proof of MLSI for Davies generators

[CRS23]
+

D — dim. lattice,2 — local Hp, 3 < B

MLS! independent of |A|

[KACR23)

Decay of covariance

Covg™S(A: B) < K e 7445

gll1 = Leo clustering
B3 0 BE® — B Li(18,) ~ Leol 1D chain, k — local Hy, 8 >0

< |CU DJK e~4(C\P,D\C) MLS! independent of |A|

{ " [KACR23] :
i (klocal)

Mixing condition

loapos' ® 05! — 1| < K e~ 14AB)

b-ary tree,2 —local Hp,f < B«
MLSI log-dependent of |A|

The last part uses “divide and conquer” arguments for the relative entropy.

—+

Equivalence between dynamics:




TENSOR PRODUCT FIXED POINT
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ExampLEs OF MLSI LOCAL DAVIES GENERATO!

CONCLUSIONS

In this talk:
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ExampLEs OF MLSI

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

miltonian
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XAMPLES OF 2-LOCAL Davr

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

o We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

gela Capel (E < i ) i i id ixi f amiltonians



I FOR D
XAMPLES OF 2-LOCAL Davr

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

o We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

o We have shown that some results of quasi-factorization and decay of correlations
imply positivity of MLSI constants.

iltonians



MPLES OF MLSI

OPEN PROBLEMS AND LINES OF RESEA

Open problems:
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OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:

o Extend the chain of implications (in particular, decay of correlations = MLSI)
to k-local interactions.

iltonians
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ExampLEs OF MLSI 2-LOCAL Davr

OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:

o Extend the chain of implications (in particular, decay of correlations = MLSI)
to k-local interactions.

e Extension to specific models.

o 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

iltonians
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OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:

o Extend the chain of implications (in particular, decay of correlations = MLSI)
to k-local interactions.

e Extension to specific models.

o 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

e Extension to non-commuting Hamiltonians.

Angela Capel (Eberh U ) Gap impli omm. Hamiltoniar



Open problems:

o Extend the chain of implications (in particular, decay of correlations = MLSI)
to k-local interactions.

e Extension to specific models.

o 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

e Extension to non-commuting Hamiltonians.

e Improve results of quasi-factorization for the relative entropy: More systems?

Angela Capel (Eberhard Uni Tiibingen) Gap implies rapid mixing for comm. Hamiltonians




ExampLEs OF MLSI 2- Davr

OPEN PROBLEMS AND LINES OF RESEARCH
Open problems:

o Extend the chain of implications (in particular, decay of correlations = MLSI)
to k-local interactions.

Extension to specific models.

o 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

e Extension to non-commuting Hamiltonians.

e Improve results of quasi-factorization for the relative entropy: More systems?

New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Dgs(pllo) = tr [p log (pl/QO’lpm)} :

Angela Capel (Eb -d Uni bi ) Gap implies rapid mixing for comm. Hamiltonians



ExampLEs OF MLSI 2- Davr

OPEN PROBLEMS AND LINES OF RESEARCH
Open problems:

o Extend the chain of implications (in particular, decay of correlations = MLSI)
to k-local interactions.

Extension to specific models.

o 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

e Extension to non-commuting Hamiltonians.

e Improve results of quasi-factorization for the relative entropy: More systems?

New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Dgs(pllo) = tr [p log (pl/QO’lpm)} :

Thank you for your attention!

Angela Capel (Eb -d Uni bi ) Gap implies rapid mixing for comm. Hamiltonians
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