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Summary of the Work (maximum 250 words): With the purpose,
context of application, methodology, results and conclusions of the work.

The main purpose of this project is to give an introduction to post-quantum cryptography.
For that, we have decided to split the work into three well-differentiated parts.

In the first one, we provide a general introduction to quantum information theory and some
basic concepts that are necessary to understand quantum algorithms. Indeed, we present
concepts such as qubits and superposition, the notion of measurements and the postulates

of quantum mechanics in two different (and dual) settings, among other things.

In the second part, we present a summary of the main results that exist in quantum
cryptography. For that, we give before some preliminaries in both classical and quantum
circuits, and we also introduce some situations and interesting phenomenon that appear
in quantum mechanics. Afterwards, we present the first important quantum algorithms:

Deutsch-Jozsa’s and Simon’s algorithms. From them and using the quantum Fourier
transform, we are able to present the most important quantum algorithms so far:

Shor’s and Grover’s algorithms.

Finally, we conclude our work with a chapter concerning the emergence of post-quantum
cryptography. In the first part, we notice how the previous quantum algorithms can be
used to attack security systems, and, thus, how this motivates the appearance of new

secure schemes. In the last part of this chapter, we give a short introduction to
post-quantum cryptography, mentioning the different classes of systems that are under

study in this field and their current development.

Abstract (in English, 250 words or less):

In this project, we give an introduction to post-quantum cryptography, which refers
to cryptographic algorithms (usually public-key algorithms) that are thought to be secure

against an attack by a quantum computer.

This new field has appeared and evolved in the last few years due to two main reasons:
The first one, most popular public-key algorithms can be efficiently broken by a sufficiently

strong hypothetical quantum computer; and the second one, the hypothetical quantum
computer seems to be likely to appear in the next few years.

The main purpose of this work is to give a well-motivated and self-contained introduction
to post-quantum cryptography. To show the necessity of the development of this field,

we present some attacks based on some well-known quantum algorithms, which we
previously introduce in much detail, and to make the text self-contained, we introduce

all the basic concepts that are necessary to understand these quantum algorithms, and,
in general, some basic concepts and situations that appear in quantum information

theory and arise from quantum mechanics.
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Introduction

0.1 Context and justification of the Project

In this work, we give an introduction to the field of post-quantum cryptography. Through-
out the whole text, we intend to give a proper motivation to this field, as well as a brief
introduction to all the concepts that are necessary to understand the development of the
work.

In the chapter of Quantum Algorithms (Chapter 2), among many other things, we
present Shor’s algorithm (Section 2.6), which is one of the most important examples that
quantum computers would have a great impact on the security of many cryptographic
scheme. Indeed, this algorithm, used on a quantum computer, would allow to factor
numbers and compute discrete logarithms inside abelian groups in polynomial time. Since
many public key schemes nowadays are built upon the assumption that an enormous
number cannot be factorized efficiently, the existence of quantum computer would be an
important problem for the security of almost all our digital communications.

Post-quantum cryptography is a new line of research that has appeared due to this
situation, and its main objective is to develop new cryptographic schemes that would
resist attacks from quantum computers (and algorithms implemented on them). Due to
the appearance of the first prototypes of quantum computers of a small number of qubits
and the possibility of (hopefully) commercializing functional quantum computers in the
next decades, the NIST has announced a competition to promote fundamental research
on this new field by looking for an standard (or several) quantum-resistant public-key
cryptographic algorithms. Indeed, the development of these new cryptographic schemes
is a long-time process, and that is the reason to start the development of the field soon
enough, even though quantum computers are still far from becoming an actual threaten.

With this project, we aim to give an introduction to this field of post-quantum cryptog-
raphy, mentioning the main classes of systems under study in this field, after presenting
a couple of works where we can see how quantum cryptography could actually attack
public-key security. These works are based on some quantum algorithms that we will have
defined in previous chapters.

0.2 Objectives of the Project

The main objective of this work is to give a well-motivated and self-contained introduction
to post-quantum cryptography. For that, before presenting the field of post-quantum
cryptography itself, we need to introduce some quantum attacks to motivate its necessity,
as well as the main basic concepts to understand the background in quantum algorithms.

More specifically, the main objectives of the project are the following:

• Introduce some basic concepts of quantum information theory (such as qubits and
measurements), and quantum mechanics (such as its postulates).

11
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• Give a brief introduction to classical and quantum circuits.

• Show the evolution of quantum algorithms in the last years, presenting the evolution
from the first algorithms of Deutsch-Jozsa and Simon, to the well-known algorithms
of Shor and Grover, respectively.

• Use these last algorithms to construct quantum attacks and, hence, motivate the
necessity of post-quantum cryptography.

• Give a brief introduction to post-quantum cryptography, mentioning the most im-
portant classes of systems that are under study in this field.

0.3 Approach and method followed

In this project, we have used a direct strategy: We have started from the most basic
concepts of quantum information theory, and quantum mechanics, studying them and
some of their properties, to move afterwards to the introduction and development of some
of the most well-known quantum algorithms, to state them, and quantum attacks built
upon them, as the motivation for the emergence of post-quantum cryptography.

We remark that the main difference between our project and some other texts in either
quantum or post-quantum cryptography is essentially the focus. In most of the texts in
post-quantum cryptography, the authors usually focus specifically on it, with the different
possible classes of systems that are currently under development to get quantum-computer-
attacks resistant systems and the future perspective of this field. However, we considered
that it was more interesting to actually develop the motivation for the emergence of this
field, instead of just mention the fact that quantum computers break RSA and some other
public key schemes.

Moreover, we wanted to present a self-contained text. Since the motivation for post-
quantum cryptography enforces us to introduce some quantum algorithms, the self-contained
aspect imposes the condition of including a whole chapter with some basic concepts on
quantum information theory and quantum mechanics. This method makes it possible to
read the whole manuscript, understanding most of the concepts therein, with no need of
a strong background on the field.

0.4 Work planning

As we have mentioned in the previous section, the approach followed has been a direct
one. Hence, the path followed to read the background material and write the manuscript
has been a straight line, which we have devided into pieces to split the amount of time
devoted to each part. This construction can be seen in Figure 1 below.

In this figure, we can see that most of the time has been spent on the parts of Quan-
tum Algorithms and Introduction to Post-Quantum Cryptography (as well as the part
of reading bibliography), as we could have expected. Indeed, these parts are the hardest
ones that appear on this work (and also the largest), and more time has been necessary
to understand properly the concepts and schemes associated to them.

The material that we have used in the ellaboration of this project is mainly formed
of several textbooks and papers on topics related to quantum algorithms, post-quantum
cryptography, or related topics. A complete list of these texts can be consulted at the end
of the project.
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Figure 1: Time spent on each task.

0.5 Brief summary of the products obtained

In this work, we have focused on a theoretical exposition of a certain topic of interest.
Hence, besides from the current memory of the work, no other product has been obtained.

0.6 Brief description of the other chapters of the memory

The main purpose of this project is to give an introduction to post-quantum cryptography,
motivated by some quantum attacks that are constructed using previous quantum algo-
rithms. For that, we have decided to split the work into three well-differentiated important
chapters.

In the first one, we give a general introduction to quantum information theory and pro-
vide some basic concepts of quantum mechanics that are necessary to understand quantum
algorithms. Indeed, we present concepts such as qubits and superposition, the notion of
measurements and density operators, as well as the postulates of quantum mechanics in
two different (and dual) settings, among other things.

In the second part, we present a summary of the main results that exist in quantum
cryptography. For that, we give before some preliminaries in both classical and quan-
tum circuits, and we also introduce some situations and interesting phenomenon that
appear in quantum mechanics, such as quantum teleportation and the no-cloning theo-
rem. Afterwards, we present the first important quantum algorithms: Deutsch-Jozsa’s and
Simon’s algorithms, as well as a slight modification of Deutsch-Jozsa’s algorithm known
as Bernstein-Vazirani’s algorithm. From them, and after introducing the quantum Fourier
transform, we are able to present the most important quantum algorithms so far: Shor’s
and Grover’s algorithms.

The third chapter concerns the emergence of post-quantum cryptography. In the first
part, we remark how the previous quantum algorithms can be used to attack security
systems, and, thus, how this motivates the emergence of new secure schemes. In the
last part of this chapter, we give a short introduction to post-quantum cryptography,
mentioning the different classes of systems that are under study in this field and their
current development.

Finally, we conclude our work with some remarks and conclusions.
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Chapter 1

Preliminaries

In this chapter, we are going to provide a brief introduction to quantum mechanics and its
formalism, from a mathematical perspective. The concepts that we will introduce below
are essential for the postulates that we will present in the following sections.

Throughout the whole chapter, we will denote the n-dimensional complex Hilbert space
by Cn, and we will denote vectors of this space in the ket notation, i.e., |ϕ〉 ∈ Cn 1. Given
an element |ϕ〉 in the n-dimensional Hilbert space, its corresponding dual vector will
be denoted in the bra notation by 〈ϕ|, and the action of the bra 〈ϕ| on the ket |ϕ〉 is
expressed by the standard inner product 〈ϕ|ϕ〉, whereas the element |ϕ〉 〈ϕ| provides a
rank-one operator.

Moreover, in general, every rank-one operator can defined in |ϕ〉 〈ψ| : Cn → Cn as

|ϕ〉 〈ψ| (|ξ〉) = 〈ψ|ξ〉 |ϕ〉 for every |ξ〉 ∈ Cn.

All the concepts and results that will be introduced in this chapter can be found in
some basic texts of quantum information theory, such as the courses [4], [5] and [21], and
the books [6] and [3], although one of the most fundamental texts in this field is [2]. We
refer the reader to any of those texts for further knowledge on the topic.

1.1 Qubits and superposition

The simplest quantum mechanical system is the qubit. In fact the qubit plays the same
role in quantum information theory as the bit in classical information theory, which can be
0 or 1; it is the basic unit of information. Indeed, it is a superposition of 0 and 1. Formally,
it is the system whose associated vector space is a two dimensional Hilbert space.

We will use notation

{|0〉 , |1〉},

for the canonical basis of C2, where we are denoting

|0〉 ≡
(

1
0

)
|1〉 ≡

(
0
1

)
.

This basis is usually called computational basis. Then, while a classical bit can be in
the state 0 or in the state 1, an arbitrary state for a qubit is a vector

1When it is not necessary to express explicitly the dimension of a finite-dimensional Hilbert space, we
will just denote it by H.

15
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|ϕ〉 = a |0〉+ b |1〉, with a, b ∈ C and |a|2 + |b|2 = 1.

When a 6= 0 6= b, we say that the state is in superposition of the situations |0〉 and |1〉.
Notice that this fact leads to the essential difference between the possible states of a bit,
which are just two, 0 or 1, and the possible states of a qubit, which, in principle, are infinite.
This new situation allows us to perform new protocols for quantum information processing.
Indeed, this principle constitutes the basis of the theoretical quantum computer, as we will
see in the following chapter (Chapter 2) in much more detail. Here let us just briefly
mention the main idea behind quantum computing in a nutshell:

• If we consider one bit, we can perform 1 operation at a time, whereas we can per-
form 2 operations simultaneously with one qubit. This is due to the superposition
phenomenon mentioned above, since now an arbitrary state is of the form

|ϕ〉 = a |0〉+ b |1〉, with a, b ∈ C and |a|2 + |b|2 = 1,

where one can see two basic bits (thus, operations) being performed at the same
time.

• If we now have two bits, we can perform 2 operations at a time, while, if we consider
two qubits, 4 operations can be performed at the same time (we will see that when
we consider a superposition of the four elements of the Bell basis).

• In general, with n qubits, one can perform n operations simultaneously (one per
each bit), whereas with n qubits one can perform 2n operations at the same time.

Hence, theoretically, a quantum computer can give an exponential improvement to the
amount of operations performed in parallel compared to a classical computer.

Let us go back now to the definition and basic properties of qubits. It is important
to remark that, even though a given qubit can be in any superposition state a |0〉+ b |1〉,
if we measure the state of such a qubit, we will obtain either the value |0〉 or |1〉 for the
state of the qubit (these states can be seen as classical states), with certain probabilities.
Hence, we cannot “see” the superposition phenomenon, although we are able to use it, as
we will see later and this chapter and with greater applications in the following one.

Apart from the states |0〉 and |1〉, the following two states will be of use in the following
sections:

|+〉 =
1√
2

(|0〉+ |1〉) , |−〉 =
1√
2

(|0〉 − |1〉).

A single qubit lives in C2. However, one can consider systems of more qubit to have
richer spaces. For example, if we consider 2 qubits, the 2-qubit system that we get has
four elements in a possible basis:

{|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉},

where, in each case, the qubit in the left part denotes the first qubit (and associated to
the first system), and the right one denotes the second qubit. If one considers |0〉⊗ |1〉, for
instance, this element can be also expressed by |0〉 |1〉 or |01〉, and the structure of tensor
product implies that in C4 can be written as:
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0
1
0
0

.

More generally, as mentioned previously, if one considers a system of n qubits, a basis of
such system has 2n elements (it is equivalent to saying that, with n qubits, one can perform
2n operations simultaneously). In particular, one can always consider for such elements of
the basis the elements |a1〉⊗|a2〉⊗. . .⊗|an〉, with ai ∈ {0, 1} for all i = 1, . . . , n. Since there
are 2n elements in this basis, we can change this previous notation to |0〉 , |1〉 , . . .

∣∣2n−1
〉
,

to simplify it.
Therefore, a quantum state on n qubits, because of superposition, is given by

α0 |0〉+ α1 |1〉+ . . .+ α2n−1 |2n − 1〉 ,
2n−1∑
i=0

|αi|2 = 1.

Moreover, as in the case of a single qubit, if one measures this in the computational
basis, one just gets a “classical” n-bit state, |i〉, with probability |αi|2.

In a more general setting, consider a physical system that can be in N different,
mutually exclusive classical states (in the case of the qubit, N = 2, and for n qubits,
N = 2n). A pure quantum state |ϕ〉 is a superposition of classical states in the following
form:

|ϕ〉 = α1 |1〉+ α2 |2〉+ . . .+ αN |N〉.

The elements αi in the previous expression are complex numbers that are called am-
plitudes, and, in this expression, it is easy to read the superposition phenomenon as the
possibility of a quantum system to be in N classical states states at the same time (or
perform N operations simultaneously, as mentioned above).

1.2 Measurements

In general, there are a couple of things that one can do with a quantum state: Measure
it, or let it evolve unitarily without measuring it. In this subsection, we explain the first
one.

Formally, we can define a measurement in the following form:

Definition 1. Let {Mn}n ⊂ B(H)a be a collection of operators verifying∑
n

M∗nMn = 1,

where 1 denotes the identity operator (we drop the subindex with the dimension when
there is no possible confusion) and M∗n denotes the dual of the operator Mn. This
collection of operators is called quantum measurements when the following holds:
Given a state of a quantum system |ϕ〉 before performing this operation to measure it,
the probability that result |n〉 occurs is given by

p(n) = 〈ϕ|M∗nMn|ϕ〉

and the state of the system after this operation is given by
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Mn |ϕ〉√
p(n)

.

aLet H be a Hilbert space (in general, we will just consider finite-dimensional spaces) and let T :
H → H be a linear operator on it. Since H is a Hilbert space, in particular it is a normed space with
an associated norm ‖·‖H, which comes from a scalar product 〈·, ·〉.

We say that T is a bounded operator if

‖T‖H→H <∞,

where

‖T‖H→H := sup
x∈H

‖T (x)‖H
‖x‖H

,

and denote by B(H) the space of bounded linear operators on H.
Finally, if T : H → H, we can define its dual operator, and denote it by T ∗, as the operator that

satisfies

〈y, T (x)〉 = 〈T ∗(y), x〉 for every x, y ∈ H.

Consider again the state

|ϕ〉 = α1 |1〉+ α2 |2〉+ . . .+ αN |N〉.

and assume that we measure it. As we have already mentioned, we will obtain the classical
state |i〉, with probability |αi|2, thus we cannot “see” the superposition itself. Among
some other things, this means that the probability to get specifically the state |i〉 when
we measure, and not another one, is |αi|2. Hence, since the quantum state induces a
probability distribution on the classical states, this implies

N∑
i=1

|αi|2 = 1.

Notice that when we measure |ϕ〉 and get a classical state, |ϕ〉 dissapears, and all that
is left is the classical state itself. We say then that |ϕ〉 has collapsed to the classical state
that we got, and the information encoded in the amplitudes αi is now gone.

In general, we will measure in the computational basis. However, there are several
ways to perform these measurements, that we will present throughout this section. Let us
begin with the easiest one, the measurement of a qubit in its computational basis. It is
defined by the measurement operators:

M0 = |0〉 〈0| and M1 = |1〉 〈1|.

Notice that both operators are selfadjoint, i.e., they coincide with their dual operators
(actually, they are projections), and they verify M∗iMi = M2

i = Mi, for i = 1, 2, where
M∗i denotes the dual of the operator Mi, and M0 +M1 = 1. Also, when we measure

|ϕ〉 = α0 |0〉+ α1 |1〉,

the probability to obtain the outcome |i〉 is |αi|2, and the state after measurement in that
case is αi

|αi| |i〉. Actually, we can see that this state is equivalent to |i〉 (since it is just a

rotation of the latter).
Indeed, consider |ϕ〉 and eiθ |ϕ〉 (which is a more general expression for the element

mentioned above) and assume that we measure both states with a measurement {Mn}n.
Then, the probability of getting outcome n for the second element is
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ϕe−iθ|M∗nMn|eiθϕ

〉
= 〈ϕ|M∗nMn|ϕ〉,

the same that for the first element. Hence, both states are operationally identical.

1.2.1 Distinguishability

One typical problem in quantum information is to distinguish between two (or more)
quantum states. Namely, among several possible states, we have a particle in one of them
and we want to find out in which one the particle actually is. We study this problem now
in the simplest case: to distinguish between two possible states.

First, let us assume that the states that we want to distinguish, |ϕ1〉 and |ϕ2〉 are
orthogonal. Then, if we choose the measurement operators Mi = |ϕi〉 〈ϕi| for i = 1, 2 and
define M0 = 1−

∑
iMi, it is easy to see that

M0 +M1 +M2 = 1.

Therefore, given i ∈ {1, 2}, if |ϕ〉 is prepared in the state |ϕi〉, we have

p(i) = 〈ϕ|Mi|ϕ〉 = 1, and p(j) = 0 for j 6= i,

thus both states can be unambiguously distinguished.
Now, suppose that we want to distinguish two non-orthogonal states |ϕ1〉 and |ϕ2〉.

We will see that there is no way to do that.

Proposition 1. Let |ϕ1〉 and |ϕ2〉 be two non-orthogonal states. Then, we cannot distin-
guish between them.

Proof. By reduction to the absurd, let as assume that there is a measurement {Mn}n∈I
capable of doing that, i.e., distinguishing both states. Then, we can consider a partition
of the set I (I1, I2 ⊂ I such that I1 6= ∅ 6= I2, I1 ∪ I2 = I and I1 ∩ I2 = ∅) and this allows
us to decide that if the result of the measurement is |m〉, with the index m ∈ Ii, then the
state is |ϕi〉.

Consider, for i = 1, 2, the operations Ei =
∑
j∈Ii

M∗jMj , which satisfy by construction

1 = E1 + E2. It is clear that we have

〈ϕi|Ei|ϕi〉 = 1 for i = 1, 2,

and

〈ϕ1|E2|ϕ1〉 = 〈ϕ2|E1|ϕ2〉 = 0.

Consider the first term in the previous equality. Since E2 is positive, one can write:

0 = 〈ϕ1|E2|ϕ1〉 =
〈
ϕ1|
√

E2

√
E2|ϕ1

〉
,

so we get
√
E2 |ϕ1〉 = 0. By assumption, |ϕ1〉 and |ϕ2〉 are not orthogonal, thus there exist

α1 6= 0 6= α2 and another state |φ〉, orthogonal to |ϕ1〉, so that

|ϕ2〉 = α1 |ϕ1〉+ α2 |φ〉.

Applying
√
E2 to this expression, we get:√

E2 |ϕ2〉 = α1

√
E2 |ϕ1〉+ α2

√
E2 |φ〉 = α2

√
E2 |φ〉.

However, this is a contradiction, since this implies |α2| = 1 and, by assumption, we
have |α2| < 1 (since α1 6= 0).
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1.2.2 Projective Measurements

In this subsubsection, we are going to introduce projective measurements, which play an
special role in Postulate III of quantum mechanics (as we will see in the following section).
They can be defined in the following form.

Definition 2. Consider a collection {Mn}n ⊂ B(H) of measurements, as described in
Definition 1. Assume that they have the additional property that the Mn are orthogonal
projections, i.e., they are self-adjoint and verify

MnMm = δmnMn,

where δmn = 1 iff m = n and 0 otherwise. These measurements are called projective
measurements.

It is clear that each one of these operators Mn projects on a subspace Hn ⊂ H of the
global Hilbert space. Hence, an observable M can be defined as the Hermitian operator

M =
∑
n

λnMn,

where the term in the right hand-side is, in fact, the spectral decomposition of M . More-
over, the possible outcomes of the measurement correspond to the eigenvalues λn of the
observable, and when we measure the state |ϕ〉, the probability of getting state |n〉 is:

p(n) = 〈ϕ|Mn|ϕ〉.

With this notation, the average value of the measurement, with respect to the state
|ϕ〉, is ∑

n

np(n) =
∑
n

n 〈ϕ|Mn|ϕ〉 = 〈ϕ|M |ϕ〉.

1.2.3 POVM Measurements

In many situations, we will not be as interested in the post measurement state of our
particle itself as in the probabilities of the different possible measurement outcomes. In
this case, we can reduce to the formalism of the so called Positive Operator Valued Mea-
surements (POVM’s).

Definition 3. Consider a measurement {Mn}n ∈ B(H) as in the Definition 1. Then,
we can define the positivea operators

En = M∗nMn.

This family of operators {En}n is called a POVM.

aAn operator T ∈ B(H) is said to be positive (shortened form of positive semidefinite) if

〈x, T (x)〉 ≥ 0 ∀x ∈ H.

The operators mentioned in the definition of POVM are clearly positive, since
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〈x,En(x)〉 = 〈Mn(x),Mn(x)〉 = ‖Mn(x)‖ ≥ 0 ∀x ∈ H.

The operators presented in the definition of POVM clearly satisfy∑
n

En = 1

and their probability of obtaining outcome m is

p(m) = 〈ϕ|Em|ϕ〉.

Conversely, if we have a collection of positive operators {En}n verifying
∑

nEn = 1,
we can define a measurement {Mn}n from them just by considering Mn =

√
En.

1.3 Unitary evolution

Recall that we mentioned at the beginning of the previous subsection that there are a
couple of things that one can do with a quantum state: Measure it, or let it evolve
unitarily without measuring it. Now we are going to focus on the second one.

Consider the state

|ϕ〉 = α1 |1〉+ α2 |2〉+ . . .+ αN |N〉.

Then, we want to change it to another state of the form:

|ψ〉 = β1 |1〉+ β2 |2〉+ . . .+ βN |N〉.

Quantum mechanics only allows linear operations to be applied to quantum states.
This means that, after a change of notation (identifying |ϕ〉 with an n-dimensional vector),
applying an operation that changes |ϕ〉 to |ψ〉 corresponds just to a multiplication by an
N ×N complex-valued matrix. With the previous expressions for |ϕ〉 and |ψ〉, one has

U

 α1
...
αN

 =

 β1
...
βN

.

Since |ψ〉 should be a state, its coeficients should give a probability distribution, so the
following has to hold:

N∑
i=1

|βi|2 = 1.

This implies that U has to preserve the norm of vectors and, thus, be a unitary
transformation. Since it is unitary, then, in particular, U−1 = U∗, and this inverse always
exists, what can be translated in the quantum setting to the fact that every non-measuring
operation on a quantum state must be reversible (in contrast with measurements, which
were clearly non-reversible).

In the particular case of qubits, there are distinguished unitaries called the Pauli matri-
ces, which are denoted by σ0, σx, σy, σz, or just 1, X, Y, Z, respectively. They are defined
by:
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σ0 = 1 =

(
1 0
0 1

)
; σx = X =

(
0 1
1 0

)
;

σy = Y =

(
0 −i
i 0

)
; σz = Z =

(
1 0
0 −1

)
.

From a quantum computational point of view we can think of unitary matrices as
quantum logical gates. We will deepen in this connection in the first section of the following
chapter.

1.4 Density operators

In this subsection, we introduce the density operators formalism that will be necessary
to present the Postulates of the Quantum Mechanics in the Schrödinger picture. Before
moving to the definition of density operators themselves, let us start by recalling some
basic concepts.

For every operator T : H → H, represented in a certain basis by a matrix M , one
can define the trace of M , tr[M ], as the sum of the elements of the diagonal of M . We
don’t emphasize the choice of basis to represent T on, since the trace is invariant under
change of basis. Indeed, it is easy to see that the trace is linear and cyclic, i.e., for A and
B matrices,

tr(AB) = tr(BA).

From this last property, one also gets unitarily invariance: For every unitary operator
U ,

tr(UAU∗) = tr(U∗UA) = tr(A).

Finally, another useful and interesting property concerning the trace is the following.
Let |ϕ〉 ∈ H be a state (or unit vector), and consider the rank-one operator |ϕ〉 〈ϕ| : H →
H, which projects in the direction of |ϕ〉. Consider now an arbitrary operator T ∈ B(H)
and suppose that we want to compute tr(A |ϕ〉 〈ϕ|). To do that, before we express |ϕ〉 in
a basis {|i〉} of H where the first element is exactly |ϕ〉, i.e., |ϕ〉 = |1〉. Then, we get:

tr(A |ϕ〉 〈ϕ|) =
∑
i

〈i|A|ϕ〉 〈ϕ|i〉 = 〈ϕ|A|ϕ〉

Now, let us move to the formalism of density operators. In the previous subsections,
we have described the state of a physical system identifying it with a unit vector in the
Hilbert space H. However, there is an equivalent description with trace class operators on
the Hilbert space. One of the main advantages of this description with respect to certain
problems appears, for example, when dealing with real experimental systems where noise
is present.

A motivation for this formalism comes from the following situation: Sometimes, we
do not know whether our system is in a specific state |ϕ〉, but rather that it is in each
one of the states |ϕi〉 with probability pi, respectively. Hence, we would like to be able to
consider the element ∑

i

pi |ϕi〉,
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with the constants pi verifying

∑
i

pi = 1,

and work with it as a state. However, it is not a state anymore, since it is not a unit vector.
To avoid this difficulty, one can associate each state |ϕi〉 to the rank-one projector |ϕi〉 〈ϕi|.
Hence, the state in the previous scenario can be described, instead, in the following form

ρ =
∑
i

pi |ϕi〉 〈ϕi|,

where ρ is a Hermitian, positive semidefinite, and trace one operator. Indeed, it is clear
from its description that ρ is Hermitian and has trace one (because of the linearity of the
trace and the fact that tr(|ϕi〉 〈ϕi|) = 1). To see that it is positive semidefinite, notice
that for any |φ〉 ∈ H,

〈φ|ρ|φ〉 =
∑
i

pi 〈φ|ϕi〉 〈ϕi|φ〉 =
∑
i

pi|〈φ|ϕi〉|2 ≥ 0.

These operators are called density operators or density matrices and the set of such
elements is usually denoted by S(H).

1.5 Postulates of quantum mechanics

The postulates of quantum mechanics were derived after a long process of trial and error,
which involved a considerable amount of guessing and fumbling by the originators of the
theory. The motivation for them is not always clear; even to experts the basic postulates
of quantum mechanics appear surprising.

In this section, we mostly focus on the mathematical formulation for the postulates
of quantum mechanics in two different (and dual) settings, Heisenberg and Schrödinger
picture. These two descriptions will help us ot understand the topics presented in the
following chapter.

1.5.1 Heisenberg picture

The postulates in the Heisenberg picture can be enunciated as follows.

Postulate 1. Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector, which
is a unitary vector in the state space.

Quantum mechanics does provide, for a given physical system, the explicit form of the
state space of that system, nor does it provide the state vector of the system. Finding
these two elements for a specific system is a difficult problem, for which physicists have
developed many intricate and beautiful tools, and many new fields are devoted to that.
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In general, the state space H of the system under study will depend on the specific
physical system, but we know that it is a separable Hilbert space. Frequently, one restricts
to finite dimensional Hilbert spaces2.

Postulate 2. Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space. More specifically, if the state of the system at
time t1 is described by |ϕ1〉, and at time t2 > t1 by |ϕ2〉, then there exists a unitary
operator U ∈ B(H), which depends on both instants t1 and t2, such that

|ϕ2〉 = U1,2 |ϕ1〉.

From a more physical point of view, Postulate 2 can be rewritten as follows.

Postulate 2 bis. Given a closed quantum system (with no interaction with an en-
vironment), the time evolution of a state on such system is described by the Schrödinger
equation:

i~
d |ϕt〉
dt

= H |ϕt〉,

where ~ is the Planck’s constant and H is a Hermitian operator associated to the physical
closed system which is called Hamiltonian.

Let us consider the spectral decomposition of the Hamiltonian (since it is a Hermitian
operator):

H =
∑
Ei

Ei |Ei〉 〈Ei|,

where we denote by Ei the eigenvalues and by |Ei〉 the corresponding normalized eigenvec-
tors, to emphasize the fact that these eigenvalues represent some energies of the physical
system. Indeed, the states |Ei〉 are usually called energy eigenstates or stationary states,
with associated energy Ei.

The lowest energy is known as ground state energy, and its associated eigenstate is
known as the ground state, a fundamental element in the theory of quantum systems.
Moreover, when the difference between the two smallest eigenvalues is strictly positive,
this difference is called spectral gap, and we say in that case that the system is gapped.
Determining whether a physical system has or not a spectral gap is a really important
problem in Quantum Physics.

The states |Ei〉 mentioned above are called stationary because their only change in
time is of the form

|Ei〉 7→ exp(−iEit/~) |Ei〉.

Let us see now the connection between the two formulations for this postulate. If we
consider the Schrödinger equation, we can see:

2Since every separable Hilbert space has the approximation property, every compact operator in such
space can be approximated by finite-rank ones. Hence, if one considers a density matrix, for instance, in
the infinite dimensional separable Hilbert space, it is a compact operator, so theoretically one will be able
to approximate this operator by a sequence of finite-rank ones, leading to the possibility to restrict to the
study of finite-dimensional Hilbert spaces.
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|ϕ(t2)〉 = exp

[
−iH(t2 − t1)

~

]
|ϕ(t1)〉 = U(t1, t2) |ϕ(t1)〉3,

where we are defining:

U(t1, t2) := exp

[
−iH(t2 − t1)

~

]
.

This operation is easily seen to be unitary, and, furthermore, one can see that any
unitary operator U can be written in the form

U = exp(iK),

for some Hermitian operator K.

Postulate 3. Given a physical system, with associated Hilbert space H, the quan-
tum measurements over such system are described by a collection {Mn}n ⊂ B(H) of
measurements as defined in Definition 1.

More specificaly, the index n refers to the measurement outcomes that may occur
in the experiment, and given a state of a quantum system |ϕ〉 before a measurement,
the probability that result |n〉 occurs is given by

p(n) = 〈ϕ|M∗nMn|ϕ〉

and the state of the system after the measurement is given by

Mn |ϕ〉√
p(n)

.

Finally, measurement operators satisfy:∑
n

M∗nMn = 1.

Measurement operators were already introduced in Subsection 1.2 and several kinds of
them were presented there.

Finally, the fourth postulate can be stated as follows.

Postulate 4. Given a composite physical system, its state space is also composite,
and corresponds to the tensor product of the state spaces of the component physical
systems. Moreover, if each system i is prepared in the state |ϕi〉, then the composite
system is in the state |ϕ1〉 ⊗ . . .⊗ |ϕn〉.

3In this expression, we are considering the exponential of a matrix. Analogously to the scalar case,
given a matrix A, the matrix exp(A) is given by:

exp(A) :=

∞∑
j=0

Aj

j!
,

where j! denotes the factorial number of j, and, by convention, 0! = 1.
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After introducing the fourth postulate, it is necessary to make the following remark,
which leads to introducing the concept of entanglement . A composite Hilbert space,
i.e., a Hilbert space of the form H1 ⊗ H2 ⊗ . . . ⊗ Hn4, contains elements which are not
tensor products of elements of each one of the components. In other words, if |ϕ〉 ∈
H1 ⊗H2 ⊗ . . .⊗Hn, there not exist, in general, |ϕi〉 ∈ Hi for all i so that

|ϕ〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ . . .⊗ |ϕn〉.

A standard example of a non trivial two qubit state is the EPR pair [16], or Bell state
is the following state: ∣∣φ+

〉
=
|00〉+ |11〉√

2
.

This structure of tensor products leads to the definition of quantum entanglement,
a behavior that seems to be at the root of many of the most surprising phenomena in
quantum mechanics.

Definition 4. Given a state |ϕ〉 ∈ H1 ⊗H2 ⊗ . . .⊗Hn, we say that |ϕ〉 is entangled
if it cannot be written as an elementary tensor product.

Notice that, in particular, one needs to have more than one system to talk about
entangled states.

1.5.2 Schrödinger picture

In the Schrödinger picture, we consider density matrices instead of states.

Postulate 1. Given an isolated physical system, there is a complex Hilbert space H
which is known as the state space of the system. This system is completely described
by its density operator, which is a Hermitian, positive semidefinite and trace one
operator ρ ∈ S(H).

Moreover, if we know the probability of the system in every state (for each state ρi,
the probability that the system is in that state is pi), then the state ρ can be written as∑

i

piρi.

Since the Heisenberg and Schrödinger picture are duals, there is an identification be-
tween observables in the Heisenberg picture and density matrices in the Schrödinger one.
This leads to directly calling by states the density matrices, in a slight abuse of notation.
With this notation, we denote by pure states the density matrices of the form

4 Consider two Hilbert spaces H1 and H2. Since these two Hilbert spaces have inner products (resp.
〈·, ·〉1 and 〈·, ·〉2), it is a natural question whether one can introduce an inner product, and therefore a
topology, on the tensor product that arise naturally from those of the factors. This can be done by
definining the inner product as:

〈ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2〉 = 〈ϕ1, ψ1〉1 〈ϕ2, ψ2〉2

for every ϕ1, ψ1 ∈ H1 and ϕ2, ψ2 ∈ H2, and extending by linearity. Finally, we take the completion under
this inner product, and we get as the resulting Hilbert space the tensor product of H1 and H2.

This can be generalized to the tensor product of n Hilbert spaces.
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ρ = |ϕ〉 〈ϕ|

and by mixed states the ones of the form

ρ =
∑
i

pi |ϕi〉 〈ϕi|.

For the second postulate, concerning evolution of systems, we have the following for-
mulation.

Postulate 2. Given an isolated physical system, with associated Hilbert space H, its
evolution is described by a unitary transformation. More specifically, if the state
of the system t1 is described by the density matrix ρ1 and the state of the system at
instant t2 > t1 is described by ρ2, then there exist a unitary operator U , which depends
only on t1 and t2, such that

ρ2 = Uρ1U
∗.

As in the Heisenberg picture, the evolution of a density matrix is given by a unitary.
To explain the form of the statement of the second postulate, consider

ρ =
∑
i

pi |ϕi〉 〈ϕi|.

Notice that, since the system initially is in the state |ϕi〉 with probability pi, then after
the evolution given by a unitary U it will be in state U |ϕi〉 with probability pi. Therefore,
the associated density operator will be given by

∑
i

piU |ϕi〉 〈ϕi|U∗ = U

(∑
i

pi |ϕi〉 〈ϕi|

)
U∗ = UρU∗.

Moving to the third postulate and the relation with quantum measurements, we have
the following formulation for it.

Postulate 3. Given an isolated physical system, with associated Hilbert space H, any
quantum measurements on it are described by a collection of measurement operators
{Mn}n as the ones described in Definition 1. As in the case of the Heisenberg picture,
each index n refers to the different outcomes that may occur when measuring. Indeed,
If the state of the quantum system is ρ before the measurement, the probability that
we get result n is given by

p(n) = tr(M∗nMnρ),

and the state that we get after the measurement is given by:

MnρM
∗
n

p(n)
.

Moreover, since probabilities need to sum one, these operators have to satisfy
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n

M∗nMn = 1.

Suppose that we measure with the measurement {Mn}n a mixed state of the form

ρ =
∑
i

pi |ϕi〉 〈ϕi|.

Then, if the initial state is |ϕi〉, for instance, the probability of having outcome n is

p(n|i) = 〈ϕi|M∗nMn|ϕi〉 = tr(M∗nMn |ϕi〉 〈ϕi|).

Hence, the total probability of this outcome is

p(n) =
∑
i

p(n|i)pi =
∑
i

pi tr(M∗nMn |ϕi〉 〈ϕi|) = tr(ρM∗nMn),

because of the definition of ρ. And analogously, one can see that the post-measurement
state is given by:

MnρM
∗
n

p(n)
.

Finally, concerning the state space of a composite physical system, we get the following
postulate, due to the linearity of tensor products.

Postulate 4. Given a composite physical system, its state space is the tensor product
of the state spaces of the component physical systems.

Moreover, if each system i is initially prepared in state ρi, then the state in which
the composite system is prepared is given as the tensor product of the ρi, i.e., ρ1⊗ ρ2⊗
. . .⊗ ρn.

These reformulations of the postulates of quantum mechanics in terms of the density
operator are, clearly, mathematically equivalent to the description in terms of the state
vector. However, as a way of thinking about quantum mechanics, the density operator
approach has advantages with respect to two main facts: the description of quantum
systems whose state is not known, and the description of subsystems of a composite
quantum system.



Chapter 2

Quantum algorithms

In the future, quantum computers will have the potential to solve problems exponentially
faster than classical computers. However, which problems can be solved exponentially
faster? And which problems would do just as well as being solved by a classical computer?
These are some of the main questions for quantum algorithm researchers.

To approach an answer to this question, it makes sense to develop the connection
between quantum algorithms and computer hardware. A computer is a programmable
machine which is based on some fundamental concepts of Physics, whereas an algorithm
is a sequence of steps that leads to the solution of a problem. Their connection comes
then into stage when one notices that for implementing an algorithm in a computer it is
necessary to check that this machine can actually run it.

Quantum computers can run algorithms that we cannot run on classical computers.
Those algorithms make use of quantum effects, such as non-locality, entanglement, super-
position, etc. When one designs a quantum algorithm, one of their main aims is to exploit
these concepts to make the algorithm get the solution to the problem faster. In general,
we can say that a quantum algorithm provides opportunities to solve problems that are
difficult in the classical context, i.e., problems that we cannot solve efficiently with the
known classical algorithms.

A quantum algorithm might work as follows: It starts with a classical input, and
turns it into a quantum state by obtaining the superposition of an exponential number of
classical states. Then, it transforms the quantum state that encodes the problem into a
quantum state that encodes the solution. From that quantum state, one can measure and
obtain the solution.

Most of these quantum algorithms are designed for the future quantum computers,
which will have many qubits. Nowadays, only some small prototipes of these devices
already exist, counting on, at most, approximately 50 qubits. It is then an interesting
research area to study what can one do with these devices before we actually have the
ones with a great number of qubits.

The key to the security of public key cryptosystems is that it should be difficult to
invert the encryption stage if only the public key is available. For example, inverting
the encryption stage of RSA is in fact a problem closely related to factoring. Hence,
much of the presumed security of RSA comes from the belief that factoring is a problem
hard to solve on a classical computer. However, as we will see in this chapter, Shor’s
fast algorithm for factoring on a quantum computer could be used to break RSA. In an
analogous way, there are other public key cryptosystems that can be broken using a fast
algorithm for solving the discrete logarithm problem, like Shor’s quantum algorithm for
discrete logarithm. This practical application of quantum computers to the break codes

29
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has excited much of the interest in quantum computation and quantum information.

The two main quantum algorithms that we will study in this chapter are Shor’s quan-
tum factoring algorithm and Grover’s algorithm, which will be explained, respectively, in
Section 2.6 and Section 2.7. First, we describe some of the earlier quantum algorithms
that preceded them.

All quantum algorithms work with queries in some form or another, which we will
explain below. The query complexity model differs from the standard model described in
the previous chapter, as the input in this case is given as a black-box. However, before
that, we need to introduce some basic notions about quantum circuits [9], [18], since they
constitute one of the two models that are more commonly used to explain how a quantum
computer can apply computational steps to its qubits. The other model, the quantum
Turing machine, will not be discussed in this project.

Many of the topics discussed in this chapter are based in some of the following books
or notes: [4], [5].

2.1 Preliminaries

In this section, first, we will present a brief survey on classical Boolean circuits, and, then,
we will introduce some notions of quantum circuits, by outlining the diference with respect
to the first ones.

2.1.1 Classical circuits

In a nutshell, we can say that circuits represent functions from {0, 1}n into {0, 1}. It
is a computational model that consists of decomposing each function in some elemental
operations, so that this procedure allows us to represent all the possible functions in the
domain. This model has good properties in general and is fundamental in computational
theory.

In classical complexity theory, one can define a Boolean circuit as a finite directed
acyclic graph with AND, OR and NOT gates, whose shape can be seen in Figure 2.1. The
rest of the gates that appear on that figure can be constructed from those three.

Figure 2.1: Some classical gates for two qubits.

An important theoretical result is that any function on bits can be computed from the
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composition of NAND gates alone, which is thus known as a universal gate. By contrast,
the XOR alone or even with NOT is not universal (one can notice that just by taking a
look at the parity).

The idea of classical circuits lays on the following facts:

• Every circuit has n input nodes, which contain n input bits.

• The circuit is made of those three gates (AND, OR and NOT), and combinations of
then, as well as some output nodes.

• The initial input bits are fed into combinations of the previous gates, so that even-
tually the output nodes assume some value.

Let f : {0, 1}n → {0, 1}m be a Boolean function. Then, we say that a circuit computes
it if the output nodes get the right value f(x) for every x ∈ {0, 1}n.

Now we can introduce some concepts related to the complexity of some circuits. Let us
denote a circuit family by a set C = {Cn}, each one of them of input size n (which means
that the number of input nodes, and hence bits, is exactly n). We assume that each one
of these circuits has one output bit. Then, we say that this family recognizes a certain
language L ⊆ ∪

n≥0
{0, 1}n (which we denote hereafter by {0, 1}∗) if, for every x ∈ {0, 1}n,

the circuit Cn outputs:

• 1 if x ∈ L.

• 0 if x /∈ L.

We say that this circuit family is uniformly polynomial if there exists a deterministic
Turing machine that outputs Cn, given n as an input, in some time that depends poly-
nomially in n. The size of a circuit is its number of gates, and it can grow, at most,
polynomially in n. This kind of circuit families have equivalent power to polynomial time
deterministic Turing machines, since it is known that a language L can be decided by a
uniformly polynomial circuit family if, and only if, L ∈ P, where P is the complexity class
of languages that are decidable by polynomial-time Turing machines.

2.1.2 Quantum circuits

Let us move now to quantum circuits, which generalize the idea of classical circuit families.
In this case, we replace the AND, OR and NOT gates by elementary quantum gates.

We define a quantum gate as a unitary transformation in a small number of qubits,
usually 1, 2 or 3. Let us recall from the previous chapter that a unitary matrix satisties
that its inverse coincides with its conjugate transpose. Some of the most important 1-qubit
gates are the following:

• Bitflip gate (X): It negates the bit, i.e., swaps |0〉 and |1〉. It can be represented
by:

X =

(
0 1
1 0

)
.

• Phaseflip gate (Z): It puts a - in front of |1〉. It can be represented by:
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Z =

(
1 0
0 −1

)
.

• Phase gate (Rφ): It rotates the phase of the |1〉-state by an angle φ:

Rφ |0〉 = |0〉,
Rφ |1〉 = eiφ |1〉.

It is clear that the previous gate is a particular case of this family of gates. They
can be represented by:

Rφ =

(
1 0
0 eiφ

)
.

• Hadamard gate (H): It is specified by:

H |0〉 =
1√
2
|0〉+

1√
2
|1〉,

H |1〉 =
1√
2
|0〉 − 1√

2
|1〉.

As a unitary matrix, it can be represented by:

H =
1√
2

(
1 1
1 −1

)
.

The last one, the Hadamard gate, is possibly the most important 1-qubit gate. If
we apply H to an initial state |0〉 and then measure, we have the same probability of
observing |0〉 or |1〉, and analogously if we apply it to initial |1〉. However, when applied
to the superposition state

1√
2
|0〉+

1√
2
|1〉,

the Hadamard gate provides the value |0〉. The effect that we get in this case (both positive
and negative amplitudes for |1〉 cancelling out) is called interference. It is completely
analogous to the interference patterns that one can notice in light or sound waves.

Let us present now an example of a 2-qubit gate, the CNOT (controlled-not) gate..
Given two input bits, this gate is used to negate the second bit if the first one is 1, and to
leave it invariant if the first bit is 0, i.e.,

CNOT |0〉 |b〉 = |0〉 |b〉,
CNOT |1〉 |b〉 = |1〉 |1− b〉.

We can represent this action in the following matrix form:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.
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In this scenario, the first qubit is called the control qubit, since it is the one that
determines the effect of the gate, and the second one is called the target qubit, as it is the
one that receives the effect.

In general, if U is a 1-qubit gate (as the ones that we have defined above), then the we
can define the 2-qubit controlled-U gate analogously to the previous one, i.e., if the first
bit is 0 it does nothing, and, if it is 1, the gate applies the unitary to the second bit. We
can represent it in the following matrix form:

1 0 0 0
0 1 0 0
0 0 U11 U12

0 0 U21 U22

.

Another way to understand the quantum CNOT gate is as a generalization of the
classical XOR gate. Note, however, that there are some classical gates, like NAND or
XOR, which cannot be understood as unitary gates in a sense similar to the way the
quantum NOT gate represents the classical NOT gate. The reason is because these two
gates are essentially irreversible.

We can see that in the following example: Given an output A ⊕ B of a XOR gate,
it is not possible to determine what the inputs A and B were. This can be also stated
by saying that there is a loss of information associated with the irreversible action of the
XOR gate. On the other hand, since quantum gates are described by unitary matrices, it
is important to remark that they can always be inverted by another quantum gate.

Let us now introduce an example of a 3-qubit gate, the Toffoli gate. This gate can
be seen as a controlled-controlled not gate, as it negates the third bit of its input if both
the first two bits are 1. It is quite important, since it is complete for classical reversible
computations, in the sense that any classical computation can be implemented by a circuit
of Toffoli gates (further discussion about this topic can be found in Subsection 2.1.6).

All those gates mentioned above can be composed into bigger unitary operations in
the following ways:

• By taking tensor products, if the gates are applied in parallel.

• By taking matrix products, if the gates are applied sequentially.

We show now an example of these operations. If we apply a Hadarmard gate H to
each bit in a register of n zeros, we get

1√
2n

∑
j∈{0,1}n

|j〉,

a superposition of all n-bit strings, whereas applying H⊗n to an initial state |i〉, with
i ∈ {0, 1}n gives us

H⊗n |i〉 =
1√
2n

∑
j∈{0,1}n

(−1)i·j |j〉,

with i·j =
n∑
k=1

ikjk the inner product of the n-bit strings i, j ∈ {0, 1}n. In this case, one can

also notice that the Hadamard is its own inverse. Thus, if we apply it again on the right-
hand side of the previous expression, we get the initial |i〉. This makes the Hadarmard
gate quite useful for the development of algorithms, as we will see in the following section.

To sum up, as in the case for classical circuits, one can define a quantum circuit in the
following form.
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Definition 5. A quantum circuit is a finite directed acyclic graph composed by:

• Input nodes. Some of these nodes (n nodes) contain the input, and some more
nodes are initially |0〉 (they are called the workspace).

• Quantum gates. Each of them operates on, at most, two or three qubits of the
state.

• Output nodes. The previous gates transform the initial state vector into a final
state, which will generally be a superposition.

Let us see now how one can draw these circuits. We usually consider that time pro-
gresses from left to right. As briefly mentioned above, each qubit is represented as a wire,
and the circuit prescribes which gates are applied to each wire.

With this notation of wires, it is clear that 1-qubit gates act on just one wire, whereas
2-qubit and 3-qubit gates act, respectively, on 2 or 3 wires. Moreover, when a gate acts
on more than 1 qubit, and one of them is the control one, its wire is drawn with a dot
linked vertically to the target qubits, i.e., the qubits where this effect is applied.

We show an example of this notation in the following figure.

Figure 2.2: Circuit used to turn |00〉 into 1√
2

(|00〉 − |11〉).

In this example, and in general, we denote the quantum CNOT by ⊕. If we study every
step separately, and taking into account the definition for every gate mentioned above, we
can see that, after each step, the resulting state is:

• Step 0. We start with |ϕ0〉 = |00〉.

• Step 1. After the Hadarmard gate, we have |ϕ1〉 =
1√
2

(|00〉+ |10〉).

• Step 2. When we apply the CNOT gate, we get |ϕ2〉 =
1√
2

(|00〉+ |11〉).

• Step 3. Finally, after the Z gate, we have |ϕ3〉 =
1√
2

(|00〉 − |11〉).

2.1.3 No-cloning theorem

In this subsection, we will present an application of the previously defined gates. In partic-
ular, we will give an answer to the following question: ‘Can we clone a classical/quantum
bit?’.

In the classical case, it is easy to see that the answer is affirmative. Indeed, it is a
trivial application of the classical CNOT gate, as we can see in the following figure.
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Figure 2.3: Classical way to clone a bit.

The explanation for this circuit is the following. Let us assume that we start with the
bit x that we want to clone, and we take it as a control bit, as well as the 0 bit, which we
take as the target bit. Then, applying a classical CNOT gate, one automatically gets an
output given by two copies of x.

In the quantum case, one could be tempted to think that a similar argument can be
followed using instead a quantum CNOT gate. However, it does not work [12], as we show
below.

Consider a quantum machine with two inputs labeled by A and B, as in the classical
case (for x and 0). We will assume that A is the control input, whereas B constitutes the
target one. Suppose that A starts in an unknown pure quantum state |ψ〉, and we want
to copy it into input B, which is also initiated in a pure state |φ〉. Hence, the initial state
is given by

|ψ〉 ⊗ |φ〉.

Now, let us assume that cloning is possible, i.e., that there exists a unitary U such
that

U (|ψ〉 ⊗ |φ〉) = |ψ〉 ⊗ |ψ〉.

And let us further assume that this procedure works for two particular pure states |ψ〉
and |ϕ〉. Then, we get:

U (|ψ〉 ⊗ |φ〉) = |ψ〉 ⊗ |ψ〉,
U (|ϕ〉 ⊗ |φ〉) = |ϕ〉 ⊗ |ϕ〉.

Since the application of unitaries respects inner products, we must have

〈ψ,ϕ〉 = |〈ψ,ϕ〉|2,

and this happens only if they are either the same state or orthogonal states. Thus, cloning
devices can only clone states which are orthogonal to one another and, therefore, a general
quantum cloning device is impossible.

Remark 1. In this subsection, we have focused on the possibility of constructing a cloning
device with a unitary evolution. However, it can be proved that even if one allows non-
unitary cloning devices this perfect cloning of non-orthogonal pure states remains impos-
sible, but the techniques for that are much deeper.
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2.1.4 Quantum teleportation

In this subsection, we present another example of how the gates of the previous subsections
can be used to get really interesting results. In this particular case, we will explain quantum
teleportation [14] as a combination of some elementary gates from the ones above.

Quantum teleportation is one of the most representative communication protocols of
quantum information theory. Suppose there are two parties, Alice and Bob, which are
spatially separated, and Alice wants to send a qubit of information to Bob by just sending
two classical bits via a classial channel. For that, they need first to share an EPR-pair,
given by:

|ψ〉 =
1√
2

(|00〉+ |11〉).

The fact that a qubit can be sent by means of this procedure is usually expressed by
writing:

1 EPR + 2 bits ≥ 1 qubit.

In fact, it is important to remark that Alice does not need to know her own qubit in
order to send it to Bob. Let us see how this works. Assume that Alice’s qubit is of the
form:

|ϕ〉 = α |0〉+ β |1〉,

thus, because of what we have just mentioned, we can assume that Alice does not know
the values of α and β. We can then split the procedure in the following steps:

1. Since Alice and Bob share the EPR-pair mentioned above (we can say that Alice
holds the first qubit and Bob the second one), their initial joint state is of the form:

|ϕ0〉 = |ϕ〉 ⊗ |ψ〉

= (α |0〉+ β |1〉)⊗
(

1√
2

(|00〉+ |11〉)
)

=
1√
2

[α |0〉A (|00〉A′B′ + |11〉A′B′) + β |1〉A (|00〉A′B′ + |11〉A′B′)] ,

where we are writing subindices in the last line to outline whom each bit belongs to.

2. Alice now applies a CNOT on her part (the elements marked with A and A′ in |ϕ0〉).
She then gets:

|ϕ1〉 = UA,A′ ⊗ 1B(|ϕ0〉)

=
1√
2

[α |0〉A (|00〉A′B′ + |11〉A′B′) + β |1〉A (|10〉A′B′ + |01〉A′B′)] .

Notice that only the elements of the second term in the sum have suffered some
change.
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3. Later, Alice applies a Hadamard operaton on her first qubit, getting:

|ϕ2〉 = HA ⊗ 1A′B′(|ϕ1〉)

=
1√
2

[
α

(
|0〉A + |1〉A√

2

)
(|00〉A′B′ + |11〉A′B′) +

β

(
|0〉A − |1〉A√

2

)
(|10〉A′B′ + |01〉A′B′)

]
=

1

2

[
|00〉A,A′ (α |0〉B + β |1〉B) + |01〉A,A′ (α |1〉B + β |0〉B)

+ |10〉A,A′ (α |0〉B − β |1〉B) + |11〉A,A′ (α |1〉B − β |0〉B) ] .

This last expression has four different terms, and each one of them can be seen as the
product one of the elements of the 2-qubit computational basis for Alice and another qubit
(in four different forms) for Bob. Thus, if Alice measures her pair in the computational
basis, i.e.,

{|00〉 , |01〉 , |10〉 , |11〉},

she gets one of the previous four elements and, thus, she can read off Bob’s postmeasure-
ment from this value, given her measurement, in the following way:

|00〉A 7→ |ϕ3(00)〉B := α |0〉B + β |1〉B
|01〉A 7→ |ϕ3(01)〉B := α |1〉B + β |0〉B
|10〉A 7→ |ϕ3(10)〉B := α |0〉B − β |1〉B
|11〉A 7→ |ϕ3(11)〉B := α |1〉B − β |0〉B .

Hence, the way of proceeding is the following: Alice measures her two bits in the
computational basis, sends the result to Bob over a classical channel, and Bob knows
which transformation he must do on his qubit to regain the desired qubit |ϕ〉. In each
case, Bob has to do the following:


Alice sends |00〉A 7→ Bob’s qubit is α |0〉B + β |1〉B 7→ He does nothing to get |ϕ〉
Alice sends |01〉A 7→ Bob’s qubit is α |1〉B + β |0〉B 7→ He applies an X gate to get |ϕ〉
Alice sends |10〉A 7→ Bob’s qubit is α |0〉B − β |1〉B 7→ He applies a Z gate to get |ϕ〉
Alice sends |11〉A 7→ Bob’s qubit is α |1〉B − β |0〉B 7→ He applies X and Z gate to get |ϕ〉 .

Remark 2. It is important to remark that we are not transmiting states instantaneously.
Indeed, this would be a contradiction with the theory of relativity, which states that
nothing can travel faster than light.

Quantum teleportation does not allow for faster than light communication, as, to
complete the protocol, in step 3 above, Alice must transmit her measurement’s result to
Bob over a classical communication channel, and this is clearly limited by the speed of
light. Moreover, without this classical communication, teleportation does not convey any
information at all.

Remark 3. We also need to remark that we are not creating a copy of |ϕ〉 being teleported
(and hence, there is no contradiction with the previous subsection). Although it seems
that this could be the case, after the teleportation process, only the target qubit is left
in the state |ϕ〉, and the original control qubit ends up in one of the computational basis
states. In fact, Alice’s side has been destroyed in this protocol.
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2.1.5 Superdense coding

Now we present a third example of use of the previous quantum gates for a certain commu-
nication protocol. More specifically, in this subsection we discuss superdense coding [15],
which is a communication protocol that allows to transmit 2 classical bits of information
by just sending 1 qubit, assuming that Alice and Bob share an EPR pair.

Analogously to what we stated in the previous example, we can express the fact that
two bits can be sent by means of this procedure by writing:

1 EPR + 1 qubit ≥ 2 bits.

The idea of this protocol is that Alice wants to send two bits to Bob just by sending
a qubit. The algorithm is then given by the following steps:

1. Alice and Bob share an EPR state of the form:

|ψ〉 =
1√
2

(|00〉+ |11〉).

2. Depending on the qubit Alice wants to send, she has to do something different in
each one of the following cases:


Alice wants to send |00〉A 7→ She does nothing to |ψ〉 7→ |ψ2〉 := |00〉+|11〉√

2

Alice wants to send |01〉A 7→ She applies a Z gate to |ψ〉 7→ |ψ2〉 := |00〉−|11〉√
2

Alice wants to send |10〉A 7→ She applies a X gate to |ψ〉 7→ |ψ2〉 := |10〉+|01〉√
2

Alice wants to send |11〉A 7→ She applies a iY gate to |ψ〉 7→ |ψ2〉 := |01〉−|10〉√
2

.

Since these four last elements for the Bell basis of C2⊗C2, each state can be perfectly
distinguished by an appropriate quantum measurement.

3. Alice sends her part of the state to Bob, so that he is now in possession of the whole
state. By measurement the whole state in the Bell basis, Bob can then determine
which of the four possible bit strings Alice sent him.

2.1.6 Universality of quantum gates

In this final subsection concerning circuits, we are going to discuss universality of certain
sets of elementary gates.

Let us start with the classical case. For classical gates, one can see that AND and NOT
together are universal, in the sense that any classical Boolean circuit can be implemented
just using AND and NOT gates.

In subsection 2.1.2, we mentioned that Toffoli gates are complete for classical reversible
computation. We explain this in more detail now. One can get an AND and a NOT
classical gates from a Toffoli gate in the following way:

• Toffoli gate 7→ Fix the 3rd ingoing wire to 0 7→ Classical AND gate.

• Toffoli gate 7→ Fix the 1st and 2nd ingoing wires to 1 7→ Classical NOT gate.
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Hence, if we apply Toffoli gates, we can implement any classical computation in a
reversible manner.

Now, if we move to the quantum case, there are also several possibilities for universal
sets of elementary gates. Let us see some examples.

• All 1-qubit operations + 2-qubit CNOT. This set is universal, in the sense
that any other unitary transformation can be built from these gates.

However, it is difficult to consider this set, as ‘all’ possible 1-qubit gates are difficult
to be described (there are continuously many of them). Also, we cannot expect
that experimentalists can implement these gates with infinite precision. Hence, the
practical model that is usually considered allows just a small finite set of 1-qubit
gates from which the rest can be efficiently approximated.

• CNOT, Hadamard and Rπ/4. It is universal concerning approximation. It means
that any other unitary can be arbitrarily well approximated using circuits, and it is
a consequence of the Solovay-Kitaev theorem.

If we restrict to real numbers, then we also have the following set.

• Hadamard and Toffoli. This set is universal for all unitaries tieh real entries,
again in the sense of approximation.

2.2 Introduction to quantum algorithms

As we have mentioned in the introduction of this chapter, the two main quantum al-
gorithms that we will study here are Shor’s quantum factoring algorithm and Grover’s
algorithm, which will be explained, respectively, in Section 2.6 and Section 2.7. How-
ever, before, we will introduce and describe some of the earlier quantum algorithms that
appeared previously.

All quantum algorithms work with queries in some form or another. The query com-
plexity model differs from the standard model described in the previous chapter, as the
input in this case is given as a black-box, what implies that the exponential separation
between quantum and classical that we describe in the following algorithms does not lead
to an exponential separation between quantum and classical in the standard model.

The phenomenon that appears in the query setting can be further explained as follows.
Consider an N -bit input x ∈ {0, 1}N , for N = 2n. Hence, we can address a bit xi using
an n-bit index i. The input can be seen as an N -bit memory which we can access at any
point of our choice (a Random Access Memory), and this access is done via a black-box,
which is designed to output the bit xi on input i.

As a quantum operation, it must always be a unitary mapping on n+ 1 qubits, given
by

Ox : |i, 0〉 → |i, xi〉,

and, in general,

Ox : |i, b〉 → |i, b⊕ xi〉,

where we recall that i ∈ {0, 1}n and b ∈ {0, 1}. Also, by ⊕ we denote exclusive-or, which
is nothing but addition modulo 2. The first n qubits of the state are called the address
bits (in previous sections have been callen control bits), while the qubit in position (n+ 1)
is called the target bit.
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In the setting of matrix representation, Ox is a permutation matrix, and, as we have
mentioned above, it is unitary. Here we can notice a difference between a quantum com-
puter and a classical one, since the first one can apply Ox on a superposition of several i,
something that the latter cannot do (we will elaborate this some paragraphs below).

One application of this black-box is called a query , and counting the required number
of queries to compute a certain function of x is something essential in quantum complexity.
Assume now that we make a query of the type mentioned above. Thus, we can also make
a query of the form

|i〉 7→ (−1)xi |i〉

by setting the target bit to the state

|−〉 =
1√
2

(|0〉 − |1〉) = H |1〉.

Hence, we obtain:

Ox (|i〉 |−〉) = |i〉 1√
2

(|xi〉 − |1− xi〉) = (−1)xi |i〉 |−〉.

The aim of term (−1)xi is to put the output variable in the phase of the state:

1. If xi is 1, then we get a −1 in the phase of basis state.

2. If xi is 0, then the phase of basis state remains invariant.

This “phase-oracle” is sometimes more convenient than the standard type of query.
We sometimes denote the corresponding n-qubit unitary transformation by Ox,±.

Before introducing the first proper quantum algorithm in the next section, we need
to present a quantum-mechanical effect that appears exclusively in quantum mechanics
and we can (and will) use for building quantum algorithms, and which is called quantum
parallelism. Assume that we have a Boolean function f : {0, 1}n → {0, 1}m and a classical
algorithm that computes it. It is clear then that we can construct a quantum circuit of
Toffoli gates (because of the universality mentioned in the previous) that maps:

|x〉 |0〉 7→ |x〉 |f(x)〉 for every x ∈ {0, 1}n.

Let us denote this quantum circuit by U . Then, if we apply U to a superposition of
all possible inputs, we have:

U

 1√
2n

∑
x∈{0,1}n

|x〉 |0〉

 =
1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉.

Even though we have applied U just once, the final superposition state that we get
contains all possible inputs. However, to observe the final superposition just gives one
random |x〉 |f(x)〉, so, by itself, this effect is not very useful, since it does not provide any
improvement to classical randomization. It has to be combined with some other effects of
interference or entanglement to improve the classical case.

In the following sections, we will use the concepts that we have just introduced to
present several quantum algorithms. In general, one can classify quantum algorithms in
three different classes which provide an advantage over known classical algorithms. The
first one is the class of algorithms based upon quantum versions of the Fourier transform, a
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tool which is also widely used in classical algorithms. The Deutsch–Jozsa algorithm is an
example of this type of algorithm, although the use of such transform in the algorithm is a
bit vague. The main exponent of this class of algorithms is Shor’s algorithm for factoring
and discrete logarithm.

The second class of algorithms is quantum search algorithms. The main algorithm from
this class that we will present is Grove’s algorithm. Finally, the third class of algorithms is
quantum simulation, in which a quantum computer is used to simulate a quantum system.

In this project, we just focus on a brief description of the first two classes of algorithms
mentioned above. This description will be presented in the following sections.

2.3 Deutsch-Jozsa’s algorithm

In the early 1980s, Richard Feynman, in the US, and Yuri Manin, in the Soviet Union,
suggested using quantum computers to simulate quantum mechanics. Some years later,
in 1985, David Deutsch tried to actually formulize this. For that, he defined a quantum
Turing machine and explained how to solve what later was going to turn out to be the
2-bit Deutsch-Jozsa problem.

Solving the 2-bit Deutsch-Jozsa problem did not really impress anyone. However, in
1992, David Deutsch and Richard Jozsa generalized his construction to solve the n-bit
Deutsch-Jozsa problem [7].

Problem 1. For N = 2n, we are given an element x ∈ {0, 1}N such that one of the
following holds:

1. Every xi has the same value.

2. N/2 of the xi are 0 and N/2 are 1.

In the first case, we call x constant, whereas in the second case we call it balanced.
The goal is to find out whether x is constant or balanced.

This is what computer scientists call a promise problem, since we get the promise that
we are always going to receive an n-bit in one of the previous two situations.

We shall now put this problem in words. Suppose that Alice, in Amsterdam, selects a
number x from 0 to 2n− 1, and mails it in a letter to Bob, in Boston. Bob then calculates
some function f(x) and replies with the result he gets, which is either 0 or 1. The function
that Bob uses is of one of two kinds: either f(x) is constant for all values of x, or else f(x)
is balanced. Alice’s goal is to determine with certainty whether Bob has chosen a constant
or a balanced function, exchanging with him as little information as possible. How fast
can she succeed?

More formally, we define a function f : {0, 1}N → {0, 1}, i.e., it takes N-bits as input
and produces either a 0 or a 1 as output for each such value. We are promised that the
function is either constant (0 on all outputs or 1 on all outputs) or balanced (returns 1
for half of the input domain and 0 for the other half).

The most natural question one can think of is: How is f given? In this sense, f is
given as an oracle. Hence, we are given a black box, we input an N-bit x and it outputs
f(x), as we show in Figure 2.4.

It is clear that this black box is not really a quantum circuit, since it has an N-bit as
input and one bit as output, and we have mentioned in previous sections that a quantum
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Figure 2.4: f is given as an oracle.

oracle has to be reversible, which means that the number of inputs should be the number
of outputs. Hence, it can only be a classical oracle.

A way to get an actual quantum circuit is by recalling that any classical function can
be made reversible as long as you keep the input around. In this situation, this reads as
we can see in Figure 2.5:

Figure 2.5: f is given as an oracle.

Moreover, one can notice that it is its own inverse.

2.3.1 2-bit functions

Let us show how we can solve the Deutsch-Jozsa problem for the 2-bit qubit case. For
that, consider the quantum oracle Figure 2.6, so that it changes the phase of the input if
f(x) = 1, and leaves it untouched if f(x) = 0.

Since we are studying the 2-bit case, it is clear that |x〉 ∈ {|00〉 , |01〉 , |10〉 , |11〉}. Let
us consider the input

1

2
(|00〉+ |01〉+ |10〉+ |11〉).
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Figure 2.6: Quantum oracle.

For that input, we can have, if f is constant and equal to 0, the output

1

2
(|00〉+ |01〉+ |10〉+ |11〉)

and for f equal to 1

−1

2
(|00〉+ |01〉+ |10〉+ |11〉).

On the opposite, if f is balanced, the output would be

1

2
(|00〉 − |01〉+ |10〉 − |11〉),

or something like that.
If we recall that solving the Deutsch-Jozsa problem consists on distinguishing between

these two possibilities, we need to develop a tool to do that. In this situation, we can just
reduce to making a measurement that obtains a yes if the function is constant and a no
if it is balanced. We can construct this measurement applying two Hadamard gates and
testing for 0:

Figure 2.7: 2-bit Deutsch-Jozsa model.

We will present in more detail this phase oracle in the next subsection. If output
equals |00〉, then f is constant. On the contrary, if output is different from |00〉, f is
balanced. However, it is important to remark that there are many cases in which f is
neither constant nor balanced. For example, consider

f |++〉 =
1

2
(|00〉+ |01〉+ |10〉 − |11〉).

Then, the probability of seeing |++〉 is

Prob(|++〉) =
1

2
,

which is neither 0 nor 1.
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2.3.2 n-bit functions

We can generalize the solution of the previous subsection to the n-bit case. Although the
solution is almost exactly the same, it took seven years for Deutsch to generalize it. It is
due to the fact that in Deutsch’s original paper [8], it looked nothing like this circuit, and,
thus, it was hard to generalize.

The generalization of the algorithm presented in the previous subsection is the follow-
ing:

Figure 2.8: n-bit Deutsch-Jozsa model.

Now, analogously to the previous case, if output equals |00 . . . 0〉, then f is constant.
On the contrary, if output is different from |00 . . . 0〉, f is balanced.

Let us explain this algorithm in some detail. We start with the zero state for n-
qubits, |00 . . . 0〉 = |0n〉, we apply a Hadamard gate to each qubit (in the previous picture
encoded in the phase oracle), apply a query to everything (the phase oracle itself), then
apply another Hadamard gate to each qubit, and, finally, measure the final state. Hence,
this algorithm could be summarized as something like:

H⊗nOx,±H
⊗n.

Now we go step by step, seing what we get in each one of them. Initially, we have the
state |0n〉. After the first Hadarmard gate applied to each qubit, we get,

1√
2n

∑
i∈{0,1}n

|i〉,

which is a uniform superposition of all possible i.

When we apply the query, the last term becomes:

1√
2n

∑
i∈{0,1}n

(−1)xi |i〉,

and after the second Hadarmard gates, we have the final superposition
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1

2n

∑
i∈{0,1}n

(−1)xi
∑

j∈{0,1}n
(−1)i·j |j〉,

where we are denoting i · j =
n∑
k=1

ikjk, as we have already mentioned before.

Finally, notice that i · 0n = 0 for all i ∈ {0, 1}n. Thus, we can rewrite the first part of
the last term as:

1

2n

∑
i∈{0,1}n

(−1)xi =


1 if xi = 0 for all i,
−1 if xi = 1 for all i,
0 if x is balanced .

Thus, the final term will yield |0n〉 if x is constant and some other state is x is balanced.
Therefore, the Deutsch-Jozsa problem can be solved using only 1 query and in O(n) other
operations, but this solution is not the original one of Deutsch and Jozsa, in which they
used 2 queries instead of one.

Another equivalent way to present the Deutsch-Jozsa algorithm, extracted from [2] is
Figure 2.9.

Figure 2.9: Another scheme for the n-bit Deutsch-Jozsa model.

In this case, the initial state is |ψ0〉 = |0n〉 |1〉. With this notation, the black box Uf
performs the transformation |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 for x ∈ {0, 1}n and f(x) ∈ {0, 1}.

After the application of the first Hadarmard gates, one gets:

|ψ1〉 =
1√
2n

∑
i∈{0,1}n

|i〉
[
|0〉 − |1〉√

2

]
,

where the only difference with respect to the analogous term in the previous approach is
the last term.

Now, after the application of the query, which is given by Uf : |x, y〉 → |x, y ⊕ f(x)〉,
one gets

|ψ2〉 =
1√
2n

∑
i∈{0,1}n

(−1)f(i) |i〉
[
|0〉 − |1〉√

2

]
.

Then, if we apply the second Hadamard gates, we get:

|ψ3〉 =
1

2n

∑
j∈{0,1}n

∑
i∈{0,1}n

(−1)i·j+f(i) |i〉
[
|0〉 − |1〉√

2

]
.
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Finally, performing the same measurement as in the previous case, one gets the final
output as required.

To see the improvement with respect to classical algorithms, notice that any classical
deterministic algorithm needs, at least, N/2 + 1 queries. On the other hand, a classical
algorithm can solve this problem efficiently if we allow a small error probability: Query x
at two random positions, and output constant if they are the same and balanced otherwise.
Then, the algorithm gets the correct answer with probability 1 if x is constant, and with
probability 1/2 when x is balanced.

Therefore, the difference between quantum and classical for this problem only appears
if we consider algorithms without error probability.

2.3.3 Bernstein-Vazirani problem

In this subsection, we introduce the Bernstein-Vazirani problem.

Problem 2. For N = 2n, we are given an element x ∈ {0, 1}N such that there is some
a ∈ {0, 1}n verifying:

xi ≡ i · a (mod 2) for every i,

where i · a denotes the usual scalar product between vectors, i.e.,

i · a =
n∑
k=1

ikak.

The goal is to find a.

Compared to the algorithms that we have just presented, it is easy to notice that,
essentially, this algorithm is the same as the Deutsch-Jozsa algorithm. The main difference
yields in the fact that, in this case, the final observation yields a.

By assumption,

xi ≡ i · a (mod 2) for every i,

so

(−1)xi = (−1)(i·a)

and we can write the state obtained after the query in the following form:

1√
2n

∑
i∈{0,1}n

(−1)xi |i〉 =
1√
2n

∑
i∈{0,1}n

(−1)i·a |i〉.

We recall now that the Hadamard gate is its own inverse, since this implies that
applying a Hadamard to each qubit of the above expression will turn it into |a〉. Hence,
this solves the Bernstein-Vazirani problem with 1 query and O(n) other operations.

Differently from the Deutsch-Jozsa algorithm, every classical algorithm needs n queries
for information purposes, and the final answer consists of n bits and a classical query which
contains, at most, 1 bit of information.
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Remark 4. Bernstein and Vazirani also presented a recursive version of the problem stated
above, which can be solved by a quantum algorithm in a polynomial number of steps.
However, for this version, every classical randomized algorithm needs nΩ(logn) steps.

To finish this section, notice that the Deutsch-Jozsa problem has showed an expo-
nential quantum improvement over the best deterministic classical algorithms, whereas
the Bernstein-Vazirani problem has showed a polynomial improvement over the best ran-
domized classical algorithms that have probability error ≤ 1/3. In the following section,
we will combine this two features, to obtain a problem where quantum computers are
exponentially more efficient than bounded-error randomized algorithms.

2.4 Simon’s algorithm

In this section, we change slightly the previous notation for convenience. Consider again
N = 2n and denote by [N ] = {1, . . . , N}, which can be identified with {0, 1}n. Remember
also that by ⊕ we are denoting the addition modulo 2 (or addition in F2n). Then, Simon’s
problem can be stated as follows:

Problem 3. For N = 2n, we are given an element x = (x1, . . . , xN ) with xi ∈ {0, 1}n
for every i, such that there is some s ∈ {0, 1}n, non null and unknown, verifying:

xi = xj iff i = j or i = j ⊕ s for every i.

The goal is to find s.

Notice that x can be seen as a function x : [N ]→ [N ] 2-to-1 (two values of the domain
are projected onto the same value in the codomain), where this fact is determined by s.
Differently from the previous examples, the queries now are of the same form: The input
x = (x1, . . . , xN ) has variables that are not scalars, but strings of n numbers themselves,
and one query produces completely such string |i, 0n〉 7→ |i, xi〉.

This problem can also be seen in the following form: We can consider that we have n2n

binary variables that we can query individually. Moreover, we can simulate one xi-query
using only n binary queries. This alternative view does not affect the number of queries
too much.

The algorithm is quite similar to the Deutsch-Jozsa’s one. Now, we start with 2n zero
qubits of the following form:

|0n〉 |0n〉

and apply Hadamard transforms just to the first n qubits, i.e., to |0n〉, getting:

1√
2n

∑
i∈{0,1}n

|i〉 |0n〉.

The second n qubits are still zero, but when we apply a query to the whole term, we
get

1√
2n

∑
i∈{0,1}n

|i〉 |xi〉.



48 CHAPTER 2. QUANTUM ALGORITHMS

At this point, the measurement algorithm is only applied to the second n collection
of qubits. This measurement is not really necessary, but simplifies notably the posterior
analysis. The outcome will be some value xi, what implies that the first part also collapses
to the superposition of the two indices having the xi-value:

1√
2

(|i〉+ |i⊕ s〉) |xi〉.

Once we have this term, we apply Hadamard gates just to the first n qubits again.

1√
2n+1

 ∑
j∈{0,1}n

(−1)i·j |j〉+
∑

j∈{0,1}n
(−1)(i⊕s)·j |j〉

,

and taking into account that the following property holds for the exclusive-or operation

(i⊕ s) · j = (i · j)⊕ (s · j),

we can write the resulting state as:

1√
2n+1

 ∑
j∈{0,1}n

(−1)i·j(1 + (−1)s·j) |j〉

.

For the final measurement, notice that |j〉 has non-zero amplitude iff s · j = 0 mod 2,
so measuring the state gives an element from the set {j|s · j = 0 mod 2}. Hence, we are
getting a linear equation that gives some information about s.

We can repeat now this algorithm until we get n−1 independent linear equations with
information on s. The solutions to these equations will be 0n and the right s (which can
be computed by a classical algorithm).

All of this can be done by means of a classical circuit of size O(n3). However, Simon’s
algorithm finds s using O(n) operations in the form of xi queries and a polynomial amount
of many other operations.

2.5 Fourier transform

In this section, we are going to present and develop the quantum Fourier transform,
which is the key ingredient for quantum factoring and many other interesting quantum
algorithms, as we will see in the following sections. The quantum Fourier transform is
essentialy an efficient quantum algorithm for performing a Fourier transform of quantum
mechanical amplitudes, and it appears in many different versions throughout classical
computing, in areas ranging from signal-processing to data compression in complexity
theory.

In its usual mathematical notation, the discrete Fourier transform takes as input a
vector of complex numbers x0, . . . xN−1, where the length of this vector, N , is a fixed
parameter, and outputs another vector of complex numbers y0, . . . , yN−1 defined by

yk :=
1√
N

N−1∑
j=0

xje
2πijk/N .
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Notice that, in the previous expression, i stands for the imaginary unit.
The quantum Fourier transform is essentialy the same transformation, although the

conventional notation for the quantum Fourier transform is a bit different. Consider an
orthonormal basis {|0〉 , . . . , |N − 1〉}. Then, the quantum Fourier transform is defined as
the linear operator with the following action on the basis states:

|k〉 7→ 1√
N

N−1∑
j=0

e2πijk/N |j〉.

Equivalently, by considering the action on an arbitrary state, we can write:

N−1∑
j=0

xj |j〉 7→
N−1∑
k=0

yk |k〉,

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . Moreover,
this definition is a unitary transformation, which implies that can be implemented as the
dynamics for a quantum computer.

We can derive an equivalent expression for the quantum Fourier transform. For that,
let N = 2n for some integer n and consider the basis {|0〉 , . . . , |2n − 1〉}, which is, as
mentioned previously, the computational basis for an n qubit quantum computer. For
purposes of simplification of notation in the derivation of the aforementioned expression,
let us write the state |j〉 using the binary representation j = j1j2 . . . jn

1.
Then, after some calculations that we omit in this text for the sake of simplicity in the

reading (we refer the reader to [2] for the specific algebra), the quantum Fourier transform
can be given the following useful product representation:

|j1, . . . , jn〉 7→
(
|0〉+ e2πi0,jn |1〉

) (
|0〉+ e2πi0,jn−1jn |1〉

) (
|0〉+ e2πi0,j1...jn |1〉

)
2n/2

.

This product representation allows to construct an efficient quantum circuit to compute
the Fourier transform (see Figure 2.10, extracted from [2]) and to prove that the quantum
Fourier transform is unitary. It also provides insight into algorithms based upon the
quantum Fourier transform.

An important fact to compare the quantum algorithm to compute the quantum Fourier
transform with their classical analogues is the number of gates that the circuit of Figure

1Given a state |j〉, we say that its binary representation is given by

j = j1j2 . . . jn,

or, more formally,

j = j12n−1 + j22n−2 + . . .+ jn20

if |j〉 is of the form

|j〉 = |j1〉 ⊗ |j2〉 ⊗ . . . |jn〉.

Following this convention, it is also convenient to adopt the notation 0, j1 . . . jn to represent the binary
fraction

j1
2

+ . . .
jn
2n

.
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Figure 2.10: Quantum circuit to compute the quantum Fourier transform.

2.10 uses. The different steps of this circuit have the following numbers of gates, respec-
tively:

1. One Hadamard gate and n− 1 phase gates on the first qubit 7→ n gates.

2. One Hadamard gate and n− 2 phase gates on the second qubit 7→ n− 1 gates.

3. ...

Hence, we see that

n+ (n− 1) + . . .+ 1 = n(n+1)
2

gates are required, plus the swap ones. Indeed, at most n/2 swaps are required, and each
swap is accomplished using three CNOT gates.

Therefore, this circuit provides a O(n2) algorithm to perform the quantum Fourier
transform. In contrast, the best classical algorithm for computing the discrete Fourier
transform on 2n elements are elements such as the Fast Fourier Transform (FFT). This
algorithm computes the discrete Fourier transform using O(n2n) gates. This implies that
it is exponentially ”worse” than its quantum analogue, meaning that it requires exponen-
tially more operations to compute the Fourier transform on a classical computer than to
implement the quantum Fourier transform on a quantum computer.

To finish this section, let us remark that, even though the previous comparison between
classical and quantum algorithms to compute Fourier transforms, and the exponential
improvement of the latter with respect to the first one, might allow us to think that this
could have huge applications in real-world data processing applications (for example, in
computer speech recognition, the first step in the recognition of phonemes is to perform the
Fourier transform to the digitalized sound), in general one cannot use the quantum Fourier
transform to speed up the computation of these Fourier transforms. This is due to the fact
that amplitudes in a quantum computer cannot be directly accesed by a measurement and,
thus, it is not possible to determine the Fourier transformed amplitudes of the original
state. However, the quantum Fourier transform is still quite useful for some purposes
related with some specific algorithms, as we will see in the following two sections.

2.6 Shor’s quantum factoring algorithm

The most important quantum algorithm so far is probably Shor’s algorithm. If we could
use a quantum computer with a sufficiently large number of qubits and without succumbing
to noise and other quantum decoherence phenomena, Shor’s algorithm would break public-
key cryptography schemes such as the widely used RSA scheme, which is based on the
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assumption that factoring large numbers is computationally intractable. Currently it
is known that this assumption is valid for classical (non-quantum) computers, since no
classical algorithm is known that can factor in polynomial time. However, Shor’s algorithm
shows that factoring is efficient on an ideal quantum computer, so it may be feasible to
defeat RSA by constructing a large quantum computer. Hence, it constitutes a powerful
motivation for the design and construction of quantum computers and for the study of
new quantum computer algorithms. Moreover, a variation of this algorithm can also be
used to attack the schemes based on the discrete logarithm problem (in particular, the
ones associated to elliptic curves).

We will devote this section to explain this algorithm and to introduce the necessary
tools to understand the soluiton to the problem that it solves. Most of the images that
appear on this section have been extracted from [21], a text that we will also follow in the
proofs that appears here.

Roughly speaking, the statement of the problem of factoring integer, in which Shor’s
algorithm can be applied, is as follows.

Problem 4. Let N be a natural number. The goal is to find e1, . . . en natural numbers
and p1, . . . , pn prime numbers so that

N = pe11 · . . . · p
en
n .

Notice that this decomposition of N in prime factors is unique.

We can do two initial simplifications to the problem without loss of generality. The
first one is that, given N , it is enough to split it into two other integers N1 and N2 such
that N = N1 ·N2. Hence, after a linear number in size of the input of such steps, we are
guaranteed to reach prime factors, thus the second simplification is that we can assume
that N is a product of two primes, N = p · q.

Classically, there exist some naive algorithms for the factoring problem that work in
time O(

√
N). The fastest known algorithm for this problem is called Field Sieve algorithm,

and it works in time 2O( 3√logN).
Shor’s result yields the fact that one can do better with a quantum computer.

Theorem 1. There exists quantum algorithm that solves the factoring problem with
bounded error probability in polynomial time.

We will devote most of this section to prove this result, following several steps for that.
First, we will show that the factoring problem is equivalent to the order-finding problem,
since a fast algorithm for order-finding problem implies a fast algorithm for factoring
problem. Later, we will present a fast quantum algorithm for order-finding.

2.6.1 Reduction of factoring to order-finding

First, notice that the set of modulo N coprime numbers with N , i.e.,

{1 ≤ x ≤ N : gcd(x,N) = 1}

where gcd(x,N) denotes the greatest common divisor of x and N , forms a group under
multiplication modulo N . Moreover, given x and N such that gcd(x,N) = 1, we define
the order of x by the minimum positive r such that xr ≡ 1(mod N) , and denote it by
ord(x).
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We can now state the order-finding problem.

Problem 5. Given x and N such that gcd(x,N) = 1, the order-finding problem
consists of finding ord(x).

We will devote the rest of the subsection to prove that Problem 4 can be reduced to
Problem 5.

For that, let us first introduce and prove three technical lemmata. The first and last
one will be essential to obtain the desired result, whereas the second one will be used in
the proof of the third one.

Lemma 2. Given a composite number N and a number x that is a nontrivial square
root of 1 modulo N , i.e., verifying x2 ≡ 1(mod N) with neither x ≡ 1(mod N) nor x ≡
−1(mod N) holding, we can efficiently compute a nontrivial factor of N .

Proof. Since, by assumption, x2 ≡ 1(mod N), we have:

x2 − 1 ≡ (x− 1)(x+ 1) ≡ 0(mod N).

Now, as none of

x ≡ 1(mod N) , x ≡ −1(mod N)

hold, we know that 1 < x < N − 1, and, hence, both gcd(x− 1, N) and gcd(x+ 1, N) are
nontrivial factors of N .

Finally, since there exists a fast algorithm for computing the gcd of two numbers,
Euclid’s algorithm, the efficiency follows from there.

Now, the next lemma reads as follows:

Lemma 3. Let p be an odd prime and let x be a uniformly random element verifying
0 ≤ x < p. Then, ord(x) is even with probability, at least, 1/2.

Proof. In virtue of Fermat’s little theorem, it is clear that, for every x, the following holds:

xp−1 ≡ 1(mod p).

Another well-known result in mathematics is that the multiplicative group modulo a
prime number is a cyclic group, i.e., there is an element g (from ‘generator ’) that generates
all the elements of the group, in the sense that any element can be written by

x ≡ gk(mod p)

for some k. Since x is chosen uniformly at random, k is odd with probability 1/2.

Assume now that k is odd. Then, since x ≡ gk(mod p), we have

xord(x) ≡ gk ord(x) ≡ 1(mod p).

From here, we can deduce

p− 1|k ord(x),
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and, thus, since both p and k are odd (and p− 1 is even), ord(x) has to be even.

To sum up, if k is odd, something that happens with probability 1/2, ord(x) is even.
If k is even, however, we cannot say anything on ord(x) in general. Putting both facts
together, ord(x) is even with probability, at least, 1/2.

The last lemma that we present in this section, and in whose proof we use the previous
one, is the following:

Lemma 4. Let N = p · q, with p and q prime numbers, and assume that N is an odd
number. Let us further assume that x is taken uniformly at random from 0, . . . , N − 1.

If gcd(x,N) = 1, then with probability at least 3/8, we have that ord(x) = r is even
and xr/2 6= ±1(mod N).

Proof. In virtue of the Chinese remainder theorem, choosing x uniformly at random from
0, . . . , N − 1 is the same that choosing x1 uniformly at random from 0, . . . p − 1 and,
independently, x2 uniformly at random from 0, . . . q − 1. Moreover, if we denote r1 =
ord(x1) and r2 = ord(x2), we can see that r1|r and r2|r.

Now, we can first see that the probability that r is even is, at least 3/4. Since we are
assuming that N is an odd number, it is clear that both p and q also have to be odd. If x1

is odd, then r1 has to be even, and the same happens for x2 and r2. Hence, since r1 even
or r2 even imply that r is even, and x1 and x2 are chosen uniformly at random, applying
Lemma 3 we get that the probability that r is even is at least 3/4.

Finally, we can prove that the probability of xr/2 ≡ ±1(mod N) is, at most, 1/2 when
r is even. Indeed, notice that, under this assumption, xr ≡ 1(mod p) and there are only
two square roots of 1 modulo a prime number, namely ±1. Again in virtue of the Chinese
remainder theorem, it follows that there are only four roots of 1 modulo N . Only two of
them make xr/2 6= ±1(mod N).

In the last part of the subsection, we can see that the reduction from Problem 4 to
Problem 5 follows directly from Lemma 2 and 4. Indeed, if someone computes the function
ord(·) for us, the prime factors of N can be found classically. By checking the answer,
something that can be done efficiently easily, and repeating the procedure several times,
we can increase the probability of success.

2.6.2 The order-finding problem

Now that we have seen that the problem of efficiently factoring a number can be reduced
to the problem of efficiently finding ord(x) = r, we are going to find an example for
the second problem. This example is Shor’s algorithm, and we devote this subsection to
analyze it.

First, we will start with a simplified case, before going to the more general case.

Simplified case

In this case, we use an auxiliary number Q, which is sufficiently large, and which verifies
Q >> N2, and assume that r|Q. The case when r - Q does not differ drastically to the one
we are studying, so we will restrict for the moment to that for the simplicity of notation,
and we will proceed to the more difficult case in the next section.

The algorithm that we are going to present uses two registers:
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• Register 1 stores a number (mod Q = 2q).

• Register 2 stores a number (mod N).

It also has several steps, that we are going to present individually:

1. The registers are initially in the state |0〉 ⊗ |0〉.

2. We apply the Fourier Transform modulo Q to the first qubit, to get the state

1√
Q

Q−1∑
a=0

|a〉 ⊗ |0〉.

3. Consider now the function f(a) = xa(mod N), a function that we can easilly com-
pute classically, and has r as its smallest order (or period). Notice that this function
can be computed in log a multiplications, and also that f is different in [0, r − 1]
(otherwise, it would have a smaller period). Applying then f to the state obtained
for the first qubit in the previous step, we get

1√
Q

Q−1∑
a=0

|a〉 |f(a)〉.

4. At this point, we measure the second qubit, and when we perform this measure-
ment, the second register collapses to some value, f(k), for k uniformly random over
0, . . . r − 1. Then, all superposed states which are inconsistent with the measured
value must dissapear. Hence, the state of the two registers must be given by

1√
Q
r

Q
r
−1∑

a=0

|ar + k〉 |f(k)〉.

5. We have set up a periodic superposition of period r in the first register (the value
that we wanted to compute), so we can drop the second register. At this moment,
Shor’s algorithm comes into play, by Fourier sampling modulo Q.

As we are going to perform Fourier sampling, we can drop the shift value k by the
properties of Fourier Transforms seen in Section 2.5. This allows us to move k to
phase. Then, applying the Fourier sample to the state

1√
Q
r

Q
r
−1∑

a=0

|ar + k〉,

we get

1√
r

r−1∑
a=0

ωak
∣∣∣∣aQr

〉
,

where ω is a primite qth root of unity, i.e.,
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ω = e
2πi
Q .

6. Now, we measure this register. The measurement provides
∣∣∣aQr 〉, where a is a random

variable uniformly from 0, . . . , r−1. It is easy to see then that with great probability

we have gcd
(
a, Qr

)
= 1. If that is the case, then by computing gcd

(
aQr , Q

)
we

shoul get Q
r . Since we already know Q, it is clear that, from Q

r , computing r is
straightforward.

General case

In the previous subsubsection we have assumed r|Q. As we said in its introduction, we
will devote this subsubsection to the case r - Q, which is a bit more difficult in notation,
but the same in spirit.

Let us perform the same algorithm than before up to Step 3. From Step 4 on, the
situation is a bit different. After applying the first measurement, we get the state:

1√
bQr c

bQ
r
c−1∑

a=0

|ar + k〉.

In this case, this is not a coset of a subgroup, so we cannot proceed as in the previous
case. However, we can anyway take the Fourier transform, and we will show that we get

a constructive interference primarily at the points which are close to multiples of
Q

r
, so

close that they can be ‘rounded’ to the nearest multiple. This is, in summary, the fact
that will allow us to calculate r with reasonable probability.

Let us explain that step by step. First, if we apply a Fourier transform to the previous
expression, we get

Q−1∑
k=0

αk |k〉,

where the coeficient αk is given by:

αk =
1√
Q
· 1√
bQr c

bQ
r
c−1∑

a=0

(
ωrk
)a

.

One can notice that if Q is small, then terms in the sum cover only a small angle of the
complex plane, and hence the magnitude of the sum is almost the sum of the magnitudes.
We will see this fact explicit in a couple of lemmas that appear at the end of this section,
where we will prove that, with probability more than 1/16, we can sample a k such that

−r
2
≤ kr(mod Q) ≤ r

2
.

Meanwhile, let us just assume that this fact is true and continue with the algorihtm.
First, notice that the previous expression is equivalent to

|kr − lQ| ≤ r

2

for a certain integer l, or what is the same,
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r

∣∣∣∣ ≤ 1

2Q
.

This condition implies that k
Q is a 1

2Q -approximation of l
r . Moreover, if we measure k,

we get to know Q, so we know the quotient, which constitutes the good approximation of
l
r .

Furthermore, notice that l is randomly chosen from [0, r− 1], which implies that, with
probability at least 1/ log l, l and r are coprimes, which allows us to compute r from l/r.
Then, in principle, if we are able to choose Q much larger than N , this way of reasoning
provides a good approximation. To see how much larger than N needs to be Q we use
continued fractions2. Indeed, we just have to compute continued fractions until we get
precision of at least 1

2Q . Since l/r is rational, we know that, for a certain integer n, the
continued fractions verify CFm(l/r) = l/r for every m ≥ n. Hence, if we assume that the
approximation is some rational number l′/r′, clearly r = r′. Otherwise, we would have∣∣∣∣ lr − l′

r′

∣∣∣∣ ≥ 1

rr′
≥ 1

N2
,

and this would be a contradiction, since both l
r and l′

r′ are 1
2Q ≤

1
2N2 close to the same

rational fraction (the one that approximates k
Q from the beginning).

Therefore, r = r′, so by using these continued fractions we have finished the algorithm.
In the last part of this section, we will state and prove a couple of lemmas that have

been used in the development of the algorithm.

Lemma 5. If − r
2 ≤ kr(mod Q) ≤ r

2 for some kr, then

|αk| ≥
1

22/3
√
r

.

Proof. Let us denote

β = e
2πirk
Q

a
= ωrk.

2The idea for this part of the proof lies in the use of continued fractions to approximate real numbers
using finite numbers of integers.

A continued fraction is defined in the following way: A real number α can be approximated by a set of
positive integers a0, a1 . . . an by

CFn(α) = a0 +
1

a1 + 1

a2+
1

...+ 1
an

=
An
Bn

,

where the numbers ai are chosen in a specific way, and An and Bn are always integers. To explain the
procedure to chose these numbers, let us consider π and suppose that we want to approximate it with four
decimals. Then, we get:

π ≈ 3, 1415 = 3 +
1415

10000
= 3 +

1

7 + 95
1415

= 3 +
1

7 + 1

14+ 85
95

.

Moreover, continued fractions satisfy the following two important properties, which we are essential for
the last step of the algorithm:

1. CFn(α) is the best rational approximation of α with denominator ≤ Bn.

2. If α is rational, then it coincides, from some n on, with the approximations CFn(α).

Finally, it is easy to notice that continued fractions are easily computable for any rational number.
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It is clear that this expression corresponds to a vector of the complex plane. Also, the
sum that appears in the term αk, i.e.,

bQ
r
c−1∑

a=0

βa

is a geometric series of ratio β.

Because of the assumption of the statement of the lemma
(
− r

2 ≤ kr(mod Q) ≤ r
2

)
, the

terms of the series cover less than or equal to an angle π on the complex plane (since β
makes a small angle with the real line). Then, as we can see in Figure 2.11,

Figure 2.11: β makes a small angle with the real line.

half of the terms on the previous series make an angle which is less than or equal to
π

4
with the resultant vector of the addition of the terms in the series. Then, since the cosinus
is a decreasing function from 0 to π/4, each term contributes with a fraction that is at
least:

cos
(π

4

)
=

1√
2

of its length to the resultant vector. Hence, the magnitude of the resultant is, at least:

1

2
· 1√

2
· Q
r
· 1√

Q

1√
bQr c

=
1

23/2
· 1√

r
.

Lemma 6. The fact of the statement of the previous lemma, i.e.,

−r
2
≤ kr(mod Q) ≤ r

2

happens with probability P (X ≤ 1), where X is a random variable that follows a distribu-
tion N (0, 1) .
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Proof. If gcd(r,Q) = 1, then the element r−1(mod Q) exists. Thus, as the variable k
varies in the range [0, Q − 1], k · r must take values that constitute a permutation of
{0, 1, . . . , Q− 1}. As we can see in the following picture,

Figure 2.12: At least r values of kr lie in the range [Q− r/2, r/2].

at least r values of kr lie in the range [Q− r/2, r/2].
Now, assume that gcd(r,Q) 6= 1. In this case, the distribution of k · r (mod Q) is a bit

different, and can be shown in the following picture:

Figure 2.13: At least r/2 values of kr lie in the range [Q− r/2, r/2].

In this case, as we can see, at least r/2 values of k·r lie in the desired range [Q−r/2, r/2].
Hence, if we consider both cases together, we have that, in any case, at least r/2 values

of kr lie in the range [Q− r/2, r/2], thus satisfy the condition:

−r
2
≤ kr(mod Q) ≤ r

2
.

In virtue of Lemma 5, since each one of them has an amplitude which is at least

1

23/2r1/2
,

we get that the probability to get such a k when sampling is, at least,

r

2

(
1

23/2r1/2

)2
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and this is greater than 1/16. Therefore, the condition on the statement of the lemma
happens with probability greater than P (X ≤ 1) for a normal random variable.

To conclude this section, let us just recall that, to factor and integer N , Shor’s al-
gorithm runs in polynomial time. More specifically, it takes quantum gates of order
O((logN)2(log logN)(log log logN)) using fast multiplication, and, thus, the integer fac-
torization problem can be efficiently solved on a quantum computer (and belongs to the
complexity class BQP). This proves Theorem 1.

For the sake of simplicity, we can briefly summarize the whole factorization of N in
the following steps:

1. A reduction of the factoring problem to the problem of order-finding (this can be
done on a classical computer).

2. A quantum algorithm to solve the order-finding problem.

Let r be the period that we want to find.

(a) Initialize the registers in the state |0〉 ⊗ |0〉.
(b) Apply the Fourier Transform modulo Q to the first qubit, to get the state

1√
Q

Q−1∑
a=0

|a〉 ⊗ |0〉.

(c) Consider f(a) = xa(mod N) and apply it to the state:

1√
Q

Q−1∑
a=0

|a〉 |f(a)〉.

(d) Measure the second qubit:

1√
bQr c

bQ
r
c−1∑

a=0

|ar + k〉.

(e) Apply Fourier transform:

Q−1∑
k=0

αk |k〉, where αk =
1√
Q
· 1√
bQr c

bQ
r
c−1∑

a=0

(
ωrk
)a

.

(f) With probability more than 1/16, we can sample a k such that

−r
2
≤ kr(mod Q) ≤ r

2
.

(g) The previous fact implies that k
Q is a 1

2Q -approximation of l
r . Using continued

fractions, we get r from l/r.

This is much faster than the most efficient known classical factoring algorithm, the
Field Sieve algorithm, that works in time 2O( 3√logN). The efficiency of Shor’s algorithm,
as seen before, is due to the quantum Fourier transform and the modular exponentiation.
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2.7 Grover’s algorithm

The second most important quantum algorithm, after Shor’s, is Grover’s quantum search
problem [10]. Attacks based on this algorithm can be used to break cryptographic schemes
in symmetric key, such as AES, as well as schemes based on hash functions, such as SHA2
or SHA3. We will discuss this in more detail in the next chapter.

In general, as mentioned in previous sections, much of the excitement concerning quan-
tum computation comes from the fact that quantum algorithms can provide improvements
over classical algorithms. In this particular case, Grover’s algorithm exhibits a quadratic
speedup with respect to the classical case. Although it does not provide exponential
speedup, as Shor’s did, it is much more applicable.

Problem 6. For N = 2n, consider an arbitrary x ∈ {0, 1}N . The goal is to find i ≤ N
such that xi = 1, and to output ‘no solutions’ if such i does not exist.

This problem is called the unstructured search problem.

It can be formulated equivalently as a database search problem, in which we consider
a database and we want to find an item in it which fulfills certain specifications. One
example of this can be a database of N names and we want to find the position of a
specific name in it.

We call this search “unstructured” because we are not given any information about
how the database is ordered. If, for example, we knew in advance that the database
was sorted, then we could perform a binary search and find any element in logarithmic
time. However, since that is not the case, with classical circuits one cannot do better than
performing a linear number of queries to find the target element.

However, in the quantum setting, Grover’s algorithm leads to the following theorem:

Theorem 7. The unstructured search problem can be solved in O(
√
N) queries using

quantum computation (and O(
√
N logN) other gates).

In fact, it was shown in [13] that, up to a constant factor, this is the best that one can
do for this problem under the quantum computational model, since the query complexity
is Θ(

√
N). In particular, since the unstructured search problem cannot be solved in

logarithmic time, this problem cannot be used as a way to solve NP problems in polynomial
time. However, there is still a quadratic improvement with respect to the classical case.

2.7.1 Algorithm

Let us consider the following notation introduced in Section 2.2:

Ox,± |i〉 = (−1)xi |i〉

to denote the ±-type oracle for the input x. Let us also denote by R the unitary trans-
formation that puts a phase −1 in front of all basis states which are different from |0〉:

R |i〉 =

{
− |i〉 if |i〉 6= |0〉
|i〉 if |i〉 = |0〉

This transformation R is clearly independent of the input x for the algorithm, and can
be implemented using O(n) elementary gates.

Now, let us define by Grover iterate the following quantity:
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G = H⊗nRH⊗nOx,±,

where we recall that H denotes the Hadamard gate. Notice that 1 Grover iterate provides
1 query.

Let us develop now each one of the steps of the algorithm:

1. Grover’s algorithm starts with the n-bit state |0n〉.

2. Later, it applies a Hadamard transformation to all the qubits, and gets the uniform
superposition

|U〉 =
1√
N

∑
i

|i〉

of all the indices N .

3. Now, it applies the Grover iterate G to this state k times, where this k will be
conveniently chosen later.

4. Finally, it measures the final state.

We can see this algorithm represented graphically in Figure 2.14.

Figure 2.14: Graphical representation of Grover’s algorithm.

Intuitively, the idea behind this algorithm is that in each iteration some amplitude
is moved from the indices of the 0-bits to the ones of the 1-bits. Hence, the algorithm
stops when nearly all the amplitude is on the indices of the 1-bits, and in this case the
measurement of the final state will probably give the index of a 1-bit.

Let us now analyze this explicitly. For that, we define the following states:

|G〉 :=
1√
t

∑
i :xi=1

|i〉 , |B〉 :=
1√
N − t

∑
i :xi=0

|i〉,

where t = # {i : xi = 1}. The first one provides a superposition of the basis states for
whose index i we have xi = 1, and the second one the same when xi = 0. Then, it is clear
that we can write the uniform superposition of the second state of the algorithm as:

|U〉 =
1√
N

N−1∑
i=0

|i〉 = sin(θ) |G〉+ cos(θ) |B〉 ,
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for a certain θ that is given by

θ = arcsin

(√
t

N

)
.

To determine the value of k, notice that Grover iterate G is actually the product of two
reflections in the 2-dimensional space spanned by |G〉 and |B〉. Indeed, since a reflection
in a subspace W ⊂ V is a unitary A such that Av = v for every v ∈ V , and Aw = −w for
every w orthogonal to V , we can easily see that

• Ox,± is a reflection through |B〉.

• H⊗nRH⊗n is a reflection through |U〉.
Indeed, the following is satisfied:

H⊗nRH⊗n = H⊗n(2 |0n〉 〈0n| − 1)H⊗n = 2 |U〉 〈U | − 1.

Hence, we can restate Grover’s algorithm as follows, assuming that we know that the
fraction of solutions is ε = t/N :

1. Grover’s algorithm starts with the n-bit state |0n〉.

2. Later, it applies a Hadamard transformation to all the qubits, and gets the uniform
superposition

|U〉 =
1√
N

∑
i

|i〉

of all the indices N .

3. Now, it repeats the following k times, where k = O(1/
√
ε):

(a) It reflects through |B〉, i.e., it applies Ox,±.

(b) It reflects through |U〉, i.e., it applies H⊗nRH⊗n.

4. Finally, it measures the first register and checks that the resulting i is a solution.

2.7.2 Geometrical proof of the algorithm

In this subsection, we are going to show that the algorithm described above indeed works.
This geometrical argument has been extracted from [5].

Let us consider the 2-dimensioanl real plane spanned by |G〉 and |B〉. Consider

|U〉 = sin(θ) |G〉+ cos(θ) |B〉.

Then, if we consider the two reflections mentioned on the third step of the algorithm
above, we can see that the initial angle increases from θ to 3θ, moving us towards |G〉, as
we can see in Figure 2.15.

For the next two reflections, the angle increases with another factor 2θ. Hence, after
k applications of the two reflections, the initial state has been transformed to
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Figure 2.15: First iteration of the third step of Grover’s algorithm. In the first picture, it
starts with |U〉; in the second one, it reflects through |B〉 to get Ox,± |U〉; and in the last
one, it reflects through |U〉 to get G |U〉.

sin((2k + 1)θ) |G〉+ cos((2k + 1)θ) |B〉.

If we now measure this state, it is clear that the probability of seeing a solution is

Pk = sin((2k + 1)θ)2,

and we are interested on this Pk being as close to 1 as possible. Notice that, for example,
if we choose k̃ = π/4θ − 1/2, so (2k̃ + 1)θ = π/2 and, thus, Pk̃ = sin(π/2)2 = 1.

One example for these quantities can be:

t = N/4, θ = π/6, k̃ = 1.

Unfortunately, in general, k̃ = π/4θ − 1/2 is not an integer, and we can only consider
an integer number of applications of the Grover iterate. Therefore, our aim will be to
choose k as the closest possible to k̃ integer, and in this scenario our final state will still
be close to |G〉.

The failure probability is still small, as we can see below (assuming t << N):

1− Pk = cos((2k + 1)θ)2

= cos
(

(2k̃ + 1)θ + 2(k − k̃)
)2

= cos
(
π/2θ + 2(k − k̃)

)2

= sin
(

2(k − k̃)
)2

≤ sin(θ)2

=
t

N
,

where we have used
∣∣∣k − k̃∣∣∣ ≤ 1/2 in the inequality. Finally, since arcsin(θ) ≥ θ, the

number of queries is

k ≤ π

4θ
≤ π

4

√
N

t
.
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2.7.3 Amplitude amplification

The analysis worked above can be extended to a much more general setting. To see that,
consider ξ : Z → {0, 1} any Boolean function. We will call solutions the inputs z ∈ Z
satisfying ξ(z) = 1.

Suppose now that we have an algorithm that checks whether z is a solution or not.
Let us denote this by:

Oξ(|z〉) = (−1)ξ(z) |z〉.

We further assume that we have some quantum or classical algorithm, denoted by A,
that uses no intermediate measurements and, when applied to |0〉, has probability p of
finding a solution. Hence, the amplitude amplification algorithm only needs to run the
algorithm A O(1/

√
p) times. This algorithm is implemented as:

1. Consider the starting state |U〉 = A |0〉.

2. It repeats the following O(1/
√
p) times:

(a) It reflects through |B〉, i.e., it applies Oξ.

(b) It reflects through |U〉, i.e., it applies ARA−1.

3. It measures the first register and checks that the resulting element x is marked.

We can now define θ = arcsin
(√
p
)

and |G〉 and |B〉 as we did before, within the
geometric argument for Grover’s algorithm. Hence, an analogous reasoning will show that
the amplitude amplification finds a solution with probability close to 1.

Therefore, we can speedup many heuristic classical algorithms by this procedure. In
general, any algorithm that has non-trivial probability of finding a solution can have this
probability amplified to nearly 1.

Finally, notice that Grover’s algorithm is a special case of amplitude amplification,
where Oξ = Ox and A = H⊗n.



Chapter 3

Introduction to post-quantum
cryptography

In the previous chapter, we presented Shor’s algorithm (Section 2.6), which is one of
the most important examples that quantum computers would have a great impact on
the security of many cryptographic scheme. Indeed, this algorithm, used on a quantum
computer, would allow to factor numbers and compute discrete logarithms inside abelian
groups in polynomial time. Since many public key schemes nowadays are built upon
the assumption that an enormous number cannot be factorized efficiently, the existence
of quantum computer would be an important problem for the security of almost all our
digital communications.

In this chapter, we are going to present an introduction to post-quantum cryptogra-
phy , a new line of research that has appeared due to the situation aforementioned. It is
also known as quantum-resistant cryptography, and its main objective is to develop new
cryptographic schemes that would resist attacks from quantum computers (and algorithms
implemented on them). Due to the appearance of the first prototypes of quantum com-
puters of a small number of qubits ([36], [37], [38], etc) and the possibility of (hopefully)
commercializing functional quantum computers in the next decades, the NIST [35] has
announced a competition to promote fundamental research on this new field by looking
for an standard (or several) quantum-resistant public-key cryptographic algorithms. In-
deed, the development of these new cryptographic schemes is a long-time process, and
that is the reason to start the development of the field soon enough, even though quantum
computers are still far from becoming an actual threaten.

This chapter will consist of two well-differentiated parts. In the first one, we will
study “quantum attacks”, as an extension of the last sections of the previous chapter,
presenting a couple of works where we can see how quantum algorithms could actually
attack public-key security. In the last part of the chapter, and of the project, we will
show a brief introduction to the field of post-quantum cryptography, presenting a basic
description of the different kinds of schemes that are studied in this field and a summary
on the competition promoted by NIST.

3.1 Quantum attacks

This section is mainly based in the works [19] and [20], as well as in the quantum algorithms
presented in the previous chapter. As mentioned in the previous chapter, the existence
of quantum computers could have a major impact on the security of many cryptographic

65
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schemes that we currently use. In Section 2.6, we saw that those computers could factor
integer numbers in polynomial time, and since almost all public key schemes are based on
the assumption that such problems are intractable, the development of quantum computers
is compromising the security of most our digital transactions and communications, for
instance.

This situation has motivated the appearance of post-quantum cryptography, and the
NIST competition, to start developping new cryptographic schemes (since it is a long-time
process) before quantum computers are available. In the case of symmetric cryptography,
however, the situation seems a bit less critical (although it has also been less studied).
For many years, people believed that the only advantage that an attacker could have by
using a quantum computer to attack symmetric cryptography would be due to Grover’s
algorithm (Section 2.7), just to speed up brute force search. Since Grover’s algorithm
reduces the effective key-length of any cryptographic scheme by a factor of two, to counter
the attack it would be sufficient to double the key-length of the block cipher, to have again
the same security against quantum attackers than before. There are two main techniques
to do so: Using whitening keys, or multiple encryptions.

However, in some recent works [32] [33], followed by [29], the idea that not only Grover’s
algorithm might be a threat for symmetric cryptography was presented. In the first two
papers, the authors showed that the Even-Mansour construction [28] can be broken in
polynomial time in the quantum CPA-setting [26] (Chosen Plaintext Attack), a setting
in which the attacker is allowed to make quantum queries (to the encryption function in
quantum superposition).

A scheme of the aforementioned Even-Mansour construction can be seen in the Figure
3.1.

Figure 3.1: Even-Mansour construction.

It consists of a public permutation P on n bits, along with two secret keys k1 and k2

that are used as pre-whitening and post-whitening keys for the encryption of a certain
message m, respectively. We will denote the encryption of a message m by means of
this procedure as EncEM (m). With this construction, they showed that if P is randomly
chosen amongst all possible permutations, the advantage that an attacker might have to
distinguish between the encryption and a random permutation is bounded by q2/2n, with
q the number of queries to P of to the encryption oracle.

The main idea of a CPA is that the adversary is allowed to ask for encryptions of
multiple messages chosen in an adaptative form, and this can be formalized just by allowing
the adversary to interact freely with an encryption oracle, a black-box that encrypts its
messages. When the adversary queries the oracle, by providing a plaintext message as an
input, the oracle returns a ciphertext as a reply.

The definition of security under CPA requires that the adversary should not distinguish
the encryption of two arbitrary messages (even if we give access to an encryption oracle
to the adversary). Hence, in the quantum CPA-setting, the previous scheme is completely
insecure. This can be seen following this procedure:
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1. Consider the function

f(x) := EncEM (x)⊕ P (x) = P (x⊕ k1)⊕ k2 ⊕ P (x),

where ⊕ is the XOR, or addition modulo 2.

2. Since this function satisfies

f(x) = f(x⊕ k1) for all x,

Simon’s algorithm can be used to compute the unknown period k1 of the function f
in linear time.

3. Once k1 is computed, computing k2 is trivial even on a classical computer.

The same idea was also used in [29] to construct polynomial time quantum CPA-
attacks on many modes of operations. Since both Grover’s and Simon’s algorithms have
been mentioned in the previous scheme, the natural question then is whether the FX
construction [30] [31] is secure against quantum adversaries.

That construction is an elegant way of, given a block cipher, extending its key-length.
It is the natural combination of the Even-Mansour construction and a generic cipher. A
scheme of the construction can be seen in Figure 3.2.

Figure 3.2: FX construction.

For this construction, we are given a secure block cipher E, encrypting n bit messages
under an m bit key k0, and we introduce two more n bit keys k1 and k2 as pre-whitening
and post-whitening keys, respectively. The new block cipher is then given by

Enc(x) = Ek0(x⊕ k1)⊕ k2.

3.1.1 A quantum attack based on the FX construction based on Grover’s
and Simon’s algorithms

In an idealized model, one can see that, to attack the FX construction scheme, the prob-

ability of success of an attacker is bounded by q2

2n+m
, with q the number of queries to the

encryption scheme and to the underlying block cipher. If one considers only Grover’s algo-
rithm, this scheme seems pretty resistant to quantum computers, and Simon’s algorithm
cannot be used in this case either, since the encryption function is not periodic in general.

However, in [19], the authors show that the FX construction, indeed, can be broken
in the quantum CPA-setting in basically the same time without the whitening keys, i.e.,
in O(m + n)2

m
2 quantum steps, and, thus, whitening keys are useless against quantum

CPA-attackers.
For that, they combine Simon’s and Grover’s algorithms, but, in contrast with the

previous works mentioned above, they need to define a new quantum algorithm based
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on those techniques, and not just apply the known ones to new problems. They remark
in their work that the main difficulty that appears when merging Simon’s and Grover’s
algorithms lies in the technical obstacle that appears when considering both algorithms in
their original form, since Simon’s extracts information on the period bit by bit, whereas
Grover’s requires all the information to be available at once. They hence outcome this
situation by running several instances of the quantum circuit that appears in Simon’s
algorithm in parallel, which can be seen to scale linearly with the size of the quantum
computer. Another key point is that they measure in Simon’s algorithm at the very end
of the quantum algorithm that they design, using the deferred measurement principle of
quantum computation, something that we will further explain below.

We will outline now the main ideas of this work. Since we are going to attack the
FX-construction, let us recall that the block cipher is given by

Enc(x) = Ek0(x⊕ k1)⊕ k2.

Consider the function

f(k, x) := Enc(x)⊕ Ek(x) = Ek0(x⊕ k1)⊕ k2 ⊕ Ek(x).

For a certain key k = k0, the periodicity property in the second argument is satisfied,
i.e., f(k, x) = f(k, x⊕ k1) for all x. However, in general, for k 6= k0, the function f(k, ·) is
not periodic with high probability.

Taking this into account, we present the main idea of the paper:

Idea 1. Define a Grover search over k ∈ Fm2 , where we can test periodicity, for every
f(k, ·), via Simon’s algorithm.

Hence, Grover is considered as an outer loop, with running time 2
m
2 , and Simon is

an inner loop, with polynomial complexity.

Remark 5. We are using the notation Fm2 for the set {0, 1}m to be consistent with the
notation of paper [19], but notice that both notations represent the same set.

Recall now the process of amplitude amplification explained in Subsection 2.7.3, which
we mentioned that could be seen as a generalization of the original Grover search. In
the preivous idea, it plays a role in the following sense: Classically, we can define an
outer loop that guesses k = k0 correctly with probability 2−m, and this would require
expectedly 2m iterations until we hit the correct key, each of which would increase the
probability of success by an amount of 1/p. However, quantumly, each iteration roughly
increases the amplitude of success by a constant, and we would only have to repeat the
loop approximately 2

m
2 .

A more accurate result of amplitude amplification, extracted from [22], is the following.

Theorem 8. Let A be a quantum algorithm on q qubits in which no measurement is
used. Consider the function B : Fq2 → {0, 1} that classifies the outcomes of A as good
or bad. Let p > 0 be the initial success probability that a measurement of A |0〉 is good.
Fix k = d π4θe, for θ defined via sin2(θ) = p.

Define also the unitary operator Q = −AS0A−1SB, for an operator SB that changes
the sign of the good state:

|x〉 7→
{
− |x〉 if B(x) = 1
|x〉 if B(x) = 0

,
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and an operator S0 that changes the sign of the amplitude only for the zero state |0〉.
Then, after the computation of QkA |0〉, a measurement yields good with probability

at least max{1− p, p}.

Following the idea that appears in 1, we would like to choose A as Simon’s algorithm
and apply the previous theorem to this setting. Although, explicitly, the previous theorem
excludes the use of measurement (and Simon’s algorithm uses measurements to extract
information about the period), this technical problem can be easily resolved by the quan-
tum principle of deferred measurement, which postpones all measurements until the very
end of the computation (something that we mentioned before that was one of the key tools
in this procedure).

However, there are still three problems to overcome, that can be addressed in the
following way:

1. Classifier. We need to define a classifier B that identifies states as good if, and
only if, they correspond to the correct key k = k0. Without the knowledge of k1,
it is difficult to do that efficiently, and this is a problem, since Simon’s algorithm
computes some information on k1 iteratively, but we need the complete k1 to be able
to classify states as good or bad.

Simon’s algorithm computes k1 after O(n) iterations. Each one of these iterations
gives a random vector that belongs to a certain subspace, so the main idea of this
step is to parallelize the computation of these vectors (and increase the number of
input bits from O(n) to O(n2)). By means of this, the classifier identifies the states
|x〉 with k = k0 adequately.

2. Simon’s promise. Simon’s algorithm is originally defined for 2-to-1 functions,
but f(k0, ·) does not fulfill that condition, since some values have more than two
preimages.

To overcome this problem, the authors show that any function f(k0, x) has only two
preimages with probability at least 1/2. Then, they only have to argue about the
proper function values f(k0, x).

3. Success probability. If we are able to define a suitable classifier B, it is possible
that we are only capable of lower bounding the initial success probability p instead of
exactly determining it, which might cause problems in properly setting the number of
iterations k.

For this, we can choose the number k of iterations assuming that we would classify
all states with k = k0 as good. This implies that the choice of k might be too small to
fully rotate towards the subspace of good states, but using Theorem 8 it is possible
to show success with probability at least 2/5.

Once these three problems have been resolved, and some technical results are proven
(to see them, consult [19]), the following result can be proven:

Theorem 9. Consider the function f : Fm2 × F3n
2 → Fn2 verifying

(k0, k1, k2, x) 7→ g(k0, x⊕ k1)⊕ k2,

where g : Fm2 × Fn2 → Fn2 and g(k, ·) is a random function Fn2 → Fn2 for any fixed
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k ∈ Fm2 . Then, if we denote fk0,k1,k2(·) := f(k0, k1, k2, ·) and give quantum oracle access
to fk0,k1,k2(·) and g(·, ·), the tuple (k0, k1, k2) can be computed with success probability
at least 2/5 using m+ 4n(n+

√
n) qubits and

2
m
2 ·O(m+ n) oracle queries.

This result show that the FX construction can be broken in the quantum CPA-setting
in O(m + n)2

m
2 quantum steps (the same time without the whitening keys), and, thus,

whitening keys are useless against quantum CPA-attackers.

3.1.2 Hidden Shift Quantum Cryptanalysis

In this subsection we are going to summarize the results of another paper on quantum
attacks [20]. The attacks mentioned in the previous subsection apply in scenarios of super-
position quantum queries, i.e., when the adversary is allowed to perform local computa-
tions on a quantum computer and to perform superposition queries to a remote quantum
cryptographic oracle to obtain the superposition of outputs. This is a strong model for
the attacker.

However, there are some arguments in the community to defend the interest of the
study of the security of symmetric primitives in this setting:

1. The model is simple. Using another model would imply measures that would be
artificial and hard to respect with respect to cryptographic oracles, with complex
manipulations and uncertain outcomes.

2. Safety in this model implies safety in any other scenario, even advanced ones.

3. The model is not trivial: Not every primitive is broken in it. Several resistant
constructions to this model have been proposed.

In a very recent work [25], the key idea that the authors present is to replace the
common addition over (Z/(2))n, mentioned in the previous sections (in this chapter and
the previous one), since it is vulnerable to Simon’s algorithm, and use instead another
operatios that implies a harder problem to solve. For that, they consider addition over
Z/(2n), what they call modular addition, and claim that the quantum hardness of the
hidden shift problem proves that their proposal is secure against quantum chosen-plaintext
attacks.

With this new idea, the attacks are no longer O(n), and Simon’s algorithm does not
hold anymore, but attacks that are faster than the generic ones can be described using
Kuperberg’s algorithm [34]. For example, one can get a speedup from O(

√
2n) to 2O(

√
n).

Classically, we say that a symmetric primitive is secure when no attack is better than
the generic attack that exists. While the complexity of the generic exhaustive search is
2n/2, the complexity of quantum attacks on primitives with modular additions is sub-
exponential. This induces a necessity for a new definition of security, and new tools to
build secure primitives with the countermeasures mentioned above, since the best generic
attacks, such as those based on Kuperberg’s, are better than exhaustive search.

The main contribution of [20] can be summarized in the following points:

1. Improvement and generalization of Kuperberg’s algorithm. They study
Kuperberg’s quantum algorithm for hidden shifts in Z/(N) and its possible appli-
cations in symmetric cryptography. Later, they focus on Z/(2n), which have been
commonly used in symmetric cryptography, and propose a variant for the original
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algorithm that performs better by getting all the bits in one step (since the original
algorithm gets one bit at a time and uses a reducibility property to get the next
one), which provides a great cost reduction of the attack on Poly1305 [27].

Moreover, they also propose a way to solve the hidden shift problem in non-abelian
groups.

2. Simon meets Kuperberg. They propose a new quantum algorithm that considers
a generalization for products of groups of the form Z/(2p)ω and their subgroups
(cyclic groups), which are commonly used in symmetric primitives. Then, they
notice that the problem is easier to solve in this case than in Z/(2ωp). Their analysis
shows that it reduces to Simon when ω = 1 and Kuperberg when p = 1.

3. Simulation of the algorithms. They implement the classical parts of these al-
gorithms (the three mentioned above: Kuperberg, the improved Kuperberg and the
Simon-meets-Kuperberg one) and simulate them to estimate the asymptotic query
complexity and to get values for parameters of interest verifying the expected com-
plexity.

4. Attack on Poly1305 in the superposition model. The authors propose a
quantum attack on Poly1305. A classical and quantum security of 128 bits has been
previously claimed for Poly1305. Their attack works in the superposition model, has
a complexity of 238 and uses their improved version of Kuperberg’s algorithm.

5. Attack on the FX variants. In this step, they answer a question raised in the
paper discussed in the previous subsection, concerning the quantum security of the
FX construction with any group law. If the inner key addition is done with a com-
mutative group law, the improvement in the security of the construction is marginal,
and, thus, the best one can hope to get with non-abelian groups is an improvement
of around n/3 bits of security for an n-bit inner key.

6. Evaluate the proposed countermeasures from [25]. Finally, they try to de-
termine the right size of the symmetric primitives to offer a certain desired security,
and to decide if the proposed countermeasure is sufficient.

As a conclusion, they mention that the new use of modular additions in vulnerable
constructions instead of xor-addition for key addition increases the complexity of the
corresponding quantum key-recovery attack. However, they show that the proposal from
[25] does not seem practical, and would require an internal state size of a few thousand
bits, to be compared with the size of the internal state of AES-256, which is 128 bits.

3.2 A brief overview of post-quantum cryptography

In this section, the last one of the manuscript, we are going to present an introduction to
post-quantum cryptography. This section is mainly based in the works [23], [24] and [39].

An important part of the current possibilities in communication nowadays is protected
by cryptographic systems, such as the Rivest-Shamir-Adleman (RSA) system, or elliptic-
curve cryptography (ECC), among others. However, as we have seen in the previous
chapters, if quantum computing scales as expected, it will break both of them. Hence, the
necessity of the development of post-quantum cryptographic systems is huge.

In the popular RSA public-key system, the public key is a product N = pq of two secret
prime numbers p and q, and the security of this system relies on the difficulty to find the
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factors p and q. However, Shor’s algorithm, introduced in Section 2.6, finds quickly the
prime factorization of any positive integer N .

Optimizing the exact cost of this algorithm is a popular problem in quantum cryp-
tography, but deep research on this topic has been conducted in the last years. This
algorithm, when applied to widely deployed public-key sizes for RSA and ECC, needs
billions of operations on thousands of logical qubits to work. Hence, fault-tolerant attacks
seem likely to require trillions of operations on millions of physical qubits.

Thus, there is still a chance that quantum computing will encounter a fundamental
obstacle that prevents it from ever scaling successfully to the enormous sizes mentioned
above. However, so far, such obstacles have not been identified yet, so we cannot rely on
their possible existence. Since an attack on that system would imply general loses and
chaos in society, prudent risk management is necessary, and it requires defending against
the possibility that these attacks will be successful.

Some other of these cryptographic systems may be affected by Grover’s algorithm,
introduced in Section 2.7. This algorithm constitutes the foundation for most (although
not all) of the positive applications that have been identified for quantum computing.
The ‘Advanced Encryption Standard’ (AES) is an example of a symmetric encryption
algorithm. To see how Grover affects to this system, assume that a user has encrypted
128-bit plaintexts ‘1’ and ‘2’ under a secret 128-bit AES key k, producing the ciphertext
that we denote by

c = (AESk(1), AESk(2)),

which is visible by the attacker. Thus, if we define

f(x) := (AESx(1), AESx(2))− c,

this function can be evaluated quickly by a small circuit, and it will take only 264 quantum
evaluations for Grover’s algorithm to find a root of f . Hence, if qubit operations are small
and fast enough, Grover’s algorithm will threaten many cryptographic systemsn such as
this one, the 128-bit AES keys, and, in general, systems that aim for 2128 security. One
can simply switch to 256-bit AES keys: the extra costs are difficult to notice.

However, not every cryptographic system is necessarily broken by the use of a quan-
tum computer. Some ‘information-theoretic’ MACs such as GMAC and Poly1305 already
protect against quantum computers without any modifications: their security analysis
already assumes an attacker with unlimited computing power.

In the following table (Figure 3.3), which has been extracted from [23], we can see
some examples of some well-known cryptographic systems and their conjectured security
levels after the use on them of a quantum computer:

In this table we can see that, as mentioned above, the statement “quantum computers
destroy cryptography” is, in general, false. Indeed, there are many important classes of
cryptographic systems beyond RSA (and DSA and ECDSA, which are also broken by
quantum computers), as we can enlist below, and which constitute the basis for some
possible schemes in post-quantum cryptography:

• Hash-based cryptography. The most classic example of this class is Merkle’s
hash-tree public-key signature system (1979) [40], and it is built upon a one-message-
signature idea of Lamport and Diffie.

• Code-based cryptography. The most classic example of this class is McEliece’s
hidden-Goppa-code public-key encryptation system (1978) [41].
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Figure 3.3: Examples of some cryptographic systems and their conjectured security levels.

• Lattice-based cryptography. The most interesting example (not the first one)
of this class is Hoffstein-Pipher-Silverman ”NTRU” public-key encryptation system
(1998) [42].

• Multivariate-quadratic-equations cryptography. One of the most interesting
examples of this class is Patarin’s ”HFEv−” public-key encryptation system (1996)
[43], which generalizes a proposal by Matsumoto and Imai.

• Secret-key cryptography. The leading example is the Daemen-Rijmen ”Rijn-
dael” cipher (1998) [44], subsequently renamed ”AES”, the Advanced Encryption
Standard.

We think that these systems resist both classical and quantum computers. Indeed,
nobody has figured out a way to apply Shor’s algorithm to any of these systems. However,
Grover’s algorithm has some applications to these systems, but Grover’s algorithm is not as
shockingly fast as Shor’s algorithm, and cryptographers can easily compensate its impact
by choosing larger key sizes, as we have already mentioned in some parts of this text.

Of course, it does not mean that there is no possible attack on these systems. This
is a familiar risk in cryptography. That is the reason why the community invests huge
amounts of time and energy in cryptanalysis. It is indeed possible that cryptanalysts
find a devastating attack, showing that a system is useless for cryptography, and it hap-
pens sometimes. For example, any usable choice of parameters for the Merkle–Hellman
knapsack public-key encryption system is easily breakable. There are situations in which
cryptanalysts find attacks that are not so devastating but that force larger key sizes (as
with Grover’s algorithm), or, on the contrary, in some cases cryptanalysts study systems
for years without finding any improved attacks, and the cryptographic community starts
to think that the best possible attack has been found, and no attackers in the real-world
will be able to come up with anything better.
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In the following subsections, we will study some details of some proposals that, as
mentioned above, have solidly resisted every suggested attack.

3.2.1 Code-based encryption

In general, high-reliability computer equipment uses an ‘error-correcting code’ to store 64
bits of logical data in 72 bits of physical memory. For that, there is a 64 × 72 generator
matrix G, with each entry in F2: in other words, a 64 × 72 matrix of bits. Hence, this
matrix specifies each of the 72 physical bits as a sum of some of the 64 logical bits modulo
2. The code is denoted by F64

2 G, a 64-dimensional subspace of the vector space F72
2 , namely

the subspace generated by the rows of G.

Since it is an error-correcting code, it is designed so that any single error in the 72
bits (any change of a bit to its opposite) can be reliably corrected, and any double er-
ror (changing any two bits) can be reliably detected (although not necessarily corrected).
Error-correcting codes can be scaled up to correct more errors in longer blocks of data.
They are used in a wide range of applications, including hard drives, satellite communi-
cation, and fault-tolerant quantum computation.

In 1978, early in the history of public-key cryptography, as we have mentioned pre-
viously, McEliece proposed to use a generator matrix as a public key, and encrypting a
codeword (an element of the code) by adding a specified number of errors to it. This gave
birth to code-based encryption systems.

A simple but slow attack strategy against McEliece’s system, as we will see below, is
information-set decoding (ISD). An information-set is a collection of codeword positions
used to determine the rest of the codeword. Indeed, ISD guesses an information set,
hoping that the ciphertext is error-free in those positions; then, it uses linear algebra to
determine the entire codeword, and, finally, it also checks that the ciphertext has the
specified number of errors, understanding that in this case the codeword must be correct.

In this class of systems, we assume that b is a power of 2, i.e., b = 2m. We write
n = 4b log b and consider d = dlog ne and t = b0, 5n/dc. For example, if we assume that
b = 128, then we have n = 3584, d = 12 and t = 149.

In this system, the receiver’s public key is a (d · t)×n matrix K with coefficients in F2,
i.e., 0 or 1. In this setting, the messages that are suitable for encryption are n-bit strings
of “weight t”, i.e., n-bit strings which have exactly t bits set to 1. To encrypt a message
m, the sender only has to multiply K by m, producing a (d · t)-bit ciphertext K ·m.

The basic problem for an attacker to these systems is to “syndrome-decode K”, i.e.,
to undo the multiplication by K, knowing that the input had weight t. Using techniques
from linear algebra, it is easy to work backwards from K ·m to some n-bit vector v such
that K · v = K ·m. However, the problem lies in the fact that there are a huge number
of choices for v, and finding a weight-t choice seems to be extremely difficult. Indeed, the
best known attacks on this problem take time exponential in b for most matrices K.

For the receivers to solve the same problem, they have to generate the public key K
with a secret structure, something that is called hidden Goppa code structure, which will
allow the receiver to decode in a reasonable amount of time. It is possible that the attacker
might be able to detect the hidden Goppa code structure in the public key, although no
such attack is known so far.

More specifically, the receivers begin with some different elements α1, α2, . . . , αn ∈ F2d

and a secret monic, irreducible polynomial of degree t, g ∈ F2d [x]. Then, the main work
for the receiver is to syndrome-decode the following matrix of size (d · t)× n:
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H =


1/g(α1) . . . 1/g(αn)
α1/g(α1) . . . αn/g(αn)

...
. . .

...

αt−1
1 /g(α1) . . . αt−1

n /g(αn)

,

where we can view each element of F2d as a column of d elements of F2 in a standard basis
of F2d . This matrix H is a parity-check matrix for an irreducible binary Goppa code, and
can be syndrome-decoded by Patterson’s algorithm or by faster algorithms.

The public key K of the receiver can be seen as a scrambled version of the matrix H.
More specifically, the receiver’s secret key also includes an invertible (d · t)× (d · t) matrix
S and an n× n permutation matrix P .

• The public key K is the following product: S ·H · P .

• Given a ciphertext K ·m = S ·H · P ·m , the receiver multiplies by S−1 to obtain
H · P ·m.

• Afterwards, they decode H to obtain P ·m.

• Finally, they multiply by P−1 to obtain m.

This constitutes a variant, due to Niederreiter (1986), of McEliece’s original code-
based public-key encryption system. Both systems are really efficient at key generation,
encryption, and decryption, but have been held back by their long public keys.

The main practical problem with these systems is the key size, which is approximately
a megabyte (in systematic form) at a high security level. Many newer code-based systems
put more structure into public keys to allow more compression, but some of those proposals
have already been broken. The only post-quantum public-key-encryption systems that
have received enough study for us to recommend are the original McEliece/Niederreiter
systems.

3.2.2 Lattice-based encryption

The security of lattice-based cryptosystems depends strongly on the conjecture that lattice
problems, a class of optimization problems on lattices, are intractable. In particular, we
shall mention in this section the problem SVP (Shortest vector problem).

In SVP, we consider a lattice L in a vector space V , a basis of such space, and a norm
‖·‖. The problem consists of the following:

Find the shortest non-zero vector in V , measured by ‖·‖, in the lattice L.

Moreover, in other words, if we define

λ(L) := min
v∈L\{0}

‖v‖,

the algorithm should output a non-zero vector v such that ‖v‖ = λ(L). There is also
a γ-approximation version of SVP, which is denoted by SVPγ , and outputs a non-zero
lattice vector of length, at most, γ · λ(L), for a given γ ≥ 1.

To solve the exact version of SVP with the euclidean norm, there are several possible
different approaches, which can be split into two main classes:
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• Algorithms that require subexponential time 2ω(n) and poly(n) memory.

The main examples of this class are lattice enumeration and random sampling re-
duction.

• Algorithms that require both exponential time and space 2θ(n).

The main examples of this class include lattice sieving, computing the Voronoi cell
of the lattice and discrete Gaussian sampling.

An open problem in this field is whether there is an algorithm for solving the exact
SVP that runs in exponential time 2O(n) and requires that memory scales polynomially in
the lattice dimension.

For the γ-approximation version of SVP, with γ > 1, also with the euclidean norm,
the situation is a bit different, and the best known approaches are based on lattice based
reduction. For large γ, of order 2Ω(n), a solution can be found in polynomial time in the
lattice dimension by using the Lenstra-Lenstra-Lovász (LLL) algorithm. And for smaller
γ, the Block Korkine-Zolotarev algorithm (BKZ) is commonly used.

Let us introduce now an specific lattice-based encryption system. Around 1990, Hoff-
stein, Pipher and Silverman introduced an encryption system called NTRU , which has
much smaller keys than McEliece’s system (mentioned in the previous subsection) and
that remains unbroken today. This encryption system was considered lattice-based a pos-
teriori.

This system works as follows: The public key is given by a p-coefficient polynomial
h = hp−1x

p−1 + . . . + h1x + h0 = h, where each coeficient is taken from {0, 1, . . . , q − 1}.
Moreover, we define a ciphertext as another polynomial b in the same range. To compute
it, the sender chooses two secret polynomials, called c and d, with small coeficients, and
computes first

x = hc+ d(mod xp − 1),

and then b is given by

b = x(mod q).

Now, if we define by L the set of pairs (u, v) of p-coefficient polynomials with integer
coefficients verifying 0 = (hu− v(mod xp− 1))(mod q) (considering both modulos consec-
utively), we get that L is a lattice in a 2p-dimensional space, and it contains the point
(c, b − d), which is close to (0, b). Hence, one can translate the problem of finding the
secret c and d, given the ciphertext b and public key h, to the problem of finding a lattice
point close to a certain given point. It is indeed analogous to the decoding problem for
codes, just by taking into account the change of notation (in our case, we understand by
‘close’ the fact of every coefficient being small, but in the case of codes they just count
the number of non-null coefficients).

The system mentioned above, NTRU, works following these schemes. It secretly gen-
erates the public key in a way that makes decoding efficient, since the receiver begins with
a short vector of the form (n, 3m), and uses Euclid’s algorithm to find the element h such
as the lattice contains this vector. In other words, such that

a = hn− 3m(mod xp − 1)

and
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0 = a(mod q).

Then, a simple analysis shows that

(bn(mod xp − 1))(mod q) = (3cm+ dn(mod xp − 1))(mod q),

and, thus,

3cm+ dn(mod xp − 1)

almost certainly has all coefficients strictly between −q/2 and q/2, which makes it easy to
find the element (c, d) given both m and n.

However, in principle, there are many possible ways to attack NTRU and other lattice-
based cryptosystems. One example of this is the recent use of the ‘cyclotomic’ structure of
xp − 1 to break some lattice-based cryptosystems, using an extension of Shor’ algorithm.
As far as we know, NTRU has not been directly affected, but this new class of attacks has
not been adequately explored yet.

Another example that this procedure might not be the right one is the following:
Recently, there have been some attacks in arbitrary lattices that work without exploiting
any polynomial structure, and they have smaller exponents than the best such attacks
known just a few years ago; these lattices are used in cryptosystems which are based on
the so-called ‘learning with errors’. There is still much more research to do in order to
gain confidence in the security of lattice-based cryptography.

3.2.3 Lattice-based signatures

Turning hard lattice problems into signature systems is another possibility, although the
first attempts to do that were already attacked. Surviving systems, though, suffered from
large signature sizes. After this, from 2012, the most promising signature systems are
based on Lyubashevsky’s signature system.

This system can be presented using integer matrices, although its implementations
typically use polynomial rings and fast Fourier transforms for compact representations
and efficiency. It also uses several system parameters, which we denote by k, m, n, to
determine the sizes of matrices, the parameter κ to limit the Hamming weight of certain
vectors, and q a modulus.

Consider now A an n×m integer matrix modulo q (i.e., A ∈ Zn×mq ). The private key

is given by a matrix S ∈ Zm×k with small entries (much smaller than q), often restricted
to {−1, 0, 1}. Hence, the public key is the n× k matrix given by

T = A · S,

whose entries are computed modulo q. Moreover, if A is not shared from the beginning,
it is also part of the public key.

These systems also use a hash function

H : Znq × {−1, 0, 1}∗ → {0, 1}k,

with the further assumption that the output vectors have no more than κ non-negative
entries. This H can be built from a traditional hash function h by encoding inputs and
outputs appropriately.

This system works in the following way: First, the signer picks y from anm-dimensional
distribution (usually a discrete Gaussian distribution), and computes
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x = A · y(mod q)

and

c = H(x, µ),

for µ the message.
Consider now z = S · c + y; then, the signature is given by the pair (c, z). Further-

more, to avoid the possibility of leaking information about the private key S through the
distribution of (c, z), this method forces an S-independent distribution, by means of some
‘rejection sampling’.

This basically means that the process is restarted with probability depending on (c, z).
Hence, the signature is accepted if c and z are sufficiently small, and given

x2 = A · z − T · c(mod q),

the following holds:

H(x2, µ) = c.

Currently, the most important problems to solve in this setting are the following:

• Generate the distribution in a way to prevent the leaking of information on S.

• Analyze the security of the underlying algorithmic problem (finding short integer
solutions to a system of equations modulo q).

3.2.4 Multivariate-quadratic-equation signatures

This class of signatures was first developped from a signature C∗ that was introduced in
1988 by Matsumoto and Imai. Afterwards, in 1995, Patarin broke this system and one
year later introduced a stronger system, HFEv− which is still unbroken today.

The public key of such system is a sequence of polynomials p1, . . . , pm in the n-variable
polynomial ring F2[x1, . . . , xn] over the field F2, withm ≤ n. These polynomials are limited
to quadratics and have no squared terms, i.e., they are of the form:

pi = ai +
∑
j

bi,jxj +
∑
j<k

ci,j,kxjxk,

with the coefficients ai, bi,j , ci,j,k ∈ F2, and which lack obvious public structure.
In this case, the signature of a message is a string of n-bits, (s1, . . . , sn) ∈ Fn2 such that

the string (p1(s1, . . . , sn), . . . , pm(s1, . . . , sn)) ∈ Fm2 is equal to the standard hash of m-bits
of the message. These short signatures are an attractive feature of this signature system.

The procedure to follow in these systems is the following:

1. First, the signer chooses the polynomials with a secret structure that allows him/herself
to solve the simultaneous quadratic equations

h1 = p1(s1, . . . , sn), . . . hm = pm(s1, . . . , sn).

2. The signer views an m-bit hash value, along with a randomly chosen (n−v−m)-bit
string, as an element H ∈ Fq. For that, starting from the hash value, they have to
choose n − m random bits from the ones mentioned above and construct H. For
that, the signer considers a polynomial P ∈ Fq[x, y1, . . . , yv] of the form
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A+
∑
j

Bjx
2j +

∑
j>k

Cj,kx
2j+2k +

∑
j

Djyj +
∑
j,k

Ej,kyjx
2k +

∑
j>k

Fj,kyjyk,

which gives an equation connecting S and H:

P (S, r1, . . . , rv) = H.

To write the equation in a quadratic polynomial form, the signer writes each bit of
S2j as a linear combination of s1, . . . , sn. To solve it, the signer just notices that it
is a univariate equation in S for any particular choice of random bits r1, . . . , rv.

There is an important number of works on other multivariate-quadratic signature sys-
tems and on algorithms to attack these systems. In particular, all known attacks take
time exponential in approximately (n−m+ dlog2 de) log2 n.

3.2.5 Hash-based signatures

One of the design goals for hash functions is the fact that finding a pre-image for a given
output string is computationally hard. In 1975, Lamport realized that this could be used
to build a one-time signature system.

This signature system requires a standard cryptographic hash functionH that produces
2b bits of output. For example, for b = 128, one could choose H as the SHA− 256 hash
function.

In the last few years, some people have raised some concerns regarding the security of
popular hash functions, and this has resulted, among other things, on the fact that, over
the next few years, NIST will run a competition for a SHA− 256 replacement. However,
all known attacks against SHA− 256 are really expensive.

In these systems, the signer’s public key has 8b2 bits. For example, for b = 128, it has 16
kilobytes. The key consists of 4b strings, enumerated as y1[0], y1[1], y2[0], y2[1], . . . , y2b[0], y2b[1],
each of which has 2b bits.

Moreover, a signature of a message m has 2b(2b+ 1) bits (for example, in the previous
case of b = 128, it has 8 kilobytes). The signature consists of 2b-bit strings x1, . . . , x2b

such that the bits (h1, . . . , h2b) of H satisfy y1[h1] = H(x1), y2[h2] = H(x2), . . . , y2b[h2b] =
H(x2b).

In this setting, the procedure for the signer to follow to find y = H(x) starts by
generating a secret x and computing afterwards y = H(x) for this secret x. More specifi-
cally, the signer’s secret key has 8b2 bits, which are 4b uniformly random strings that are
independent,

{x1[0], x1[1], x2[0], x2[1], . . . , x2b[0], x2b[1]},

each of which as 2b bits (giving the total of 8b2 bits). Then, the public key

{y1[0], y1[1], y2[0], y2[1], . . . , y2b[0], y2b[1]}

is computed by the signer as

{H(x1[0]), H(x1[1]), H(x2[0]), H(x2[1]), . . . ,H(x2b[0]), H(x2b[1])}.

Therefore, to sign a message m, the signer has to perform these tasks:

• Generates a uniform random string r.
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• Compute the bits (h1, . . . , h2b) of H(r,m).

• Reveal (r, x1[h1], . . . , x2b[h2b]) as a signature of m.

• Finally, discard the remaining x values and refuse to sign any more messages.

The procedure described above is the Lamport-Diffie one-time signature system. How-
ever, if the signer wants to sign more than one message, they just have to chain, i.e.,
include in the signed message a new public key that will be used in the next one. Hence,
the verifier checks the first signed message, and since it includes the new public key, they
can also check the signature of the next message (and so on).

Hash functions appear in all signature systems, and standard hash functions are af-
fected only by Grover’s attack, not by Shor’s attack. This fact makes Merkle’s very simple
signatures that are excellent candidates for post-quantum signatures. Indeed, they have
a clear security track record, and computing hash functions is very fast (let us recall that
Merkle’s hash-tree signature system, scale logarithmically with the number of messages
signed, see Figure 3.4, extracted from [23]). Hash-based cryptography can convert any
hard-to-invert function into a secure public-key signature system.

Figure 3.4: Merkle tree with public key Y15 to sign eight messages.

Finally, to finish this subsection, and all the previous ones, in Figure 3.5, extracted
from [23], we can see a comparison between these different kinds of systems and signatures,
with each ones’ advantages and disadvantages.

3.2.6 Isogeny-based cryptography

This is the most recent class of primitives, and that is why it does not appear in Figure
3.5. The new isogeny-based primitives are interesting and have nice properties, such as
small key sizes and forward security. They deserve more academic scrutiny to establish a
consensus on their security properties, but are not supported by public challenge problems.

Their security is based on the difficulty of recovering an unknown isogeny between
a pair of supersingular elliptic curves that are known to be isogenous. Hence, these
agreements have security reductions from Diffie-Hellman style problems in isogeny graphs,
reductions that are a special case of more general results on semi-group actions.

These schemes have some underlying isogeny problems which have not been proved to
be difficult, but the complexity of recovering unknown isogenies between elliptic curves
constitutes a field that has been relatively well studied. In particular, for supersingular
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Figure 3.5: Qualitative overview of the described post-quantum systems.

curves, unless the curves are both defined over a prime field, the best known algorithms
are exponential.

The isogeny-based keys agreement consists of small public keys, and a reasonably
efficient key generation process. However, it is not as fast as some of the other primitives.
It could therefore be used in a forward secure protocol.
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Chapter 4

Conclusions

4.1 General conclusions and attainment of the aims initially
proposed

In this project, we have presented an introduction to post-quantum cryptography, starting
from the most basic concepts of quantum information theory and quantum mechanics, to
further introduce the formalism of quantum algorithms, and, later, we have introduced
some quantum attacks to the current cryptographic systems, thus motivating the necessity
of the development of this new field of post-quantum cryptography.

One of the main underlying aims of this work has been to show that, indeed, research
on post-quantum cryptography is extremely necessary, mostly due to two reasons: The
first one, the fact that the most popular public-key algorithms can be efficiently broken
by a sufficiently strong hypothetical quantum computer; and the second one, the reality
that the hypothetical quantum computer seems to be likely to appear in the next few
years. These two facts have been motivated throughout the whole text, giving references
of papers and textbooks to support it.

The main general objective of this work has been to provide a well-motivated and
self-contained introduction to this field of post-quantum cryptography. For that, before
presenting the field of post-quantum cryptography itself, we have introduced some quan-
tum attacks to motivate its necessity, as well as the main basic concepts to understand the
background in quantum algorithms. We think that we have succeeded in this task, since
we obtained the desired results, as the manuscript is quite self-contained, in the sense
that, besides from some basic mathematical concepts, most of the concepts needed to the
text have been introduced throughout it, and we hope that we have convinced the reader
of the importance of the matter.

We have also achieved to introduce a topic mostly associated to the computer science
community in a mathematical formalism, and with a physical motivation and background.
With this, we hope that the field of post-quantum cryptography, and the approach followed
in this work, can be accesible to researchers from a wide range of different fields.

4.2 Follow-up of the planning and methodology

As a personal evaluation, I think that I have achieved the main objectives that were
introduced at the beginning of the manuscript. First of all, I consider that I have improved
my research capacity by looking into the bibliographic material needed to understand the
topics developped on this project. I have also improved my way of expressing information
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from a field that lives in the intersection of important several branches of sciences, as in
this case, in the intersection of mathematics, physics and computer science.

This project has also allowed me to consolidate and increase my knowledge in quantum
information theory, quantum mechanics, and cryptography, as well as some other fields of
mathematics, physics and computer science. Furthermore, I have noticed the effect that
comes out when different fields of mathematics are studied along with computer science
to achieve their goals more efficiently.

Finally, in general, the temporary planning exposed at the beginning of the project has
been followed, although the dates have suffered several modifications during the previous
year, mostly due to unexpected problems or drawbacks. However, the structure of the
planning and the methodology have turned out to be adecquate for the development of
the project, and it has been possible to deliver the project fully finished and reviewed on
time.

4.3 Future lines of work

The field introduced in this work has many lines of possible future work. Indeed, it is
clear that deploying a cryptographic system has some physical costs associated, such as
the time and energy consumed by cryptographic computations and by communication of
keys, signatures, and so on. Currently, the deployment of cryptography for billions of users
relies on the fact that cryptography fits the users’ budget. With the problem associated
to these costs, we go back in time, and some problems that were already solved with the
use of public key schemes derived from RSA and discrete logarithms appear again.

In general, these are exciting times for post-quantum cryptography, since researchers
have identified many different ways to provide critical functions such as public-key encryp-
tion and public-key signatures, as we have seen in the previous chapter. Some of these
proposals have survived many years of scrutiny, but they have serious costs associated,
especially in network traffic. Some other proposals are though more attractive for deploy-
ment, but their security is less clear, and it is likely that some of them will be broken
soon.

Experts on the field expect an outstanding increase in research in post-quantum cryp-
tography motivated by NIST’s competition, taking the form of more designs, more opti-
mizations and implementations, and also more attacks. An important part of progress will
be to understand what systems are vulnerable to attacks. Much more work is needed to
build post-quantum systems that are widely deployable while at the same time inspiring
confidence. This constitutes the main open line that arises from this work.

Moreover, from the other side, another interesting line of work that is strongly related
with this project is that of finding new quantum attacks to cryptographic schemes, both
for the previous families of cryptographic schemes and for the new ones that have appeared
recently. This is the most related line of future work associated to this project.
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