Quantum logarithmic Sobolev Inequalities for Quantum
Many-Body Systems: An approach via Quasi-Factorization of
the Relative Entropy

Angela Capel Cuevas (ICMAT)

29 October 2019

Supervised by: David Pérez-Garcia (UCM) and Angelo Lucia (Caltech)

olev Inequalities for Quantum Many-Body



INTRODUCTION AND MOTIVATION JUA IVE
THMIC SOBOLEV

FIELD OF STUDY

Sobolev In



INTRODUCTION AND MOTIVATION )
3 v QUALITIES

FIELD OF STUDY

| MATHEMATICS

II
\
!
S

Sobolev Ine




TUM DISSIPATIVE Y
HMIC SOBOLE QUALITIES

INTRODUCTION AND MOTIVATION Qu
I

FIELD OF STUDY

PHYSICS \

“WATHHWAHCS

II
\
A\

A

for Quantum Many-Body

Log-Sobolev Ineq




INTRODUCTION AND MOTIVATION

FIELD OF STUDY

PHYSICS \

COMPUTER
SCIENCE

| MATHEMATICS

|
\
\

or Quantum Many-Body

Log-Sobolev Inequal



INTRODUCTION AND MOTIVATION

FIELD OF STUDY

/ PHYSICS \

COMPUTER

|
MATHEMATICS SCIENCE

|
\
\

Log-Sobolev Inequal or Quantum Many-Body




INTRODUCTION AND MOTIVATION

FIELD OF STUDY

COMPUTER
SCIENCE

Log-Sobolev Inequal or Quantum Many-Body



INTRODUCTION AND MOTIVATION QUANTUM DISSIPATIVE SYSTEMS
LOGARITHMIC SOBOLEV INEQUALITIES

QUANTUM

Q. information theory +— Q. many-body physics

(ICMAT) e for Quantum Many-Bod,



INTRODUCTION AND MOTIVATION S
INEQUALITIES

QUANTUM

Q. information theory +— Q. many-body physics

Communication channels «+— Physical interactions

(ICMAT) bo equa or Quantum Many-Bod



INTRODUCTION AND MOTIVATION QUAN SYSTEMS
INEQUALITIES

QUANTUM

Q. information theory +— Q. many-body physics
Communication channels «+— Physical interactions

Tools and ideas — Solve problems

(ICMAT) obolev Inequalities for Quantum Many-Bod.



INTRODUCTION AND MOTIVATION QUAN SYSTEMS
INEQUALITIES

QUANTUM

Q. information theory +— Q. many-body physics
Communication channels «+— Physical interactions
Tools and ideas — Solve problems

Storage and
transmision <— Models
of information

(ICMAT) obolev Inequalities for Quantum Many-Bod.



INTRODUCTION AND MOTIVATION

MAIN TOPIC OF THIS THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

(ICMAT) obolev Inequalities for Quantum Many-Bod.



INTRODUCTION AND MOTIVATION ) IS SYSTEMS
3 V INEQUALITIES

MAIN TOPIC OF THIS THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

es for Quantum Many-Body



INTRODUCTION AND MOTIVATION QUANTUM DIS E SYSTEMS
LOGARITHMIC EV INEQUALITIES

MAIN TOPIC OF THIS THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).

obolev Inequalities for Quantum Many-Bod.
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Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector,
which is a unitary vector in the state space.
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POSTULATES OF QUANTUM MECHANICS

Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector,
which is a unitary vector in the state space.

POSTULATE 2

Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space.
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NOTATION

Figure: A quantum spin lattice system.

Finite lattice A CcC Z.

To every site © € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = @, cp Ha-
The set of bounded linear endomorphisms on H, is denoted by
Ba = B(Ha).

o The set of density matrices is denoted by

Sa :=8(Ha) ={pa € Ba : pa >0 and tr[pa] = 1}.

Capel Cue C bbolev Inequalities for Quantum Many-Body
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T:p—=T(p)
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Isolated system.
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Dissipative quantum system (non-reversible evolution)
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Isolated system.
Physical evolution: p — UpU* ~~ Reversible

Dissipative quantum system (non-reversible evolution)

T:p—=T(p)

o States to states = Linear, positive and trace preserving.
pRceSH®H), o with trivial evolution

T: SHoH) — SHOH) M Tel

Tpoo) = T oo
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p — UpU* ~~ Reversible
Dissipative quantum system (non-reversible evolution)
T:p—=T(p)
o States to states = Linear, positive and trace preserving
pRo€S(H®H), o with trivial evolution
. / / N
T: SA(’H®7-[) — S(HoH) T To1
Tpeo) = T oo

o Completely positive.

Log-Sobolev Inequalities for Quantum Many-Body Syst.
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p — UpU* ~~ Reversible

Dissipative quantum system (non-reversible evolution)

T:p—=T(p)

o States to states = Linear, positive and trace preserving.
pRceSH®H), o with trivial evolution

T: SHoH) — SHOH) L F Tl

Tpoo) = T oo

o Completely positive.
7 quantum channel (CPTP map)
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Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: [¢) (Y|,

P p@ ) (Plp = U(p@ ) (W) U = trulU (p @ [Y) (1) U =5
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OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: [¢) (Y|,

P p@ ) (Plp = U(p@ ) (W) U = trulU (p @ [Y) (1) U =5

S(H)

4)
o N ) quantum channel
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Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).
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= Weak-coupling limit

(ICMAT) obolev Inequalities for Quantum Many-Bod.



INTRODUCTION AND MOTIVATION QUANTUM DIS SYSTEMS
LOGARITHMIC )LEV INEQUALITIES

MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

(ICMAT) b e >s for Quantum Many-Bod,



INTRODUCTION AND MOTIVATION QUANTUM DIS SYSTEMS
LOGARITHMIC )LEV INEQUALITIES

MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

Markovian approximation
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DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{Ti"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.
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A dissipative quantum system is a 1-parameter continuous semigroup
{Ti"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T 0T = Tt
o Ty =1.
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DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{Ti"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T 0T = Tt
o Ty =1.

d * * * * *
g'ﬁ =T oLa=LyoT;.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

or Quantum Many-Bod
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We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o. -
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DISSIPATIVE QUANTUM SYSTEMS

PrRIMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o. -

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

(£, L(9)), = (L(f),9),
for every f,g € A, in the Heisenberg picture.
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DISSIPATIVE QUANTUM SYSTEMS

PrRIMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o. -

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

(£, £(9)), = (L(f), 9),

for every f,g € A, in the Heisenberg picture.

Notation: p; := T, (p).
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main objective:

One problem: Appearance of noise.
Some kinds of noise can be modelled using quantum dissipative
evolutions.
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:
e Computational power
o Conditions against noise

e Time to obtain certain states

(ICMAT) e for Quantum Many-Bod,



INTRODUCTION AND MOTIVATION QUANTUM D!
L

ITHM

MIXING TIME

We define the mixing time of {7;"} by

T(e) = min{t >0: sup |77 (p) — To(p)|l; < 5}.
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We say that L} satisfies rapid mixing if

sup [|ps — oall; < poly(|A])e™ "
PAESA
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RAPID MIXING

RAPID MIXING

We say that L} satisfies rapid mixing if

sup [|ps — oall; < poly(|A])e™ "
PAESA

PA
Xp,

poly(|A)e™"

TA

PROBLEM

Find examples of rapid mixing!
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CLASSICAL SPIN S

Log-Soholev constant

Spectral gap Exponential

decay of correlations

Rapid mixing
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TCi(¢1) == Gauss.
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QUANTUM SPIN SYSTEMS

Wa,<D, AxD~?

Kastoryano-Temme, 2013

Y

a=K> -
Ric (£)> k —— HWI () MLSI(a) 2525 TCy(c2) 5= PI(\) — Exp.

Wy, £<D, axD™2, 01:dc2ﬂ

(A)¢>q unital
0 TCi(c;) == Gauss.
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Recall: p; := T (p).

Liouville’s equation:
Oepr = L (pt)-

Relative entropy of p; and oy:

D(ptllon) = tr[pi(log pr —log on)].
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LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).

Liouville’s equation:
Oepr = L (pt)-

Relative entropy of p; and oy:

D(ptllon) = tr[pi(log pr —log on)].

Differentiating:

Ot D(pilloa) = tr[Lx(pr)(log pr — log op)]- (1)

Angela Capel Cuevas (ICMAT) og-Sobolev Inequalities for Quantum Many-Body Syst.
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LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).

Liouville’s equation:

Opr = LA (pr).
Relative entropy of p; and oy:
D(pt||loa) = tr[pi(log p; —logon)].
Differentiating:
D(pil|oa) = tr[L3(pe)(log pr — log op)]. (1)

Lower bound for the derivative of D(p¢||oa) in terms of itself:

20D(pelloa) < —trlLi(pr)(log pr —logon)].  (2)

Angela Capel Cuevas (ICMAT) og-Sobolev Inequalities for Quantum Many-Body Syst.
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The log-Sobolev constant of £} is defined as:
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The log-Sobolev constant of £} is defined as:
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(ICMAT) b equa or Quantum Many-Bod,



INTRODUCTION AND MOTIVATION ANTUM \TIVE SYSTEMS
LOGARITHMIC SOBOLEV INEQUALITIES

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

x .« —tr[LA(pa)(log pa —logon)]
L)) = f
al£a) = Inf 2D(pallon)

If o(L3) > 0:
D(plloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < \/210g(1/0min) e~ * DL,
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LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

x .« —tr[LA(pa)(log pa —logon)]
L)) = f
al£a) = Inf 2D(pallon)

If o(L3) > 0:
D(plloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < \/210g(1/0min) e~ * DL,

Log-Sobolev constant = Rapid mixing. )
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LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

x .« —tr[LA(pa)(log pa —logon)]
L)) = f
al£a) = Inf 2D(pallon)

If o(L3) > 0:
D(plloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < \/210g(1/0min) e~ * DL,

Log-Sobolev constant = Rapid mixing. )

PROBLEM
Find positive log-Sobolev constants!
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FIRST MAIN OBJECTIVE OF THIS THESIS

Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.
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FIRST MAIN OBJECTIVE OF THIS THESIS

Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS THESIS

Apply that strategy to certain dissipative dynamics.

es for Quantum Many-Body
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J
+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
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THE RELATIVE ENTROPY
REsuLTS

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J
+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
4

Positive log-Sobolev constant. J

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Sy
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)N OF THE RELATIVE ENTROPY

What do we want to prove?

lim inf a(L}) > ¥(|A]) > 0.
A7

Can we prove something like

a(LR) =2 V([A]) a(£h) > 07

Sobolev Inequalities for Quantum Many-Bod,



TION OF THE RELATIVE ENTROPY
STANTS

Can we prove something like

a(Ly) = U(JA]) a(£a) > 07

obolev Ine



)N OF THE RELATIVE ENTROPY

Can we prove something like

a(Ly) = U(JA]) a(£a) > 07

No, but we can prove

a(LR) = Y([A]) aa(Lh) > 0.

Sobolev Inequalities for Quantum Many-Bod,



REsuLTS

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
L)) = f
al£) = fuf 2D(pallon)

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



)F THE RELATIVE ENTROPY
REsuLTS e TS

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

.o —tr[LA(pa)(log pa —logon)]
inf
PAESA 2D(palloa)

a(L}) =

CONDITIONAL LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state o, A C A. We define the conditional log-Sobolev constant of L}
on A by

. o —tr[Lh(pa)(log pa —logoa )]
L) = f
an(£a) = inf 2Da(pallon)

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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ON OF THE RELATIVE ENTROPY

REsuLTS

O (Super) A. Capel, A. Lucia and D. Pérez-Garcia, Superadditivity
of Quantum Relative Entropy for General States, IEEE Trans.
on Inf. Theory, 64 (7) (2018), 4758-4765. Quasi-Factorization

@ (Q-Fact) A. Capel, A. Lucia and D. Pérez-Garcia, Quantum
Conditional Relative Entropy and Quasi-Factorization of the
Relative Entropy, J. Phys. A: Math. Theor., 51 (2018), 484001.

Quasi-Factorization

@ (BS-entropy) A. Bluhm and A. Capel, A strengthened data
processing inequality for the Belavkin-Staszewski relative
entropy, Rev. Math. Phys., to appear (2019).

@ (Heat-bath) I. Bardet, A. Capel, A. Lucia, D. Pérez-Garcia and C.
Rouzé, On the modified logarithmic Sobolev inequality for the
heat-bath dynamics for 1D systems, preprint, arXiv: 1908.09004.
Log-Sobolev

@ (Davies) I. Bardet, A. Capel and C. Rouzé, Positivity of the
modified logarithmic Sobolev constant for quantum Davies
semigroups: the commuting case, in preparation. Log-Sobolev
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2.2 PART 2: QUASI-FACTORIZATION OF THE RELATIVE
ENTROPY
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STATEMENT OF THE PROBLEM

PROBLEM

Let Hapc = Ha ® He ® He and papc,0aBc € Sapc. Can we prove
something like

D(pasclloasc) < €&(oapc) [Dar(pasc|loaBc) + Dec(pasc|loasc)] ?

Sobolev Inequalities for Quantum Many-Bod,
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STATEMENT OF THE PROBLEM

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocasc € Sapc. Can we prove
something like

D(pasclloasc) < €&(oapc) [Dar(pasc|loaBc) + Dec(pasc|loasc)] ?

QUANTUM RELATIVE ENTROPY

D(pl|o) = tr [p(log p — log 7)]

(ICMAT) bo equa or Quantum Many-Bod
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PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]




REsuLTS

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f)

plEnt,(f | F1) + Entu(f | F2),

<
1—4llh -1,

where h = d—/_L
d

Log-Sobolev Inequalities for Quantum Many-Body



ORIZATION OF THE RELATIVE ENTROPY

REsuLTS y EV CONSTANTS

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

1
e
Ent#(f) - 1— 4||h _ 1”00 /’L[Entu(f ‘ ]:1) + Ent#(f | ]:2)]3
where h = Z—Z

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Ent,(f) = p(flog f) — u(f) log u(f).

Conditional entropy:

Ent,(f|G) =p(flog f|G) — p(f|G)logu(f|G).

Angela Capel Cue ICMAT) Log-Sobolev Inequalities for Quantum Many-Body
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QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr [pa(log pa — logoa)] .

for Quantum Many-Body



ORIZATION OF THE RELATIVE ENTROPY
ac

REsuLTS INSTANTS

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logona)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pas — D(pag||ocar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(ps||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagsl|lcas) > D(T (pag)||T (cag)) for every
quantum channel 7.

Angela Capel Cue ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



ORIZATION OF THE RELATIVE ENTROPY
ac

REsuLTS INSTANTS

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logona)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pas — D(pag||ocar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(ps||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagsl|lcas) > D(T (pag)||T (cag)) for every
quantum channel 7.

CHARACTERIZATION OF THE RE, Wilming et al. ’17, Matsumoto ’10

If f:SaB X Sap — ]RBL satisfies 1 — 4, then f is the relative entropy.

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body
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REesuLTs INSTANTS

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY, (Q-Fact)

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as
a function
DA(H) :SaB X Sap — Rar
verifying the following properties for every pap,ocap € Sap:
@ Continuity: The map pap — Da(par||cag) is continuous.
@ Non-negativity: Da(par|locar) > 0 and
(2.1) Da(panlloar)=0if, and only if, pap = oy po g *ppog/*o /2.
@ Semi-superadditivity: Da(pag|loa ® o) > D(palloa) and
(3.1) Semi-additivity: if pap = pa Q pB,
Da(pa ® pBlloa ® o) = D(palloa).
@ Semi-motonicity: For every quantum channel T,

Da(T (paB)lT(0aB)) + Dp((tra oT)(pas)||(tra oT)(car))
< Da(paslloas) + Dp(tra(pas)||tra(ocas)).

Angela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



ORIZATION OF THE RELATIVE ENTROPY

REsuLTS i ‘ONSTANTS

REMARK

Consider for every pap,oas € SaB

D3} 5(paslloas) = Da(pas|loas) + D(paslloas).

Then, DX, p verifies the following properties:
QO Continuity: pap — D‘A!"B(pABHUAB) is continuous.
@ Additivity: DX,B(IJA ® pBlloa ® o) = D(pal|loa) + D(psllos).

@ Superadditivity: D} g(pas|loa ® o) > D(palloa) + D(psllos).
However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE, (Q-Fact)

The only possible conditional relative entropy is given by:
Da(paglloas) = D(paglloas) — D(psllos)

for every pap,0aB € SaB.

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



REsuLTS

BC

%/—/

AB
Figure: Choice of indices in Hapc = Ha Q Hp @ Hc-

Result of quasi-factorization of the relative entropy, for every
PABC,TABC € SaBC:

D(pasclloasc) < &(oasc) [Dap(papcl|loasc) + Dec(pasc|loasc)],

where £(0capc) depends only on oapc and measures how far cac is from
oA ®oc.

for Quantum Many-Bo
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QUASI-FACTORIZATION FOR THE CRE, (Q-Fact)

Let Hapc = Ha @ Hp ® Heo and papc,ocasc € Sapc. Then, the following
inequality holds

D(paBclloasc) <
1

m [DAB(pABCHUABC) aF DBC(pABCHU'ABC’)] 5

where

H(oac) = 021/2 ® 051/2 oAC 021/2 ® 051/2 —1ac.

Note that H(cac) =0 if cac is a tensor product between A and C.

obolev Inequalities for Quantum Many-Body



REsuLTS

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

Log-Sobolev Inequalities for Quantum Many-Body



REsuLTS

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

=

(1 +2||H(cac)llo)D(pasclloasc) > D(palloa) + D(pclloc).

Log-Sobolev Inequalities for Quantum Many-Body



REsuLTS

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

<
(1+2[|H(ca0)ll)P(pasclloasc) 2 D(palloa) + D(pclloc).
=4

(1+2||H(cac)lloo)D(paclloac) = D(palloa) + D(pclloc).

Log-Sobolev Inequalities for Quantum Many-Body
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This result is equivalent to (Super):

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

for Quantum Many-Bo
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This result is equivalent to (Super):

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag|loa ® o) > D(palloa) + D(psllos).

Angela Capel Cue C Log-Sobolev Inequalities for Quantum Many-Body



REsuLTS

This result is equivalent to (Super):

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag|loa ® o) > D(palloa) + D(psllos).

Due to:

e Monotonicity. D(pag|loas) > D(T(pap)||T(caB)) for every
quantum channel 7.

we have

2D(paslloas) = D(palloa) + D(psllos).

Angela Capel Cue C Log-Sobolev Inequalities for Quantum Many-Body



-FACTORIZATION OF THE RELATIVE ENTROPY

REsuLTS OBOLEV CONSTANTS

QUASI-FACTORIZATION FOR THE CRE (Q-Fact)

Let Hapc and paBc,oasc € Sapc. The following holds

D(pasclloase) < &(oac) [Das(pasclloasc) + Dec(pasclloasc)],

where
g(JAC) = —1/2 —1/2 : —1/2 —-1/2
1—2HO'A Qog 'Toaco, T ®og —]lAcH
* V.
D(papclloasc) Dap(pasclloaso) Dgc(pasclloasc)

TABC

ANl c | <&(B0) |Falel o + | 4 BBl e

for Quantum Many-Body



THE RELATIVE ENTROPY

REsuLTS

WEAK CONDITIONAL RELATIVE ENTROPY

WEAK CONDITIONAL RELATIVE ENTROPY, (Q-Fact)

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as
a function

DA(H) :SAaB X SaB — ]Ra—
verifying the following properties for every pap,oap € Sap:

@ Continuity: The map pap +— Da(par||loar) is continuous.
@ Non-negativity: Da(pag|locas) > 0 and

(2.1) Da(paBlloap)=0 if, and only if, pap = UIIL‘/;UB £ OB 0_1/2 1/32.

@ Semi-superadditivity: Da(pag|loa ® o) > D(pal|loa) and
(3.1) Semi-additivity: if pap = pa ® pp,
Da(pa ® pplloa ® o) = D(palloa).

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Sy



ACTORIZATION OF THE RELATIVE ENTROPY
REsuLTS i EV CONSTANTS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL REL ENTROPY BY EXPECTATIONS, (Q-Fact)
Let Hap = Ha ® Hp and pap,cas € Sap. Let E be defined as

* 1/2 _—1/2 —1/2 _1/2
E4(pas) = UA/B 9B "% ps P / UA/B' ®3)

We define the conditional relative entropy by expectations of pap
and o4 in A by:

D3 (paslloas) = D(pas|[Ea(pas)).

PROPERTY

DE (paB||loaB) is a weak conditional relative entropy.

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



ORIZATION THE RELATIVE E|

)LEV CONST
PY

Let Hap = Ha @ Hp and pap,04B € Sap. The following inequality holds

(1—¢&(0aB))D(paslloas) < Di(paslloas) + DE(paslloas), (4)
where
&(oapc) = 2(Er(t) + B2(?)),
and
oo — 144t 1—1at — 144t _ 14-it _
El(t):/ dtBo(t)||log 2 o043 04 ° —]lAB‘ 0'A1/20'A§ 031/2 )
— 00 o0 o0
—+o0 —1—it 14it —1—3t
Es(t) :/ dt Bo(t) op 2 U‘Aé (2 2 7]1ABH
oo oo

Note that £(cap) =0 if o4 is a tensor product between A and B.

D(paslloas) D5 (paslloas) DE(paslloas)

0AB 04 Q0B

A B §€(<—>) A B+ B

(ICMAT) Log-Sobolev Inequal or Quantum Many-Body
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I-FACTORIZATION OF THE RELATIVE ENTROPY
REsuLTS

RELATION WITH THE CLASSICAL CASE

STATES OBSERVABLES

QUANTUM D(paglloas) fas = Ta.5 (Pas) tr[oap faslogfasl

< »

SMILIC D(p,sll0.s) — Dipsllop)  fa =T (on) teftry (045 faslogfas] — opfslogfs]
Pap =V trlog -] = u()
=l try[]1 = u(- |6)

CLASSICAL Hv.m == u(f logf)
<+ »>
SETTING Hy(v.i0) u(u(f logf1g) — u(f 1) log u(f 15)

Figure: Identification between classical and quantum quantities when the states
considered are classical.

sbolev Inequalities for Quantum Many-Body



REsuLTs LOG-SOBOLEV CONSTANTS

2.3 PART 3: LOG-SOBOLEV CONSTANTS J

Decay of correlations

Quasi-factorization Geometric
of the recursive
relative Definition argument
entropy conditional
Log-Sobolev
constant

Positive conditional
log-Sobolev constant

on the Gibbs state

r Quantum Many-Bo



REsuLTS

TUM SPIN LATTICES

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.

PROBLEM

For a certain £}, can we prove a(L£}) > 0 using the result of
quasi-factorization of the relative entropy?




ORI ON OF THE RELAT ENTROP

EV CONSTANTS

ExXAMPLE 1 (Q-Fact)

HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT

(ICMAT) blev Inequalities for Quantum Many-Body



IZATION OF THE RELATIVE ENTROPY
RESULTS S EV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (Q-Fact)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

es for Quantum Many-Body



IZATION OF THE RELATIVE ENTROPY
RESULTS S EV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (Q-Fact)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Ly =FE, -1, Lyi=) L;
zEA
Since

E;(pa) = 0y 20,0 preoo)/? = 00 @ poe

for every pp € Sa, we have

Li(pr) =Y (00 @ pac — pa).

zEA

es for Quantum Many-Body
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TION OF THE RELATIVE
STANTS

TH WITH TENSOR PRODUCT FIXED POINT

ASSUMP

or= Q) os.

TEA

Decay of correlations

for Quantum Mar
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

CONDITIONAL LOG-SOBOLEV CONSTANT
For x € A, we define the conditional log-Sobolev constant of £} in z by

" o —tr[L5(pa)(log pa —log UA)]
L) = f
onlle) = R, 2D, (pallon)

where o, is the fixed point of the evolution, and D4 (palloa) is the
conditional relative entropy.

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



OF THE RELATIVE ENTROPY
REsuLTS S

HEAT-BATH WITH TENSOR PRODUCT FIXED

GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT
Let Ha = @ H. and pa,on € Sa such that op = ®az. The following

TEA zEA

D(palloa) <> Da(pallon).
TEA

inequality holds:

Capel Cue MAT) Log-Sobolev Inequalities for Quantum Many-Body



ON OF THE RELATIVE ENTROPY
REsuLTS NTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

LEMMA (Positivity of the conditional log-Sobolev constant)

an(Ly)

Vv
=

Capel Cue C bbolev Inequalities for Quantum Many-Body



S
E

(
REsuLTS L

3 Tk

) IZATION OF THE RELATIVE ENTROPY
CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

D(palloa) <D Da(palloa)

TEA
—tr[L3 (pa)(log pa — logan)]
<> !
zEA 2a/\(£z)
1 *
- mz —tr[£%(pa)(log pa — log oa)]
zEA TEA
1 *
" 2inf an (L) (—tr[LA(pa)(log pa — log o))
z€

< (— (L3 (pa)(log pa — logan)]).

Angela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

IVE LOG-SOBOLEV CONSTANT

a(Ly) >

N —

Decay of correlations

on the Gibbs state

ties for Quantum Mar
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RESULTS ,0G-SOBOLEV CONSTANTS

EXAMPLE 2, (Heat-bath)

HEAT-BATH DYNAMICS IN 1D




TION OF THE RELATIVE ENTROPY
ONSTANTS

oa is the Gibbs state of a k-local, commuting Hamiltonian.
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ON OF THE RELATIVE ENTROPY
REsuLTS NTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Capel Cue C bbolev Inequalities for Quantum Many-Body



IZATION OF THE RELATIVE ENTROPY
RESULTS S EV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ||®(j)|| < K for some constant K < co. The potential ® is said to
be commuting if for any i,j € A, [®(¢), ®(j)] = 0.

es for Quantum Many-Body



IZATION OF THE RELATIVE ENTROPY
RESULTS S CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ||®(j)|| < K for some constant K < co. The potential ® is said to
be commuting if for any i,j € A, [®(¢), ®(j)] = 0.

Hamiltonian on a subregion A C A:

Ha:=7)  &(j). (5)

jEA

es for Quantum Many-Body



IZATION OF THE RELATIVE ENTROPY
RESULTS S EV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ||®(j)|| < K for some constant K < co. The potential ® is said to
be commuting if for any i,j € A, [®(¢), ®(j)] = 0.

Hamiltonian on a subregion A C A:

Ha:=7)  &(j). (5)

jEA

Gibbs state corresponding to the region A at inverse temperature 3:

e BHA




= OF THE RELATIVE ENTROPY
RESULTS v NTS

HEAT-BATH DYNAMICS IN 1D

CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of £} in A
by

. .o —tr[L%(pa)(log pa —log oa)]
,c = f )
ar(La) = inf 2Da(pallon)

where o, is the fixed point of the evolution, and

Da(palloa) = D(palloa) — D(pac|loac).

Capel Cue MAT) Log-Sobolev Inequalities for Quantum Many-Body



)N OF THE RELATIVE ENTROPY

RESULTS OLEV STANTS

QUASI-FACTORIZATION FOR THE CRE (Q-Fact)

Let Hapc and paBc,oasc € Sapc. The following holds

D(pasclloase) < &(oac) [Das(pasclloasc) + Dec(pasclloasc)],

where
g(JAC) = —1/2 —1/2 : —1/2 —-1/2
1—2HO'A Qog 'Toaco, T ®og —]lAcH
* V.
D(papclloasc) Dap(pasclloaso) Dgc(pasclloasc)

TABC

ANl c | <&(B0) |Falel o + | 4 BBl e

for Quantum Many-Body
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STEP 1 J
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ORIZATION OF THE RELATIVE ENTROPY
CONSTANTS

STEP 1 J

A= OAl and B = LTJB]'
i=1 j=1

1

D < D D ,
(palloa) < 7— 2hoa s )l [Da(palloa) + Di(palloa)]
h(oacpe) i= 0" ® agi/zamscagiﬂ @ope’? —Lacpe.

Log-Sobolev Inequalities for Quantum Many-Body



) ACTORIZATION OF THE RELATIVE ENTROPY
REsuLTS SOBOLEV CONSTANTS
TROPY

QUASI-FACTORIZATION FOR QMC (Heat-bath)

Let Hapecp = Ha @ He ® He @ Hp, where system C' shields A from BD
and paBcp,0caBcD € SABCD, such that capcp is a quantum Markov
chain between A <> C' <> BD. Then, the following holds

Dag(paBcplloasep) < [Da(pasep||loasep) + De(pascep||loasep)] -

Dap(pasenlloascn) Dalpascolloascp) Dg(pascplloascp)

BE < B+ F

(ICMAT) 0 obolev Inequali for Quantum Many-Bo:
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STANTS

SKETCH OF THE PROOF

STEP 2

Da(palloa) <> Da,(palloa)

i=1
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)N OF THE RELATIVE ENTROPY

REsuLTS

SKETCH OF THE PROOF

STEP 2 J

Da(palloa) <> Da,(palloa)

i=1

oa is a QMC between A; <> 0A1 <> A\ (A1 UJA))

o= _@"maanf ® O(9ay)RA\(4,U04:)

Capel Cue C bbolev Inequalities for Quantum Many-Body



\TION OF THE RELATIVE ENTROPY
O ANTS

HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ _ _ 1
[h(oan) = HO.AI/Z 205 20 apo Y2 @ opl/? - ILABH <K<l

oo

In particular, classical Gibbs states satisfy this.

for Quantum Many-Bod
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ _ _ _ 1
[h(oan) = HO.AI/Z 205 20 apo Y2 @ opl/? - ILABH <K<l

oo

In particular, classical Gibbs states satisfy this.

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

Dg(palloa) < f(osa) (Da, (palloa) + De,(palloa)) -

In particular, tensor products satisfy this (with f =1).

A\

es for Quantum Many-Body



ON OF THE RELATIVE ENTROPY

HEAT-BATH DYNAMICS IN 1D

STEP 3 J

Assumption 1 = o(L3) > K gln {aa(Lh,), an(LE;)}

Using locality of the Lindbladian
CZ + ﬂ*B = ﬁ*AuB + ETAmB-

(ICMAT) b equa or Quantum Many-Bod,



ION OF THE RELATIVE ENTROPY
STANTS

AMICS IN 1D

STEP 4 J

Assumption 2 = aa(L}y,) > g(oa,a) > 0.




HEAT-BATH DYNAMICS IN 1D

THEOREM (Heat-bath)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

(ICMAT) e for Quantum Many-Bod,
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REsuLTS L0G-SOBOLEV CONSTANTS

ExAMPLE 3 (Davies)

DAVIES DYNAMICS

ev Inequalities for Quantum M



N OF THE RELATIVE ENTROPY
REsuLTS S

DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:

LX) =i[Ha, X1+ > Lo(X
keEA

where

= 3 2al0) (S XB0r(0) — 3 {504()S0s(w). X})

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:
LX) =i[Ha, X1+ > Lo(X
keA

where

= 3 2al0) (S XB0r(0) — 3 {504()S0s(w). X})

Important property: Given A C A,
8
EL(X) = E(XIN) = lim "4 (X).
— 00

is a conditional expectation onto the subalgebra of fixed points of Eﬁ.

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Sy



TION OF THE RELATIVE ENTROPY
RESULTS / CONSTANTS

DAVIES DYNAMICS

CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of Ei in A
by

5 —tr [ﬁi(m)(log pa — log GA)]
ap(L) := inf 5
PAESA 2D 4 (palloa)

)

where o, is the fixed point of the global evolution (the Gibbs state of a
local commuting Hamiltonian), and

D3 (pallon) = D(pall€4(pa))-

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Sy
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\CTORIZATION OF THE RELA'
OBOLEV CONSTANTS

TROPY

DAVIES DYNAMIC

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.




TION OF THE RELATIVE ENTROPY
RESULTS / CONSTANTS

DAVIES DYNAMICS

CLUSTERING OF CORRELATIONS

The state 0 € S(#) is said to satisfy exponential conditional
Li-clustering of correlations with respect to the triple (Ma, N, Nag) if
there exists a constant ¢ := ¢(Ma, N, Nag, o) such that, for any

X € B(H),

| Covirap o (Ea(X), (X)) < || X2, (e “HEEND/E

Moreover, the triple (Ma, N5, Nag) is said to satisfy exponential
conditional LL;-clustering of correlations if there exists a constant
¢ := c(Na,Ng,Nag,o) such that any state o0 = £} 5(0) satisfies
conditional IL;-clustering of correlations with constant c.

Decay of correlations

-~

Angela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



TION OF THE RELATIVE ENTROPY
RESULTS NSTANTS

DAVIES DYNAMICS

QUASI-FACTORIZATION (Dav

1
Assume that there exists a constant 0 < ¢ < ————— such that the triple
2(4 ++/2)
(N A, NB,Na B) satisfies the exponential conditional L;-clustering of
correlations with corresponding constant c. Then, the following inequality

holds for every p € S(H):

1

aas . (DAl DR @)

DﬁB(P”U) <

for every o = E45(0).

D& pelpasoplloason) Din(pascolloascn) D%c(pascplloascn)

ABCS&(AHC) AREN c + AN C

Log-Sobolev Inequalities for Quantum Many-Body Sy



\CTORIZATION OF THE RELATI\
RESULTS OBOLEV CONSTANTS

A AnL BnL
0000 0000
A8, 1B,
00060 0 1000e
0000 0000

o) o), |
000 000
0000 00060
A 5

Figure: Splitting in A,, and By,.

(ICMAT) e for Quantum Many-Bod,



)N OF THE RELATIVE ENTROPY
REsuLTS S

THEOREM, Junge-LaRacuente-Rouzé ’19

Given A CC Z%, L} : Sn — Sa the Lindbladian associated to the Davies
dynamics and a finite lattice and A C A, we have

ax (£57) = v(14) > o,

where ¥ (| A|) might depend on A, but is independent of its size.

Sobolev Inequalities for Quantum Many-Bod,



)N OF THE RELATIVE ENTROPY

REsuLTS

2.4 PART 4: A STRENGTHENED DPI FOR THE
BS-ENTROPY

for Quantum Many-Bo



)N OF THE RELATIVE ENTROPY
ANTS

MAIN CONCEPTS

RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(allp) := trlo(log o — log p)].

for Quantum Many-Body



REsuLTS

MAIN CONCEPTS

RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(ollp) = trlo(log o — log ).

BELAVKIN-STASZEWSKI RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is
defined as:

Dgs(o||p) := tr [o log (01/2p_101/2>].

(ICMAT) Log-Sobolev Inequal or Quantum Many-Body



( OF THE RELATIVE ENTROPY
REsuLTS NTS

MAIN CONCEPTS

RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(ollp) = trlo(log o — log ).

BELAVKIN-STASZEWSKI RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is
defined as:

Dgs(o||p) := tr [o log (01/2p_101/2>].

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every o > 0, p > 0:

Dss(allp) = D(allp).

Capel Cue MAT) Log-Sobolev Inequalities for Quantum Many-Body



ON OF THE RELATIVE ENTROPY
REsuLTS S

MOTIVATION: RELATIVE ENTROPY

Relative entropy of ¢ and p: D(c||p) := tr[o(log o — log p)].

Capel Cue C bbolev Inequalities for Quantum Many-Body



)N OF THE RELATIVE ENTROPY

Relative entropy of ¢ and p: D(c||p) := tr[o(log o — log p)].

Sobolev Inequalities for Quantum Many-Bod,



ON OF THE RELATIVE ENTROPY

REsuLTS

MOTIVATION: RELATIVE ENTROPY

Relative entropy of ¢ and p: D(c||p) := tr[o(log o — log p)].

DATA PROCESSING INEQUALITY

D(allp) = D(T(o)I|T(p))-

(ICMAT) og-Sobolev Inequalities for Quantum Many-Body



ON OF THE RELATIVE ENTROPY
REsuLTS S

MOTIVATION: RELATIVE ENTROPY

Relative entropy of ¢ and p: D(c||p) := tr[o(log o — log p)].

DATA PROCESSING INEQUALITY

D(allp) = D(T(o)I|T(p))-

<

CONDITIONS FOR EQUALITY

D(ollp) = DT@NIT(0)) & o = p*T* (T(o) " *T()T(p) /) /.

4

Petz recovery map R%-(-) := p'/*T* (T(p)flm(-)T(p)*lm) p'/2.

Log-Sobolev Inequalities for Quantum Many-Body



REsuLTS

MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5- o T (0))?
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5- o T (0))?

Answer: It is not possible (Brandao et al. ’15, Fawzi? ’17).
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NTROPY

MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5- o T (0))?

Answer: It is not possible (Brandao et al. ’15, Fawzi? ’17).

(Carlen-Vershynina °17) £ : M — A conditional expectation,
on = E(0) and pn = E(p):

T\ 4 _ -
D(ollp) = D(onllon) = (§) ILoRo 1 I IRE(ox) = pll}-

(ICMAT) bbolev Inequalities for Quantum Many-Body
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NTROPY

MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5- o T (0))?

Answer: It is not possible (Brandao et al. ’15, Fawzi? ’17).

(Carlen-Vershynina °17) £ : M — A conditional expectation,
on = E(0) and pn = E(p):

T\ 4 _ -
D(ollp) = D(onllon) = (§) ILoRo 1 I IRE(ox) = pll}-

(Carlen-Vershynina 18) Extension to standard f-divergences.

(ICMAT) bbolev Inequalities for Quantum Many-Body
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STANDARD AND MAXIMAL f-DIVERGENCES

(Hiai-Mosonyi ’17)




)F THE RELATIVE ENTROPY

REsuLTS

STANDARD AND MAXIMAL f-DIVERGENCES

(Hiai-Mosonyi ’17)

STANDARD f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(llp) = tx[p"/f (Lo Ry1)p"?]

is the standard f-divergence.

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Sy



STRATEGY
THE RELATIVE ENTROPY
REsuLTS

S-ENT!

STANDARD AND MAXIMAL f-DIVERGENCES

(Hiai-Mosonyi ’17)

STANDARD f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(ollp) = tr [/ f(La Ry-1)p'?]

is the standard f-divergence.

MAXIMAL f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

Si(ollp) = tr [pmf(p_mop_l/z)pm]

is the maximal f-divergence.

ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Sy
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DATA PROCESSING INEQUALITY

Let o > 0, p > 0 be two states on a matrix algebra M and 7 : M — B be a
PTP linear map. Then,

SHT (@) T(p)) < Ss(allp)-

(ICMAT) e for Quantum Many-Bod,



ON OF THE RELATIVE ENTROP

REsuLTS
BS-ENTROPY

DATA PROCESSING INEQUALITY

Let o > 0, p > 0 be two states on a matrix algebra M and 7 : M — B be a
PTP linear map. Then,

SHT (@) T(p)) < Ss(allp)-

| A\

RELATION BETWEEN f-DIVERGENCES

For every two states o > 0, p > 0 on M and every operator convex function
f:(0,00) =R,

S¢(allp) < S¢(allp).

A\

(ICMAT) bo equa or Quantum Many-Bod,



DATA PROCESSING INEQUALITY

Let o > 0, p > 0 be two states on a matrix algebra M and 7 : M — B be a
PTP linear map. Then,

SHT (@) T(p)) < Ss(allp)-

RELATION BETWEEN f—DIVERGENCES

For every two states o > 0, p > 0 on M and every operator convex function
f:(0,00) = R, .
St(allp) < St(allp)-

v
REMARK: DIFFERENCE

For maximal f-divergences, there is no equivalent condition for equality in
DPI which provides a explicit expression of recovery for o.

olev Inequalities for Quantum Many-Bod



OF THE RELATIVE ENTROPY
ANTS
NTRO]

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI

r:.= 071/2,0071/2 and 'y := aj}l
on = E(p), on = E(o)

(ICMAT) b e >s for Quantum Many-Bod,
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EQUIVALENT CONDITIONS FOR EQUALITY ON DPI

/ 1/2

r:.= 071/2,0071/2 and 'y := 0';[1 Qp/\/og/

pn = E(p), on = E(0)

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI (BS-entropy)

Let M be a matrix algebra with unital subalgebra A/. Let £ : M — N be
the trace-preserving conditional expectation onto this subalgebra. Let
o >0, p > 0 be two quantum states on M. Then, the following are

equivalent:
@ Sus(ollp) = Ses(owlpn)-
Q pyp l=onoh

@ 020 *T) o)/ =T/251/2,

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body
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EQUIVALENT CONDITIONS FOR EQUALITY ON DPI

/ 1/2

r:.= 071/2,0071/2 and 'y := 0';[1 Qp/\/og/

pn = E(p), on = E(0)

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI (BS-entropy)

Let M be a matrix algebra with unital subalgebra A/. Let £ : M — N be
the trace-preserving conditional expectation onto this subalgebra. Let
o >0, p > 0 be two quantum states on M. Then, the following are

equivalent:
@ Sus(ollp) = Ses(owlpn)-
Q pyp l=onoh

@ 020 *T) o)/ =T/251/2,

BS RECOVERY CONDITION, (BS-entropy)

TE () =005 ().

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body
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CONSEQUENCES

Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.
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CONSEQUENCES

Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.

COROLLARY

Ses(0lp) = Ses(owllon) & p=T& 0 E(p)
So=TLo&(o)

& Sps(pllo) = Ses(pnllon).

(ICMAT) obolev Inequalities for Quantum Many-Bod.
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CONSEQUENCES

Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.

COROLLARY

Ses(0lp) = Ses(owllon) & p=T& 0 E(p)
So=TLo&(o)

& Sps(pllo) = Ses(pnllon).

| \

COROLLARY

D(ollp) = D(oxllon) = Sas(ollp) = Sns(onllpn).

Equivalently,
c=Reo&(c) = o=TFo&(o).

The converse of this result is false (Jencova-Petz-Pitrik 09,
Hiai-Mosonyi ’17).

Ar



REsuLTS

STRENGTHENED DPI FOR THE BS-ENTROPY

STRENGTHENED DPI FOR THE BS-ENTROPY (BS-entropy)

Let M be a matrix algebra with unital subalgebra A/. Let £ : M — N be
the trace-preserving conditional expectation onto this subalgebra. Let
o >0, p > 0 be two quantum states onto M. Then,

A a Al _
Ses(ollp) = Sus(owllen) 2 (%) ITIZ o122l = oontonly-

es for Quantum Many-Body
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REesuLTs 'S

STRENGTHENED DPI FOR MAXIMAL f DIVERGENCES

STRENGTHENED DPI FOR MAXIMAL f-DIVERGENCES (BS-entropy)

Let M be a matrix algebra with unital subalgebra A/. Let £ : M — N be
the trace-preserving conditional expectation onto this subalgebra. Let

o >0, p > 0 be two quantum states on M and let f : (0,00) — R be an
operator convex function with transpose f . We assume that f is operator
monotone decreasing and such that the measure p_ 7 that appears in the

representation of — f is absolutely continuous with respect to Lebesgue
measure. Moreover, we assume that for every 7' > 1, there exist constants
a >0, C > 0 satisfying du_(t)/dt > (CT**)~" for all t € [1/T,T] and
such that

<1

<<2a L 1)VT (85(ollp) Sf<aN||pN>>”2> s
i i

Then, there is a constant L, > 0 such that




CI'IaCI/I60IaalElawlava
= - liilos aﬂkm_

lesekkm edenm

mahalo

enkosi

=" glun dankon Gi0

|- dZI kU'B Imule]mhmmuchmakkerar
MCIpht ﬂumkalﬂulluun ﬂp Wﬂh kr as;;uayju[] [al mal a a
0brig d g5 ST

T2 sl BUDES et |[9718 a”[.]ﬂtﬂ = dak[]]ﬂm tngier

E tmuibmits = ramel 3 iy dheyaiatagdl 3 iy = B Mepch

ﬁmrﬁmwﬁf '/\ 6] L]L me D me[cl

ngiyabonga P ITRR
. 130keHE: ok A

((((( 5 hlaunﬂmam n E ma“mgm"ng =
£=. XBana
[a E | aS_H s Iﬂﬂilﬂ d

km




	Introduction and motivation
	Quantum dissipative systems
	Logarithmic Sobolev inequalities

	Results
	Strategy
	Quasi-factorization of the relative entropy
	Log-Sobolev constants
	BS-entropy


