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Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Quantum

Q. information theory ←→ Q. many-body physics

Communication channels ←→ Physical interactions

Tools and ideas −→ Solve problems

Storage and
transmision ←− Models

of information
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Field of study

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

1.1 Quantum dissipative systems
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Open quantum systems

No experiment can be executed at zero temperature or
be completely shielded from noise.

⇒ Open quantum many-body systems.

Figure: An open quantum many-body system.

Dynamics of S is dissipative!
The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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Postulates of quantum mechanics

Postulate 1

Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector,
which is a unitary vector in the state space.

Postulate 2

Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space.
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Notation

Figure: A quantum spin lattice system.

Finite lattice Λ ⊂⊂ Zd.
To every site x ∈ Λ we associate Hx (= CD).

The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.

The set of bounded linear endomorphisms on HΛ is denoted by
BΛ := B(HΛ).

The set of density matrices is denoted by
SΛ := S(HΛ) = {ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.
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Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel (CPTP map)
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Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel (CPTP map)
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Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel (CPTP map)
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Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel (CPTP map)
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Open systems

Open systems ⇒ Environment and system interact.

Figure: Environment + System form a closed system.

State for the environment: |ψ〉 〈ψ|E

ρ 7→ ρ⊗ |ψ〉 〈ψ|E 7→ U
(
ρ⊗ |ψ〉 〈ψ|E

)
U∗ 7→ trE [U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗] = ρ̃

T : S(H) → S(H)
ρ 7→ ρ̃

quantum channel
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Markovian approximation

Continuous-time description: For every t ≥ 0, the
corresponding time slice is a realizable evolution Tt (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

⇒Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

Markovian approximation
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Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Markovian approximation

Continuous-time description: For every t ≥ 0, the
corresponding time slice is a realizable evolution Tt (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

⇒Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

Markovian approximation
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Dissipative quantum systems

Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup
{T ∗t }t≥0 of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.

Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Dissipative quantum systems

Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup
{T ∗t }t≥0 of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.
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Dissipative quantum systems

Primitive QMS

We assume that {T ∗t }t≥0 has a unique full-rank invariant state, which we
denote by σ.

Reversibility

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

〈f,L(g)〉σ = 〈L(f), g〉σ

for every f, g ∈ A, in the Heisenberg picture.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Quantum dissipative evolutions useful?

Main objective:

One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative
evolutions.
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Quantum dissipative evolutions useful?

Recent change of perspective ⇒ Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:

Computational power

Conditions against noise

Time to obtain certain states

...
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Mixing time

Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε
}

.
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Rapid mixing

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

Problem

Find examples of rapid mixing!
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1.2 Logarithmic Sobolev inequalities
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Log-Sobolev inequality (MLSI)

Recall: ρt := T ∗t (ρ).

Liouville’s equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)]. (1)

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)]. (2)
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Log-Sobolev constant

Log-Sobolev constant

The log-Sobolev constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

Log-Sobolev constant ⇒ Rapid mixing.

Problem

Find positive log-Sobolev constants!
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First main objective of this thesis

Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.

Second main objective of this thesis

Apply that strategy to certain dissipative dynamics.
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Based on:

1 (Super) A. Capel, A. Lucia and D. Pérez-Garćıa, Superadditivity
of Quantum Relative Entropy for General States, IEEE Trans.
on Inf. Theory, 64 (7) (2018), 4758–4765.

2 (Q-Fact) A. Capel, A. Lucia and D. Pérez-Garćıa, Quantum
Conditional Relative Entropy and Quasi-Factorization of the
Relative Entropy, J. Phys. A: Math. Theor., 51 (2018), 484001.

3 (BS-entropy) A. Bluhm and A. Capel, A strengthened data
processing inequality for the Belavkin-Staszewski relative
entropy, Rev. Math. Phys., to appear (2019).

4 (Heat-bath) I. Bardet, A. Capel, A. Lucia, D. Pérez-Garćıa and C.
Rouzé, On the modified logarithmic Sobolev inequality for the
heat-bath dynamics for 1D systems, preprint, arXiv: 1908.09004.

5 (Davies) I. Bardet, A. Capel and C. Rouzé, Positivity of the
modified logarithmic Sobolev constant for quantum Davies
semigroups: the commuting case, in preparation.
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Classical spin systems

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev

constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

⇓

Positive log-Sobolev constant.

Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Strategy
Quasi-factorization of the relative entropy
Log-Sobolev constants
BS-entropy

Classical spin systems

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev

constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

⇓

Positive log-Sobolev constant.
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Objective

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?
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Objective

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .
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Conditional log-Sobolev constant

Log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ. We define the log-Sobolev constant of L∗Λ by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ, A ⊆ Λ. We define the conditional log-Sobolev constant of L∗Λ
on A by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Based on:

1 (Super) A. Capel, A. Lucia and D. Pérez-Garćıa, Superadditivity
of Quantum Relative Entropy for General States, IEEE Trans.
on Inf. Theory, 64 (7) (2018), 4758–4765. Quasi-Factorization

2 (Q-Fact) A. Capel, A. Lucia and D. Pérez-Garćıa, Quantum
Conditional Relative Entropy and Quasi-Factorization of the
Relative Entropy, J. Phys. A: Math. Theor., 51 (2018), 484001.
Quasi-Factorization

3 (BS-entropy) A. Bluhm and A. Capel, A strengthened data
processing inequality for the Belavkin-Staszewski relative
entropy, Rev. Math. Phys., to appear (2019).

4 (Heat-bath) I. Bardet, A. Capel, A. Lucia, D. Pérez-Garćıa and C.
Rouzé, On the modified logarithmic Sobolev inequality for the
heat-bath dynamics for 1D systems, preprint, arXiv: 1908.09004.
Log-Sobolev

5 (Davies) I. Bardet, A. Capel and C. Rouzé, Positivity of the
modified logarithmic Sobolev constant for quantum Davies
semigroups: the commuting case, in preparation. Log-Sobolev
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2.2 Part 2: Quasi-factorization of the relative
entropy
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Statement of the problem

Problem

Let HABC = HA ⊗HB ⊗HC and ρABC , σABC ∈ SABC . Can we prove
something like

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ?

Quantum relative entropy

D(ρ||σ) = tr [ρ(log ρ− log σ)]
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Problem

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)]

Classical case, Dai Pra et al. ’02

Entµ(f) ≤ 1

1− 4‖h− 1‖∞
µ [Entµ(f | F1) + Entµ(f | F2)],

where h =
dµ

dµ̄
.

Classical entropy and conditional entropy

Entropy:

Entµ(f) = µ(f log f)− µ(f) logµ(f).

Conditional entropy:

Entµ(f | G) = µ(f log f | G)− µ(f | G) log µ(f | G).
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Relative entropy

Quantum relative entropy

Let ρΛ, σΛ ∈ SΛ. The quantum relative entropy of ρΛ and σΛ is defined
by:

D(ρΛ||σΛ) = tr [ρΛ(log ρΛ − log σΛ)] .

Properties of the relative entropy

Let HAB = HA ⊗HB and ρAB , σAB ∈ SAB . The following properties hold:

1 Continuity. ρAB 7→ D(ρAB ||σAB) is continuous.

2 Additivity. D(ρA ⊗ ρB ||σA ⊗ σB) = D(ρA||σA) +D(ρB ||σB).

3 Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

4 Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

Characterization of the RE, Wilming et al. ’17, Matsumoto ’10

If f : SAB × SAB → R+
0 satisfies 1− 4, then f is the relative entropy.
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3 Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

4 Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

Characterization of the RE, Wilming et al. ’17, Matsumoto ’10

If f : SAB × SAB → R+
0 satisfies 1− 4, then f is the relative entropy.
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Relative entropy

Quantum relative entropy

Let ρΛ, σΛ ∈ SΛ. The quantum relative entropy of ρΛ and σΛ is defined
by:

D(ρΛ||σΛ) = tr [ρΛ(log ρΛ − log σΛ)] .

Properties of the relative entropy

Let HAB = HA ⊗HB and ρAB , σAB ∈ SAB . The following properties hold:

1 Continuity. ρAB 7→ D(ρAB ||σAB) is continuous.

2 Additivity. D(ρA ⊗ ρB ||σA ⊗ σB) = D(ρA||σA) +D(ρB ||σB).

3 Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

4 Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

Characterization of the RE, Wilming et al. ’17, Matsumoto ’10

If f : SAB × SAB → R+
0 satisfies 1− 4, then f is the relative entropy.
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Conditional relative entropy

Conditional relative entropy, (Q-Fact)

Let HAB = HA ⊗HB . We define a conditional relative entropy in A as
a function

DA(·||·) : SAB × SAB → R+
0

verifying the following properties for every ρAB , σAB ∈ SAB :

1 Continuity: The map ρAB 7→ DA(ρAB ||σAB) is continuous.
2 Non-negativity: DA(ρAB ||σAB) ≥ 0 and

(2.1) DA(ρAB ||σAB)=0 if, and only if, ρAB = σ
1/2
ABσ

−1/2
B ρBσ

−1/2
B σ

1/2
AB .

3 Semi-superadditivity: DA(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) and
(3.1) Semi-additivity: if ρAB = ρA ⊗ ρB ,

DA(ρA ⊗ ρB ||σA ⊗ σB) = D(ρA||σA).

4 Semi-motonicity: For every quantum channel T ,

DA(T (ρAB)||T (σAB)) +DB((trA ◦T )(ρAB)||(trA ◦T )(σAB))

≤ DA(ρAB ||σAB) +DB(trA(ρAB)|| trA(σAB)).
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Remark

Consider for every ρAB , σAB ∈ SAB

D+
A,B(ρAB ||σAB) = DA(ρAB ||σAB) +DB(ρAB ||σAB).

Then, D+
A,B verifies the following properties:

1 Continuity: ρAB 7→ D+
A,B(ρAB ||σAB) is continuous.

2 Additivity: D+
A,B(ρA ⊗ ρB ||σA ⊗ σB) = D(ρA||σA) +D(ρB ||σB).

3 Superadditivity: D+
A,B(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

However, it does not satisfy the property of monotonicity.

Axiomatic characterization of the CRE, (Q-Fact)

The only possible conditional relative entropy is given by:

DA(ρAB ||σAB) = D(ρAB ||σAB)−D(ρB ||σB)

for every ρAB , σAB ∈ SAB .
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Figure: Choice of indices in HABC = HA ⊗HB ⊗HC .

Result of quasi-factorization of the relative entropy, for every
ρABC , σABC ∈ SABC :

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where ξ(σABC) depends only on σABC and measures how far σAC is from
σA ⊗ σC .
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Quasi-factorization for the CRE, (Q-Fact)

Let HABC = HA ⊗HB ⊗HC and ρABC , σABC ∈ SABC . Then, the following
inequality holds

D(ρABC ||σABC) ≤
1

1− 2‖H(σAC)‖∞
[DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

H(σAC) = σ
−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC .

Note that H(σAC) = 0 if σAC is a tensor product between A and C.
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(1− 2‖H(σAC)‖∞)D(ρABC ||σABC) ≤
DAB(ρABC ||σABC) +DBC(ρABC ||σABC) =

= 2D(ρABC ||σABC)−D(ρC ||σC)−D(ρA||σA).

⇔

(1 + 2‖H(σAC)‖∞)D(ρABC ||σABC) ≥ D(ρA||σA) +D(ρC ||σC).

⇔

(1 + 2‖H(σAC)‖∞)D(ρAC ||σAC) ≥ D(ρA||σA) +D(ρC ||σC).
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(1− 2‖H(σAC)‖∞)D(ρABC ||σABC) ≤
DAB(ρABC ||σABC) +DBC(ρABC ||σABC) =

= 2D(ρABC ||σABC)−D(ρC ||σC)−D(ρA||σA).

⇔

(1 + 2‖H(σAC)‖∞)D(ρABC ||σABC) ≥ D(ρA||σA) +D(ρC ||σC).

⇔

(1 + 2‖H(σAC)‖∞)D(ρAC ||σAC) ≥ D(ρA||σA) +D(ρC ||σC).
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(1− 2‖H(σAC)‖∞)D(ρABC ||σABC) ≤
DAB(ρABC ||σABC) +DBC(ρABC ||σABC) =

= 2D(ρABC ||σABC)−D(ρC ||σC)−D(ρA||σA).

⇔

(1 + 2‖H(σAC)‖∞)D(ρABC ||σABC) ≥ D(ρA||σA) +D(ρC ||σC).

⇔

(1 + 2‖H(σAC)‖∞)D(ρAC ||σAC) ≥ D(ρA||σA) +D(ρC ||σC).
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This result is equivalent to (Super):

(1 + 2‖H(σAB)‖∞)D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB) .

Recall:

Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

Due to:

Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

we have

2D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB).
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This result is equivalent to (Super):

(1 + 2‖H(σAB)‖∞)D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB) .

Recall:

Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

Due to:

Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

we have

2D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB).
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This result is equivalent to (Super):

(1 + 2‖H(σAB)‖∞)D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB) .

Recall:

Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

Due to:

Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

we have

2D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB).
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Quasi-factorization for the CRE (Q-Fact)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Weak conditional relative entropy

Weak conditional relative entropy, (Q-Fact)

Let HAB = HA ⊗HB . We define a conditional relative entropy in A as
a function

DA(·||·) : SAB × SAB → R+
0

verifying the following properties for every ρAB , σAB ∈ SAB :

1 Continuity: The map ρAB 7→ DA(ρAB ||σAB) is continuous.
2 Non-negativity: DA(ρAB ||σAB) ≥ 0 and

(2.1) DA(ρAB ||σAB)=0 if, and only if, ρAB = σ
1/2
ABσ

−1/2
B ρBσ

−1/2
B σ

1/2
AB .

3 Semi-superadditivity: DA(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) and
(3.1) Semi-additivity: if ρAB = ρA ⊗ ρB ,

DA(ρA ⊗ ρB ||σA ⊗ σB) = D(ρA||σA).

Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Strategy
Quasi-factorization of the relative entropy
Log-Sobolev constants
BS-entropy

Conditional relative entropy by expectations

Conditional relative entropy by expectations, (Q-Fact)

Let HAB = HA ⊗HB and ρAB , σAB ∈ SAB . Let E∗A be defined as

E∗A(ρAB) := σ
1/2
AB σ

−1/2
B ρB σ

−1/2
B σ

1/2
AB . (3)

We define the conditional relative entropy by expectations of ρAB
and σAB in A by:

DE
A(ρAB ||σAB) = D(ρAB ||E∗A(ρAB)).

Property

DE
A(ρAB ||σAB) is a weak conditional relative entropy.
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Quasi-factorization CRE by expectations, (Q-Fact)

Let HAB = HA ⊗HB and ρAB , σAB ∈ SAB . The following inequality holds

(1− ξ(σAB))D(ρAB ||σAB) ≤ DEA(ρAB ||σAB) +DEB(ρAB ||σAB), (4)

where

ξ(σABC) = 2 (E1(t) + E2(t)),

and

E1(t) =

∫ +∞

−∞
dt β0(t)

∥∥∥∥σ−1+it
2

B σ
1−it

2
AB σ

−1+it
2

A − 1AB
∥∥∥∥
∞

∥∥∥∥σ−1/2
A σ

1+it
2

AB σ
−1/2
B

∥∥∥∥
∞

,

E2(t) =

∫ +∞

−∞
dt β0(t)

∥∥∥∥σ−1−it
2

B σ
1+it

2
AB σ

−1−it
2

A − 1AB
∥∥∥∥
∞

.

Note that ξ(σAB) = 0 if σAB is a tensor product between A and B.
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Relation with the classical case

Figure: Identification between classical and quantum quantities when the states
considered are classical.
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2.3 Part 3: Log-Sobolev constants
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Quantum spin lattices

Figure: A quantum spin lattice system Λ and A,B ⊆ Λ such that A ∪B = Λ.

Problem

For a certain L∗Λ, can we prove α(L∗Λ) > 0 using the result of
quasi-factorization of the relative entropy?
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Example 1 (Q-Fact)

Heat-bath dynamics with tensor product fixed point
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Heat-bath with tensor product fixed point

Theorem (Q-Fact)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x

Since

E∗x(ρΛ) = σ
1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have

L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ).
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Heat-bath with tensor product fixed point

Theorem (Q-Fact)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x

Since

E∗x(ρΛ) = σ
1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have

L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ).
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Strategy
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Heat-bath with tensor product fixed point

Assumption

σΛ =
⊗
x∈Λ

σx.
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Heat-bath with tensor product fixed point

Conditional log-Sobolev constant

For x ∈ Λ, we define the conditional log-Sobolev constant of L∗Λ in x by

αΛ(L∗x) := inf
ρΛ∈SΛ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2Dx(ρΛ||σΛ)
,

where σΛ is the fixed point of the evolution, and Dx(ρΛ||σΛ) is the
conditional relative entropy.
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Heat-bath with tensor product fixed point

General quasi-factorization for σ a tensor product

Let HΛ =
⊗
x∈Λ

Hx and ρΛ, σΛ ∈ SΛ such that σΛ =
⊗
x∈Λ

σx. The following

inequality holds:

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ).
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Heat-bath with tensor product fixed point

Lemma (Positivity of the conditional log-Sobolev constant)

αΛ(L∗x) ≥ 1

2
.
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Heat-bath with tensor product fixed point

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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Heat-bath with tensor product fixed point

Positive log-Sobolev constant

α(L∗Λ) ≥ 1

2
.
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Example 2, (Heat-bath)

Heat-bath dynamics in 1D
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Heat-bath dynamics in 1D

σΛ is the Gibbs state of a k-local, commuting Hamiltonian.

Φ : Λ→ AΛ be a k-local potential: For j ∈ Λ, Φ(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ‖Φ(j)‖ ≤ K for some constant K <∞. The potential Φ is said to
be commuting if for any i, j ∈ Λ, [Φ(i),Φ(j)] = 0.

Hamiltonian on a subregion A ⊆ Λ:

HA :=
∑
j∈A

Φ(j) . (5)

Gibbs state corresponding to the region A at inverse temperature β:

σβA :=
e−βHA

tr(e−βHA)
. (6)
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Heat-bath dynamics in 1D

σΛ is the Gibbs state of a k-local, commuting Hamiltonian.

Φ : Λ→ AΛ be a k-local potential: For j ∈ Λ, Φ(j) self-adjoint and
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Heat-bath dynamics in 1D

σΛ is the Gibbs state of a k-local, commuting Hamiltonian.

Φ : Λ→ AΛ be a k-local potential: For j ∈ Λ, Φ(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ‖Φ(j)‖ ≤ K for some constant K <∞. The potential Φ is said to
be commuting if for any i, j ∈ Λ, [Φ(i),Φ(j)] = 0.

Hamiltonian on a subregion A ⊆ Λ:

HA :=
∑
j∈A

Φ(j) . (5)

Gibbs state corresponding to the region A at inverse temperature β:

σβA :=
e−βHA
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Heat-bath dynamics in 1D

σΛ is the Gibbs state of a k-local, commuting Hamiltonian.

Φ : Λ→ AΛ be a k-local potential: For j ∈ Λ, Φ(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ‖Φ(j)‖ ≤ K for some constant K <∞. The potential Φ is said to
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Gibbs state corresponding to the region A at inverse temperature β:
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Heat-bath dynamics in 1D

σΛ is the Gibbs state of a k-local, commuting Hamiltonian.

Φ : Λ→ AΛ be a k-local potential: For j ∈ Λ, Φ(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ‖Φ(j)‖ ≤ K for some constant K <∞. The potential Φ is said to
be commuting if for any i, j ∈ Λ, [Φ(i),Φ(j)] = 0.

Hamiltonian on a subregion A ⊆ Λ:

HA :=
∑
j∈A

Φ(j) . (5)

Gibbs state corresponding to the region A at inverse temperature β:

σβA :=
e−βHA

tr(e−βHA)
. (6)
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Heat-bath dynamics in 1D

Conditional log-Sobolev constant

For A ⊂ Λ, we define the conditional log-Sobolev constant of L∗Λ in A
by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
,

where σΛ is the fixed point of the evolution, and

DA(ρΛ||σΛ) = D(ρΛ||σΛ)−D(ρAc ||σAc).
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Quasi-factorization for the CRE (Q-Fact)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Quasi-factorization of the relative entropy

STEP 1

A =

n⋃
i=1

Ai and B =

n⋃
j=1

Bj

D(ρΛ||σΛ) ≤ 1

1− 2‖h(σAcBc)‖∞
[DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

h(σAcBc) := σ
−1/2
Ac ⊗ σ−1/2

Bc σAcBcσ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc .
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Quasi-factorization for QMC (Heat-bath)

Let HABCD = HA ⊗HB ⊗HC ⊗HD, where system C shields A from BD
and ρABCD, σABCD ∈ SABCD, such that σABCD is a quantum Markov
chain between A↔ C ↔ BD. Then, the following holds

DAB(ρABCD||σABCD) ≤ [DA(ρABCD||σABCD) +DB(ρABCD||σABCD)] .
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Sketch of the proof

STEP 2

DA(ρΛ||σΛ) ≤
n∑
i=1

DAi(ρΛ||σΛ)

σΛ is a QMC between A1 ↔ ∂A1 ↔ Λ \ (A1 ∪ ∂A1)

σΛ =
⊕
i∈I
σA1(∂a1)Li

⊗ σ(∂a1)Ri Λ\(A1∪∂A1)

Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Strategy
Quasi-factorization of the relative entropy
Log-Sobolev constants
BS-entropy

Sketch of the proof

STEP 2

DA(ρΛ||σΛ) ≤
n∑
i=1

DAi(ρΛ||σΛ)

σΛ is a QMC between A1 ↔ ∂A1 ↔ Λ \ (A1 ∪ ∂A1)

σΛ =
⊕
i∈I
σA1(∂a1)Li

⊗ σ(∂a1)Ri Λ\(A1∪∂A1)
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Heat-bath dynamics in 1D

Assumption 1

In a tripartite Hilbert space HA ⊗HC ⊗HB , A and B not connected, we
have

‖h(σAB)‖∞ =
∥∥∥σ−1/2

A ⊗ σ−1/2
B σABσ

−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
≤ K <

1

2
.

In particular, classical Gibbs states satisfy this.

Assumption 2

For any B ⊂ Λ, B = B1 ∪B2, it holds:

DB(ρΛ||σΛ) ≤ f(σB∂) (DB1(ρΛ||σΛ) +DB2(ρΛ||σΛ)) .

In particular, tensor products satisfy this (with f = 1).
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Heat-bath dynamics in 1D

STEP 3

Assumption 1⇒ α(L∗Λ) ≥ K̃ min
i∈{1,...n}

{
αΛ(L∗Ai), αΛ(L∗Bi)

}

Using locality of the Lindbladian

L∗A + L∗B = L∗A∪B + L∗A∩B .
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Heat-bath dynamics in 1D

STEP 4

Assumption 2⇒ αΛ(L∗Ai) ≥ g(σAi∂) > 0.
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Heat-bath dynamics in 1D

Theorem (Heat-bath)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.
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Example 3 (Davies)

Davies dynamics
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Davies dynamics

Generator

The generator of the Davies dynamics is of the following form:

LβΛ(X) = i[HΛ, X] +
∑
k∈Λ

Lβk(X) ,

where

Lβk(X) =
∑
ω,α

χβα,k(ω)

(
S∗α,k(ω)XSα,k(ω)− 1

2

{
S∗α,k(ω)Sα,k(ω), X

})
.

Important property: Given A ⊆ Λ,

EβA(X) := E(X|N ) = lim
t→∞

etL
β
A(X) .

is a conditional expectation onto the subalgebra of fixed points of LβA.
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Davies dynamics

Conditional log-Sobolev constant

For A ⊂ Λ, we define the conditional log-Sobolev constant of LβΛ in A
by

αΛ(LβA) := inf
ρΛ∈SΛ

− tr
[
LβA(ρΛ)(log ρΛ − log σΛ)

]
2Dβ

A(ρΛ||σΛ)
,

where σΛ is the fixed point of the global evolution (the Gibbs state of a
local commuting Hamiltonian), and

Dβ
A(ρΛ||σΛ) = D(ρΛ||EβA(ρΛ)).
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Davies dynamics

Figure: A quantum spin lattice system Λ and A,B ⊆ Λ such that A ∪B = Λ.
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Davies dynamics

Clustering of correlations

The state σ ∈ S(H) is said to satisfy exponential conditional
L1-clustering of correlations with respect to the triple (NA,NB ,NAB) if
there exists a constant c := c(NA,NB ,NAB , σ) such that, for any
X ∈ B(H),

|CovNAB ,σ(EA(X), EB(X))| ≤ c ‖X‖2L1(σ)e
−d(A\B,B\A)/ξ .

Moreover, the triple (NA,NB ,NAB) is said to satisfy exponential
conditional L1-clustering of correlations if there exists a constant
c := c(NA,NB ,NAB , σ) such that any state σ = E∗AB(σ) satisfies
conditional L1-clustering of correlations with constant c.
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Davies dynamics

Quasi-factorization (Davies)

Assume that there exists a constant 0 < c <
1

2(4 +
√

2)
such that the triple

(NA,NB ,NAB) satisfies the exponential conditional L1-clustering of
correlations with corresponding constant c. Then, the following inequality
holds for every ρ ∈ S(H):

Dβ
AB(ρ||σ) ≤ 1

1− 2(4 +
√

2) c

(
Dβ
A(ρ||σ) +Dβ

B(ρ||σ)
)
, (7)

for every σ = E∗AB(σ).
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Geometric recursive argument (Davies)

α
(
Lβ∗Λ

)
≥ Ψ(L0) min

R∈RL0

αΛ

(
Lβ

∗

R

)
,

Figure: Splitting in An and Bn.
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Theorem, Junge-LaRacuente-Rouzé ’19

Given Λ ⊂⊂ Zd, L∗Λ : SΛ → SΛ the Lindbladian associated to the Davies
dynamics and a finite lattice and A ⊂ Λ, we have

αΛ

(
Lβ∗A

)
≥ ψ(|A|) > 0,

where ψ(|A|) might depend on Λ, but is independent of its size.
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2.4 Part 4: A strengthened DPI for the
BS-entropy
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Main concepts

Relative entropy

Given σ > 0, ρ > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(σ||ρ) := tr[σ(log σ − log ρ)].

Belavkin-Staszewski relative entropy

Given σ > 0, ρ > 0 states on a matrix algebra M, their BS-entropy is
defined as:

DBS(σ||ρ) := tr
[
σ log

(
σ1/2ρ−1σ1/2

)]
.

Relation between relative entropies

The following holds for every σ > 0, ρ > 0:

DBS(σ||ρ) ≥ D(σ||ρ).
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Motivation: Relative entropy

Relative entropy of σ and ρ: D(σ||ρ) := tr[σ(log σ − log ρ)].

Data processing inequality

D(σ||ρ) ≥ D(T (σ)||T (ρ)).

Conditions for equality

D(σ||ρ) = D(T (σ)||T (ρ))⇔ σ = ρ1/2T ∗
(
T (ρ)−1/2T (σ)T (ρ)−1/2

)
ρ1/2.

Petz recovery map RρT (·) := ρ1/2T ∗
(
T (ρ)−1/2(·)T (ρ)−1/2

)
ρ1/2.
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Motivation: Strengthened bounds for DPI of RE

Problem

Can we find a lower bound for the DPI in terms of D(σ||RρT ◦ T (σ))?

Answer: It is not possible (Brandao et al. ’15, Fawzi2 ’17).

(Carlen-Vershynina ’17) E :M→N conditional expectation,
σN := E(σ) and ρN := E(ρ):

D(σ‖ρ)−D(σN ‖ρN ) ≥
(π

8

)4

‖LρRσ−1‖−2
∞ ‖R

σ
E(ρN )− ρ‖41.

(Carlen-Vershynina ’18) Extension to standard f -divergences.

Ángela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Strategy
Quasi-factorization of the relative entropy
Log-Sobolev constants
BS-entropy

Motivation: Strengthened bounds for DPI of RE

Problem

Can we find a lower bound for the DPI in terms of D(σ||RρT ◦ T (σ))?

Answer: It is not possible (Brandao et al. ’15, Fawzi2 ’17).

(Carlen-Vershynina ’17) E :M→N conditional expectation,
σN := E(σ) and ρN := E(ρ):

D(σ‖ρ)−D(σN ‖ρN ) ≥
(π

8

)4

‖LρRσ−1‖−2
∞ ‖R

σ
E(ρN )− ρ‖41.

(Carlen-Vershynina ’18) Extension to standard f -divergences.
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Standard and maximal f-divergences

(Hiai-Mosonyi ’17)

Standard f-divergences

Let f : (0,∞)→ R be an operator convex function and σ > 0, ρ > 0 be two
states on a matrix algebra M. Then,

Sf (σ‖ρ) = tr
[
ρ1/2f(LσRρ−1)ρ1/2

]
is the standard f-divergence.

Maximal f-divergences

Let f : (0,∞)→ R be an operator convex function and σ > 0, ρ > 0 be two
states on a matrix algebra M. Then,

Ŝf (σ‖ρ) = tr
[
ρ1/2f(ρ−1/2σρ−1/2)ρ1/2

]
is the maximal f-divergence.
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Data processing inequality

Let σ > 0, ρ > 0 be two states on a matrix algebra M and T :M→ B be a
PTP linear map. Then,

Ŝf (T (σ)‖T (ρ)) ≤ Ŝf (σ‖ρ).

Relation between f-divergences

For every two states σ > 0, ρ > 0 on M and every operator convex function
f : (0,∞)→ R,

Sf (σ‖ρ) ≤ Ŝf (σ‖ρ).

Remark: Difference

For maximal f -divergences, there is no equivalent condition for equality in
DPI which provides a explicit expression of recovery for σ.
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Equivalent conditions for equality on DPI

Γ := σ−1/2ρσ−1/2 and ΓN := σ
−1/2
N ρNσ

−1/2
N

ρN := E(ρ), σN := E(σ)

Equivalent conditions for equality on DPI (BS-entropy)

Let M be a matrix algebra with unital subalgebra N . Let E :M→N be
the trace-preserving conditional expectation onto this subalgebra. Let
σ > 0, ρ > 0 be two quantum states on M. Then, the following are
equivalent:

1 ŜBS(σ‖ρ) = ŜBS(σN ‖ρN ).

2 ρNρ
−1 = σNσ

−1.

3 σ1/2σ
−1/2
N Γ

1/2
N σ

1/2
N = Γ1/2σ1/2.

BS recovery condition, (BS-entropy)

T σE (·) := σσ−1
N (·).
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Consequences

Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.

Corollary

ŜBS(σ‖ρ) = ŜBS(σN ‖ρN )⇔ ρ = T σE ◦ E(ρ)

⇔ σ = T ρE ◦ E(σ)

⇔ ŜBS(ρ‖σ) = ŜBS(ρN ‖σN ).

Corollary

D(σ‖ρ) = D(σN ‖ρN ) =⇒ ŜBS(σ‖ρ) = ŜBS(σN ‖ρN ).

Equivalently,
σ = RρE ◦ E(σ) =⇒ σ = T ρE ◦ E(σ).

The converse of this result is false (Jencová-Petz-Pitrik ’09,
Hiai-Mosonyi ’17).
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Strengthened DPI for the BS-entropy

Strengthened DPI for the BS-entropy (BS-entropy)

Let M be a matrix algebra with unital subalgebra N . Let E :M→N be
the trace-preserving conditional expectation onto this subalgebra. Let
σ > 0, ρ > 0 be two quantum states onto M. Then,

ŜBS(σ‖ρ)− ŜBS(σN ‖ρN ) ≥
(π

8

)4

‖Γ‖−4
∞

∥∥σ−1
∥∥−2

∞

∥∥ρ− σσ−1
N ρN

∥∥4

2
.
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Strengthened DPI for maximal f-divergences (BS-entropy)

Let M be a matrix algebra with unital subalgebra N . Let E :M→N be
the trace-preserving conditional expectation onto this subalgebra. Let
σ > 0, ρ > 0 be two quantum states on M and let f : (0,∞)→ R be an
operator convex function with transpose f̃ . We assume that f̃ is operator
monotone decreasing and such that the measure µ−f̃ that appears in the

representation of −f̃ is absolutely continuous with respect to Lebesgue
measure. Moreover, we assume that for every T ≥ 1, there exist constants
α ≥ 0, C > 0 satisfying dµ−f̃ (t)/dt ≥ (CT 2α)−1 for all t ∈ [1/T, T ] and
such that (

(2α+ 1)
√
C

4

(Ŝf (σ‖ρ)− Ŝf (σN ‖ρN ))1/2

1 + ‖Γ‖∞

) 1
1+α

≤ 1.

Then, there is a constant Lα > 0 such that

Ŝf (σ‖ρ)− Ŝf (σN ‖ρN ) ≥

≥ Lα
C

(
1 + ‖Γ‖∞

)−(4α+2) ‖Γ‖−(2α+2)
∞

∥∥σ−1
∥∥−(2α+2)

∞

∥∥ρ− σσ−1
N ρN

∥∥4(α+1)

2
.
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