MLSI 0000000000 Applications 000

The modified logarithmic Sobolev inequality for quantum spin systems via approximate tensorization of the relative entropy

Ángela Capel (Technische Universität München)

Joint work with: Cambyse Rouzé (T. U. München)

Daniel Stilck França (U. Copenhagen).

(and Ivan Bardet, Andreas Bluhm, Angelo Lucia, David Pérez-García and Antonio Pérez-Hernández)

Based on arXiv: 2009.11817.

Entropy Inequalities, Quantum Information and Quantum Physics 8-11 February 2021

INTRODUCTION AND MOTIVATION		MLSI	
•0000	000000000000000000000000000000000000000	0000000000	000

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

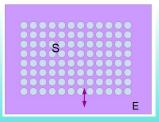
INTRODUCTION AND MOTIVATION		MLSI	
•0000	000000000000000000000000000000000000000	000000000	000

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



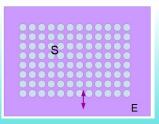
INTRODUCTION AND MOTIVATION		MLSI	
•0000	000000000000000000000000000000000000000	000000000	000

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

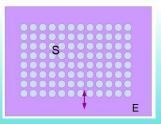
INTRODUCTION AND MOTIVATION		MLSI	
•0000	000000000000000000000000000000000000000	000000000	000

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

INTRODUCTION AND MOTIVATION		MLSI	
0000	000000000000000000000000000000000000000	0000000000	000

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

INTRODUCTION AND MOTIVATION	MLSI	
00000		

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Rapid mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

INTRODUCTION AND MOTIVATION	MLSI	
00000		

QUANTUM MARKOV SEMIGROUPS

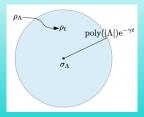
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t\to\infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



INTRODUCTION AND MOTIVATION	MLSI	
00000		

QUANTUM MARKOV SEMIGROUPS

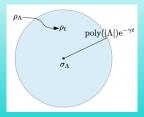
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Introduction and motivation		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

 $D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}_\Lambda^*) \, t},$

INTRODUCTION AND MOTIVATION		MLSI	
0000	000000000000000000000000000000000000000	000000000	000

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}_\Lambda^*) \, t},$$

and with **Pinsker's inequality**, we have:

 $\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$

INTRODUCTION AND MOTIVATION		MLSI	
0000	000000000000000000000000000000000000000	000000000	000

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

Introduction and motivation		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

 $MLSI \Rightarrow Rapid mixing.$

INTRODUCTION AND MOTIVATION		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}_\Lambda^*) \, t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

 $\left\| \rho_t - \sigma_\Lambda \right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_\Lambda^*) \, t}.$

INTRODUCTION AND MOTIVATION		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}_\Lambda^*) \, t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}$$

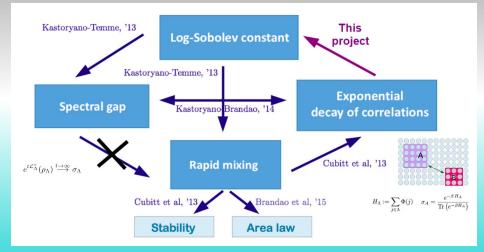
For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

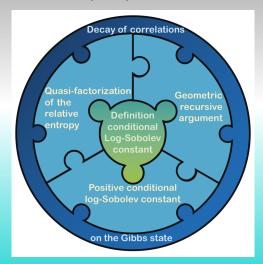
 $\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_{\Lambda}) t}.$

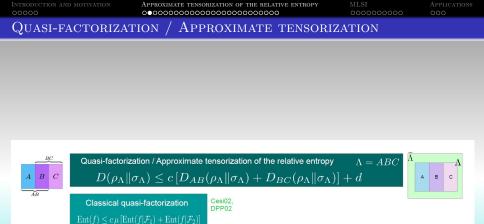
QUANTUM SPIN SYSTEMS



INTRODUCTION AND MOTIVATION		MLSI	
00000	000000000000000000000000000000000000000	000000000	000
Strategy			

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).





INTRODUCTION AND MOTIVATION	Approximate tensorization of the relative entropy $000000000000000000000000000000000000$	MLSI 0000000000	Applications 000
QUASI-FACTORIZAT	tion / Approximate tensori	ZATION	
		~	
	ation / Approximate tensorization of the relative entropy	$\Lambda = ABC \Lambda$	Λ
$A B C D(\rho_A \ c$	$(\sigma_{\Lambda}) \leq c \left[D_{AB}(\rho_{\Lambda} \ \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \ \sigma_{\Lambda}) \right]$]+d	A B C

Cesi02, DPP02

Classical quasi-factorization

ΑB

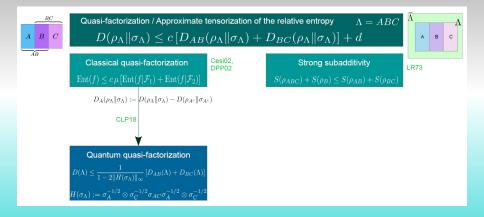
Strong subadditivity

 $S(\rho_{ABC}) + S(\rho_B) \le S(\rho_{AB}) + S(\rho_{BC})$

LR73

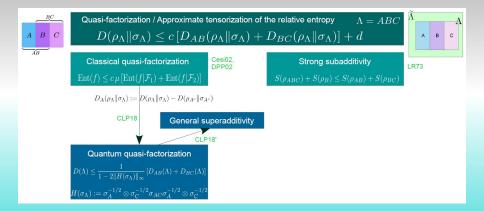
	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000
0			

QUASI-FACTORIZATION / APPROXIMATE TENSORIZATION



	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000
~			

QUASI-FACTORIZATION / APPROXIMATE TENSORIZATION



	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

QUASI-FACTORIZATION FOR THE RELATIVE ENTROPY

$$D_A(\rho_{ABC}||\sigma_{ABC}) := D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{BC}||\sigma_{BC})$$

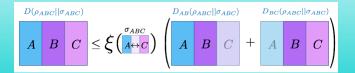
QUASI-FACTORIZATION FOR THE CRE (C.-Lucia-Pérez García '18)

Let \mathcal{H}_{ABC} and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$

where

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|_{\infty}}$$



	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

GENERAL SUPERADDITIVITY FOR THE RELATIVE ENTROPY

 $(1 - 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})$ $= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$

 $\Leftrightarrow (1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

000000000000000000000000000000000000000		
	00000	0000 000

GENERAL SUPERADDITIVITY FOR THE RELATIVE ENTROPY

 $(1 - 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})$ $= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}\|\sigma_{AC}) \ge D(\rho_A\|\sigma_A) + D(\rho_C\|\sigma_C)$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

 $(1 - 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})$ $= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

\Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

The previous result is equivalent to (C.-Lucia-Pérez García '18):

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}\|\sigma_{AB}) \ge D(\rho_A\|\sigma_A) + D(\rho_B\|\sigma_B)$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

 $(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})$ $= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

\Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

The previous result is equivalent to (C.-Lucia-Pérez García '18):

 $\left(1+2\|H(\sigma_{AB})\|_{\infty}\right)D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B}).$

Recall:

• Superadditivity. $D(\rho_{AB} || \sigma_A \otimes \sigma_B) \ge D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

 $(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})$ $= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$

 \Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

 \Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

The previous result is equivalent to (C.-Lucia-Pérez García '18):

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T, re-have

 $2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

 $(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC})$ $= 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$

 \Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

 \Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

The previous result is equivalent to (C.-Lucia-Pérez García '18):

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Recall:

• Superadditivity.
$$D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

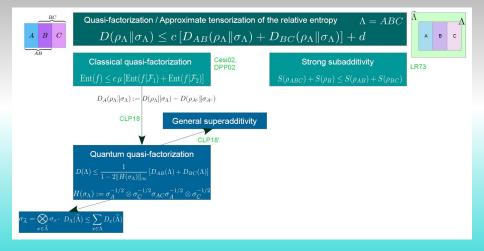
Due to:

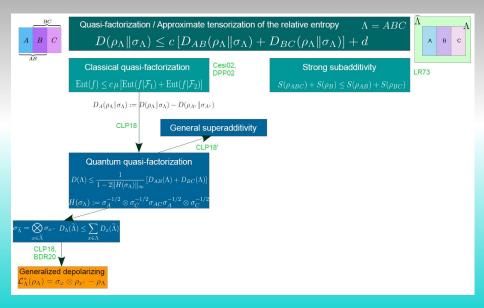
• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T. we have

 $2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000
0			

QUASI-FACTORIZATION / APPROXIMATE TENSORIZATION





INTRODUCTION AND MOTIVATION

Approximate tensorization of the relative entropy

ILSI

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathcal{L}_x^*(
ho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2}
ho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

Generalized depolarizing semigroup.

00000		

Heat-bath with tensor product <u>fixed point</u>

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_\Lambda, \ \mathcal{L}_\Lambda^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathcal{I}_x^*(
ho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2}
ho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds: $D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$

00000		

Heat-bath with tensor product fixed point

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathcal{E}_x^*(
ho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2}
ho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in S_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds: $D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$

THEOREM (C.-Lucia-Pérez garcía '18, Beigi-Datta-Rouzé '20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

00000		

Heat-bath with tensor product fixed point

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathcal{E}_x^*(
ho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2}
ho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds: $D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$

THEOREM (C.-Lucia-Pérez garcía '18, Beigi-Datta-Rouzé '20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

Previous results:

- (Müller-Hermes et al. '15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).
- (Temme et al. '14.) For this semigroup MLSI>0, but the lower bound is not universal.

00000		

Heat-bath with tensor product fixed point

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathcal{E}_x^*(
ho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2}
ho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

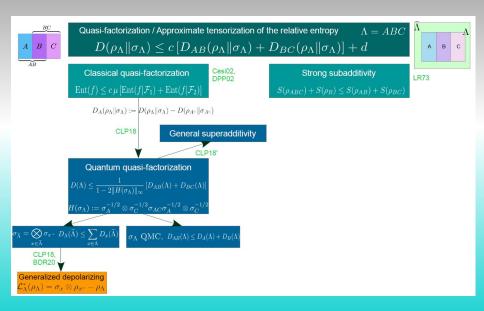
Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds: $D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$

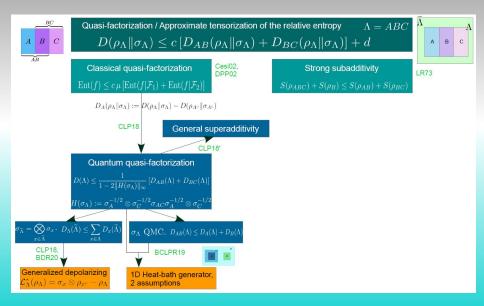
THEOREM (C.-Lucia-Pérez garcía '18, Beigi-Datta-Rouzé '20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

Previous results:

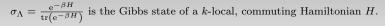
- (Müller-Hermes et al. '15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).
- (Temme et al. '14.) For this semigroup MLSI> 0, but the lower bound is not universal.





Approximate tensorization of the relative entropy	MLSI	
000000000000000000000000000000000000000		

HEAT-BATH DYNAMICS IN 1D



Consider, for every $\rho_{\Lambda} \in S_{\Lambda}$, the Lindbladian

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} \mathcal{L}^*_x(\rho_{\Lambda}) = \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right) \,.$$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

Heat-bath dynamics in 1D

$$\sigma_{\Lambda} = \frac{e^{-\beta H}}{tr(e^{-\beta H})}$$
 is the Gibbs state of a k-local, commuting Hamiltonian H

Consider, for every $\rho_{\Lambda} \in S_{\Lambda}$, the Lindbladian

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} \mathcal{L}^*_x(\rho_{\Lambda}) = \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right) \,.$$

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)

Let $\mathcal{H}_{ABCD} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_D$, where *C* shields *A* from *B* and *D*, and let $\rho_{ABCD}, \sigma_{ABCD} \in \mathcal{S}_{ABCD}$. Assume that σ_{ABCD} is a QMC between $A \leftrightarrow C \leftrightarrow BD$. Then, the following inequality holds:

 $D_{AB}(\rho_{ABCD} || \sigma_{ABCD}) \le D_A(\rho_{ABCD} || \sigma_{ABCD}) + D_B(\rho_{ABCD} || \sigma_{ABCD}).$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A(\partial c)_{i}^{L}} \otimes \sigma_{(\partial c)_{i}^{R} B D}$$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

Heat-bath dynamics in 1D

$$\sigma_{\Lambda} = \frac{e^{-\beta H}}{tr(e^{-\beta H})}$$
 is the Gibbs state of a k-local, commuting Hamiltonian H

Consider, for every $\rho_{\Lambda} \in S_{\Lambda}$, the Lindbladian

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} \mathcal{L}^*_x(\rho_{\Lambda}) = \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right) \,.$$

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)

Let $\mathcal{H}_{ABCD} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_D$, where *C* shields *A* from *B* and *D*, and let $\rho_{ABCD}, \sigma_{ABCD} \in \mathcal{S}_{ABCD}$. Assume that σ_{ABCD} is a QMC between $A \leftrightarrow C \leftrightarrow BD$. Then, the following inequality holds:

 $D_{AB}(\rho_{ABCD} || \sigma_{ABCD}) \le D_A(\rho_{ABCD} || \sigma_{ABCD}) + D_B(\rho_{ABCD} || \sigma_{ABCD}).$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A(\partial c)_i^L} \otimes \sigma_{(\partial c)_i^R BD}$$

INTRODUCTION AND MOTIVATION APPROXIMATE	TENSORIZATION OF THE RELATIVE ENTROPY	MLSI	Applications
000000 0000000	0000000000000000	0000000000	000

HEAT-BATH DYNAMICS IN 1D

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

 $D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$

In particular, tensor products satisfy this (with f = 1).

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

Heat-bath dynamics in 1D

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

Heat-bath dynamics in 1D

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

THEOREM (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

Previous results:

• (Kastoryano-Brandao '15) In 1D, for a k-local commuting Hamiltonian, the heat-bath dynamics is always gapped.

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

HEAT-BATH DYNAMICS IN 1D

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

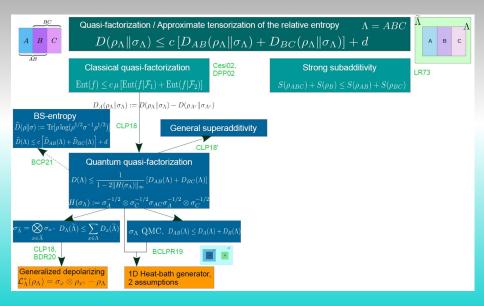
In particular, tensor products satisfy this (with f = 1).

THEOREM (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

Previous results:

• (Kastoryano-Brandao '15) In 1D, for a k-local commuting Hamiltonian, the heat-bath dynamics is always gapped.



Approximate tensorization of the relative entropy	MLSI	
000000000000000000000000000000000000000	000000000	000

BS-ENTROPY

$$\begin{split} \widehat{D}(\rho_{AB}||\sigma_{AB}) &:= \operatorname{tr} \Big[\rho_{AB} \log \left(\rho_{AB}^{1/2} \, \sigma_{AB}^{-1} \, \rho_{AB}^{1/2} \right) \Big] \,, \quad \widehat{D}_{A}(\rho_{AB}||\sigma_{AB}) := \widehat{D}(\rho_{AB}||\sigma_{AB}) - \widehat{D}(\rho_{B}||\sigma_{B}) \\ H(\sigma_{AB}) &:= \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB} \,. \end{split}$$

Гнеогем (Bluhm-C.-Pérez Hernández '21)

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following inequality holds whenever $\|H(\sigma_{AB})\|_{\infty} < 1/2$:

$$\widehat{D}(\rho_{AB}||\sigma_{AB}) \le \widetilde{M}(\sigma_{AB}) \left[\widehat{D}_A(\rho_{AB}||\sigma_{AB}) + \widehat{D}_B(\rho_{AB}||\sigma_{AB}) \right] + \widetilde{L}(\rho_{AB},\sigma_{AB}),$$

where

$$\widetilde{M}(\sigma_{AB}) := \frac{1}{1 - 2\|H(\sigma_{AB})\|_{\infty}},$$

and

$$\widetilde{L}(\rho_{AB}, \sigma_{AB}) \le f\left(\left\| \left[\rho_A^{1/2}, \sigma_A^{-1/2}\right] \right\|_{\infty}, \left\| \left[\rho_B^{1/2}, \sigma_B^{-1/2}\right] \right\|_{\infty}\right)$$

Note that if $\sigma_{AB} = \sigma_A \otimes \sigma_B$, we have $\widetilde{M}(\sigma_{AB}) = 1$, and if $\rho_A^{1/2} \sigma_A^{-1/2}$ and $\rho_B^{1/2} \sigma_B^{-1/2}$ are normal (in particular, if $[\rho_A, \sigma_A] = [\rho_B, \sigma_B] = 0$), then $\widetilde{L}(\rho_{AB}, \sigma_{AB}) = 0$.

Approximate tensorization of the relative entropy	MLSI	
000000000000000000000000000000000000000	0000000000	000

BS-ENTROPY

$$\begin{split} \widehat{D}(\rho_{AB}||\sigma_{AB}) &:= \operatorname{tr} \Big[\rho_{AB} \log \left(\rho_{AB}^{1/2} \, \sigma_{AB}^{-1} \, \rho_{AB}^{1/2} \right) \Big] \,, \quad \widehat{D}_A(\rho_{AB}||\sigma_{AB}) := \widehat{D}(\rho_{AB}||\sigma_{AB}) - \widehat{D}(\rho_B||\sigma_B) \\ H(\sigma_{AB}) &:= \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbbm{1}_{AB} \,. \end{split}$$

THEOREM (Bluhm-C.-Pérez Hernández '21)

Let $\mathcal{H}_{AB}=\mathcal{H}_A\otimes\mathcal{H}_B$ and $\rho_{AB},\sigma_{AB}\in\mathcal{S}_{AB}$. The following inequality holds whenever $\|H(\sigma_{AB})\|_\infty<1/2$:

$$\widehat{D}(\rho_{AB}||\sigma_{AB}) \le \widetilde{M}(\sigma_{AB}) \left[\widehat{D}_A(\rho_{AB}||\sigma_{AB}) + \widehat{D}_B(\rho_{AB}||\sigma_{AB}) \right] + \widetilde{L}(\rho_{AB},\sigma_{AB}),$$

where

$$\widetilde{M}(\sigma_{AB}) := \frac{1}{1 - 2 \|H(\sigma_{AB})\|_{\infty}} \,,$$

and

$$\widetilde{L}(\rho_{AB},\sigma_{AB}) \leq f\left(\left\| \left[\rho_A^{1/2},\sigma_A^{-1/2}\right]\right\|_{\infty}, \left\| \left[\rho_B^{1/2},\sigma_B^{-1/2}\right]\right\|_{\infty}\right)$$

Note that if $\sigma_{AB} = \sigma_A \otimes \sigma_B$, we have $\widetilde{M}(\sigma_{AB}) = 1$, and if $\rho_A^{1/2} \sigma_A^{-1/2}$ and $\rho_B^{1/2} \sigma_B^{-1/2}$ are normal (in particular, if $[\rho_A, \sigma_A] = [\rho_B, \sigma_B] = 0$), then $\widetilde{L}(\rho_{AB}, \sigma_{AB}) = 0$.

	Approximate tensorization of the relative entropy	MLSI	
	000000000000000000000000000000000000000		
BS-entropy			

If $\widetilde{L}(\rho_{AB},\sigma_{AB})=0$ in general, the previous result would be equivalent to superadditivity for the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the **relative entropy** (Wilming et at. '17, Matsumoto '10).

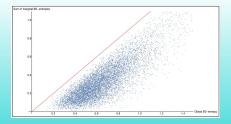
	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000
BS-entropy			

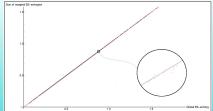
If $\tilde{L}(\rho_{AB}, \sigma_{AB}) = 0$ in general, the previous result would be equivalent to superadditivity for the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the **relative entropy** (Wilming et at. '17, Matsumoto '10).

We plot $\widehat{D}(\rho_{AB}||\sigma_{AB})$ against $\widehat{D}(\rho_{A}||\sigma_{A}) + \widehat{D}(\rho_{B}||\sigma_{B})$ for

 $\rho_{AB} := \frac{\eta_A \otimes \eta_B + \varepsilon \lambda_{AB}}{\operatorname{tr}[\eta_A \otimes \eta_B + \varepsilon \lambda_{AB}]} \,.$





	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

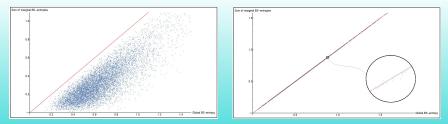
BS-entropy

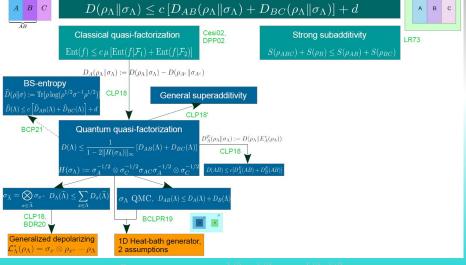
If $\tilde{L}(\rho_{AB}, \sigma_{AB}) = 0$ in general, the previous result would be equivalent to superadditivity for the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the **relative entropy** (Wilming et at. '17, Matsumoto '10).

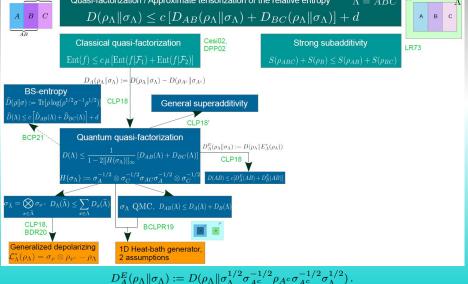
We plot $\widehat{D}(\rho_{AB}||\sigma_{AB})$ against $\widehat{D}(\rho_{A}||\sigma_{A}) + \widehat{D}(\rho_{B}||\sigma_{B})$ for

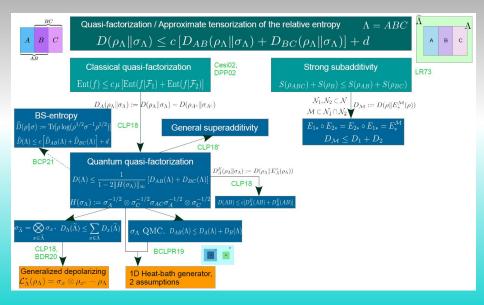
$$\rho_{AB} := \frac{\eta_A \otimes \eta_B + \varepsilon \lambda_{AB}}{\operatorname{tr}[\eta_A \otimes \eta_B + \varepsilon \lambda_{AB}]}$$





 $E_A(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| \sigma_\Lambda^{1/2} \sigma_{A^c}^{-1/2} \rho_{A^c} \sigma_{A^c}^{-1/2} \sigma_\Lambda^{1/2})$





	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_C}{d_{\mathcal{H}_C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_A}{d_{\mathcal{H}_A}} \right)\right)$$

For $\mathcal{M} \subset \mathcal{N}_1, \mathcal{N}_2 \subset \mathcal{N}$, if $E^{\mathcal{M}}, E_1, E_2$ are the conditional expectations onto $\mathcal{M}, \mathcal{N}_1, \mathcal{N}_2$, respectively, we have

 $D(\rho \| E_*^{\mathcal{M}}(\rho)) \le D(\rho \| E_{1*}(\rho)) + D(\rho \| E_{2*}(\rho)) \Leftrightarrow E_{1*} \circ E_{2*} = E_{2*} \circ E_{1*} = E_*^{\mathcal{M}}.$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_C}{d_{\mathcal{H}_C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_A}{d_{\mathcal{H}_A}} \right)\right)$$

For $\mathcal{M} \subset \mathcal{N}_1, \mathcal{N}_2 \subset \mathcal{N}$, if $E^{\mathcal{M}}, E_1, E_2$ are the conditional expectations onto $\mathcal{M}, \mathcal{N}_1, \mathcal{N}_2$, respectively, we have

 $D(\rho \| E_*^{\mathcal{M}}(\rho)) \le D(\rho \| E_{1*}(\rho)) + D(\rho \| E_{2*}(\rho)) \Leftrightarrow E_{1*} \circ E_{2*} = E_{2*} \circ E_{1*} = E_*^{\mathcal{M}}.$

Define $E_{A*} := \lim_{t \to \infty} e^{t\mathcal{L}_A^*}$. Then, $D(\rho \| E_{A \cup B*}(\rho)) \le D(\rho \| E_{A*}(\rho)) + D(\rho \| E_{B*}(\rho)) \Leftrightarrow E_{A*} \circ E_{B*} = E_{B*} \circ E_{A*} = E_{A \cup B*}$.

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_C}{d_{\mathcal{H}_C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_A}{d_{\mathcal{H}_A}} \right)\right)$$

For $\mathcal{M} \subset \mathcal{N}_1, \mathcal{N}_2 \subset \mathcal{N}$, if $E^{\mathcal{M}}, E_1, E_2$ are the conditional expectations onto $\mathcal{M}, \mathcal{N}_1, \mathcal{N}_2$, respectively, we have

$$D(\rho \| E_*^{\mathcal{M}}(\rho)) \le D(\rho \| E_{1*}(\rho)) + D(\rho \| E_{2*}(\rho)) \Leftrightarrow E_{1*} \circ E_{2*} = E_{2*} \circ E_{1*} = E_*^{\mathcal{M}}.$$

Define $E_{A*} := \lim_{t \to \infty} e^{t \mathcal{L}_A^*}$. Then,

 $D(\rho \| E_{A \cup B*}(\rho)) \le D(\rho \| E_{A*}(\rho)) + D(\rho \| E_{B*}(\rho)) \Leftrightarrow E_{A*} \circ E_{B*} = E_{B*} \circ E_{A*} = E_{A \cup B*} .$

In general, we present conditions in (Bardet-C.-Rouzé '20) for which

 $D(\rho \| E_{A \cup B^*}(\rho)) \le c \left[D(\rho \| E_{A^*}(\rho)) + D(\rho \| E_{B^*}(\rho)) \right] + d$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

In terms of the relative entropy, the **strong subadditivity of entropy** (Lieb-Ruskai '73) takes the form

$$D\left(\rho_{ABC} \left\| \rho_B \otimes \frac{\mathbb{1}_{AC}}{d_{\mathcal{H}_{AC}}} \right) \le D\left(\rho_{ABC} \left\| \rho_{AB} \otimes \frac{\mathbb{1}_C}{d_{\mathcal{H}_C}} \right) + D\left(\rho_{ABC} \left\| \rho_{BC} \otimes \frac{\mathbb{1}_A}{d_{\mathcal{H}_A}} \right)\right)$$

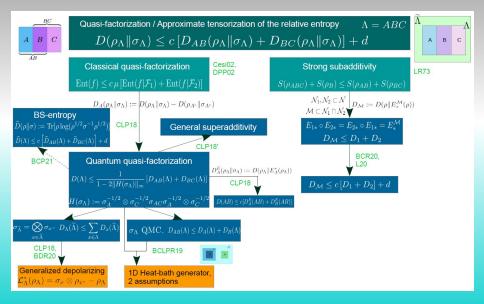
For $\mathcal{M} \subset \mathcal{N}_1, \mathcal{N}_2 \subset \mathcal{N}$, if $E^{\mathcal{M}}, E_1, E_2$ are the conditional expectations onto $\mathcal{M}, \mathcal{N}_1, \mathcal{N}_2$, respectively, we have

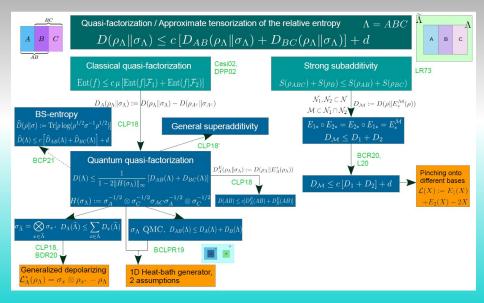
$$D(\rho \| E_*^{\mathcal{M}}(\rho)) \le D(\rho \| E_{1*}(\rho)) + D(\rho \| E_{2*}(\rho)) \Leftrightarrow E_{1*} \circ E_{2*} = E_{2*} \circ E_{1*} = E_*^{\mathcal{M}}.$$

Define $E_{A*} := \lim_{t \to \infty} e^{t\mathcal{L}_A^*}$. Then, $D(\rho \| E_{A \cup B*}(\rho)) \le D(\rho \| E_{A*}(\rho)) + D(\rho \| E_{B*}(\rho)) \Leftrightarrow E_{A*} \circ E_{B*} = E_{B*} \circ E_{A*} = E_{A \cup B*}$.

In general, we present conditions in (Bardet-C.-Rouzé '20) for which

 $D(\rho \| E_{A \cup B*}(\rho)) \le c \left[D(\rho \| E_{A*}(\rho)) + D(\rho \| E_{B*}(\rho)) \right] + d$





$\left\{ \left| e_{k}^{(1)} \right\rangle \right\} \,, \; \left\{ \left| e_{k}^{(2)} \right\rangle \right\} \; \text{orthonormal bases}.$

 $\mathcal{N}_1, \mathcal{N}_2$ diagonal onto first and second basis, respectively. $\mathcal{M} = \mathbb{Cl}_{\ell}$.

 $\left\{ \left| e_{k}^{(1)} \right\rangle \right\} \,, \; \left\{ \left| e_{k}^{(2)} \right\rangle \right\} \; \text{orthonormal bases}.$

 $\mathcal{N}_1, \mathcal{N}_2$ diagonal onto first and second basis, respectively. $\mathcal{M} = \mathbb{C} \mathbb{1}_{\ell}$.

For $i \in \{1, 2\}$, E_i denotes the Pinching map onto span $\left\{ \left| e_k^{(i)} \right\rangle \left\langle e_k^{(i)} \right| \right\}$ and $E^{\mathcal{M}} = \frac{1}{\ell} \operatorname{Tr}[\cdot]$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

 $\left\{ \left| e_{k}^{(1)} \right\rangle \right\}$, $\left\{ \left| e_{k}^{(2)} \right\rangle \right\}$ orthonormal bases.

 $\mathcal{N}_1, \mathcal{N}_2$ diagonal onto first and second basis, respectively. $\mathcal{M} = \mathbb{C} \mathbb{1}_{\ell}$.

For $i \in \{1, 2\}$, E_i denotes the Pinching map onto span $\left\{ \left| e_k^{(i)} \right\rangle \left\langle e_k^{(i)} \right| \right\}$ and $E^{\mathcal{M}} = \frac{1}{\ell} \operatorname{Tr}[\cdot]$. Denote:

$$\varepsilon := \ell \max_{k,k'} \left| \left\langle e_k^{(1)} | e_{k'}^{(2)} \right\rangle \right|^2 - \frac{1}{\ell} \right|.$$

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

 $\left\{ \left| e_{k}^{(1)} \right\rangle \right\}$, $\left\{ \left| e_{k}^{(2)} \right\rangle \right\}$ orthonormal bases.

 $\mathcal{N}_1, \mathcal{N}_2$ diagonal onto first and second basis, respectively. $\mathcal{M} = \mathbb{C} \mathbb{1}_{\ell}$.

For $i \in \{1, 2\}$, E_i denotes the Pinching map onto span $\left\{ \left| e_k^{(i)} \right\rangle \left\langle e_k^{(i)} \right| \right\}$ and $E^{\mathcal{M}} = \frac{1}{\ell} \operatorname{Tr}[\cdot]$. Denote:

$$\varepsilon := \ell \max_{k,k'} \left| \left| \left\langle e_k^{(1)} | e_{k'}^{(2)} \right\rangle \right|^2 - \frac{1}{\ell} \right|.$$

Then,

$$D(\rho \| \ell^{-1} \mathbb{1}) \le \frac{1}{1 - 2\varepsilon} \left(D(\rho \| E_{1*}(\rho)) + D(\rho \| E_{2*}(\rho)) \right)$$

and subsequently

 $\mathcal{L}(X) := E_1(X) + E_2(X) - 2X.$

has $MLSI(1-2\varepsilon)$.

	Approximate tensorization of the relative entropy	MLSI	
00000	000000000000000000000000000000000000000	000000000	000

 $\left\{ \left| e_{k}^{(1)} \right\rangle \right\}$, $\left\{ \left| e_{k}^{(2)} \right\rangle \right\}$ orthonormal bases.

 $\mathcal{N}_1, \mathcal{N}_2$ diagonal onto first and second basis, respectively. $\mathcal{M} = \mathbb{C} \mathbb{1}_{\ell}$.

For $i \in \{1, 2\}$, E_i denotes the Pinching map onto span $\left\{ \left| e_k^{(i)} \right\rangle \left\langle e_k^{(i)} \right| \right\}$ and $E^{\mathcal{M}} = \frac{1}{\ell} \operatorname{Tr}[\cdot]$. Denote:

$$\varepsilon := \ell \max_{k,k'} \left| \left| \left\langle e_k^{(1)} | e_{k'}^{(2)} \right\rangle \right|^2 - \frac{1}{\ell} \right|.$$

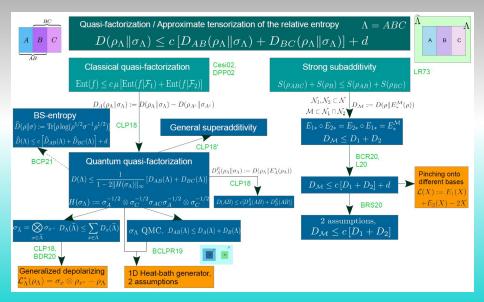
Then,

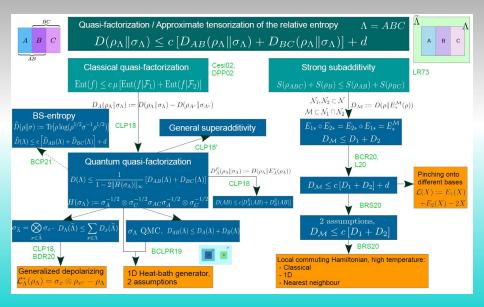
$$D(\rho \| \ell^{-1} \mathbb{1}) \le \frac{1}{1 - 2\varepsilon} \left(D(\rho \| E_{1*}(\rho)) + D(\rho \| E_{2*}(\rho)) \right),$$

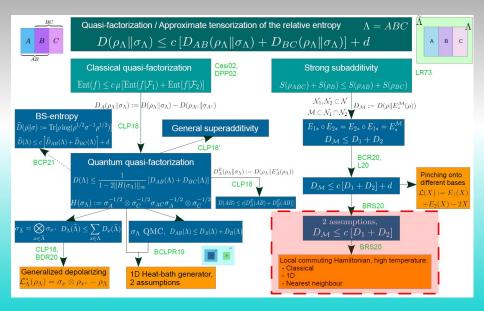
and subsequently

$$\mathcal{L}(X) := E_1(X) + E_2(X) - 2X.$$

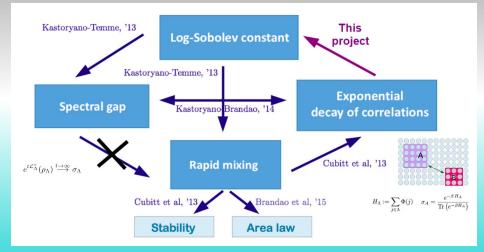
has $MLSI(1-2\varepsilon)$.





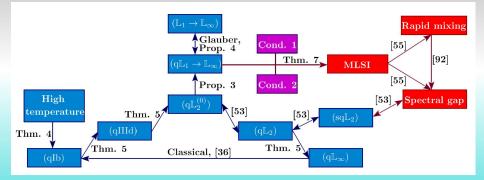


QUANTUM SPIN SYSTEMS



		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

QUANTUM SPIN SYSTEMS



		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian such that one of the following conditions holds:

- H_{Λ} is classical for $\beta < \beta_c$.
- **2** H_{Λ} is a nearest neighbour Hamiltonian for $\beta < \beta_c$.
- \bullet A is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

 $\forall \rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \, D(\rho_t \| \sigma_{\Lambda}) \le e^{-\alpha t} D(\rho_{\Lambda} \| \sigma_{\Lambda}) \,.$

		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian such that one of the following conditions holds:

- H_{Λ} is classical for $\beta < \beta_c$.
- **2** H_{Λ} is a nearest neighbour Hamiltonian for $\beta < \beta_c$.
- \bigcirc Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

$$\forall \rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \, D(\rho_t \| \sigma_{\Lambda}) \le e^{-\alpha t} D(\rho_{\Lambda} \| \sigma_{\Lambda}) \,.$$

It constitutes the first unconditional proof of MLSI for quantum lattice systems at high temperature.

		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian such that one of the following conditions holds:

- H_{Λ} is classical for $\beta < \beta_c$.
- **2** H_{Λ} is a nearest neighbour Hamiltonian for $\beta < \beta_c$.
- \bigcirc Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

$$\forall \rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \, D(\rho_t \| \sigma_{\Lambda}) \le e^{-\alpha t} D(\rho_{\Lambda} \| \sigma_{\Lambda}) \,.$$

It constitutes the first unconditional proof of MLSI for quantum lattice systems at high temperature.

		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

Let $\left\{ e^{t\mathcal{L}^*_{\Lambda}} \right\}_{t \ge 0}$ be a quantum Markov semigroup with $\mathcal{L}^*_{\Lambda}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_{A*} : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t\mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E_{A*}(\rho_{\Lambda}) \quad .$$

		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_{A*} : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t \mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E_{A*}(\rho_{\Lambda}) \quad .$$

Modified logarithmic Sobolev inequality

We say that a **MLSI** holds for \mathcal{L}^*_{Λ} if there exists a positive α such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$2 \alpha D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

Modified logarithmic Sobolev inequality

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_{A*} : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t\mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E_{A*}(\rho_{\Lambda}) \quad .$$

Modified logarithmic Sobolev inequality

We say that a **MLSI** holds for \mathcal{L}^*_{Λ} if there exists a positive α such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$2 \alpha D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

Conditional modified logarithmic Sobolev inequality

For $A \subseteq \Lambda$, we say that a **conditional MLSI** on A holds for \mathcal{L}^*_{Λ} if there exists a positive α_A such that for all $\rho_{\Lambda} \in S_{\Lambda}$,

 $2 \alpha_A D(\rho_\Lambda || E_{A*}(\rho_\Lambda)) \leq -\operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)] \quad .$

		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

Modified logarithmic Sobolev inequality

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For $A \subset \Lambda$, let $E_{A*} : \mathcal{B}(\mathcal{H}) \to \operatorname{Ker}(\mathcal{L}_A^*)$ be a conditional expectation, and

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := e^{t\mathcal{L}_A^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} E_{A*}(\rho_{\Lambda}) \quad .$$

Modified logarithmic Sobolev inequality

We say that a **MLSI** holds for \mathcal{L}^*_{Λ} if there exists a positive α such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

$$2 \alpha D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

CONDITIONAL MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

For $A \subseteq \Lambda$, we say that a **conditional MLSI** on A holds for \mathcal{L}^*_{Λ} if there exists a positive α_A such that for all $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

 $2 \alpha_A D(\rho_\Lambda || E_{A*}(\rho_\Lambda)) \leq -\operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)]$.

		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

TILING

Given a finite region $A \subset \mathbb{Z}^d$, we decompose the fixed-point algebra $\mathcal{F}(\mathcal{L}_A)$ as

$$\mathcal{F}(\mathcal{L}_A) := \bigoplus_{i \in I_{\partial A}} \mathcal{B}(\mathcal{H}_i^A) \otimes \mathbb{1}_{\mathcal{K}_i^A}, \quad \text{ where } \quad \mathcal{H}_\Lambda := \bigoplus_{i \in I_{\partial A}} \mathcal{H}_i^A \otimes \mathcal{K}_i^A$$

Then the conditional expectation E_{A*} is expressed in the Schrödinger picture by

$$E_{A*}(\rho) := \lim_{t \to \infty} \mathrm{e}^{t\mathcal{L}_{A*}}(\rho) \equiv \sum_{i \in I_{\partial A}} \mathrm{tr}_{\mathcal{K}_i} \left[P_i^A \rho P_i^A \right] \otimes \tau_i^A \,.$$

 $\{P_i^A\}_{i \in I_A}$ central projections of $\mathcal{F}(\mathcal{L}_A)$, and τ_i^A full-rank states supported on \mathcal{K}_i^A . CONDITION 2

The covering $A = \bigcup_{i \in \mathcal{J}} A_i$ defined above satisfies:

(i) For all
$$i, j \in \mathcal{J}$$
, $E_{A_i} \circ E_{A_j} = E_{A_j} \circ E_{A_i} = E_{A_i \cup A_j}$; and

(ii) For any grained set $\widetilde{S} \in \widetilde{S}$, there exists a decomposition $\mathcal{K}_{j}^{\widetilde{S}} := \bigoplus_{k} \mathcal{H}^{(j,k)}$ such that $\mathcal{F}(\mathcal{L}_{A \cap \widetilde{S}}) := \mathbb{1}_{A \cap \widetilde{S}} \otimes \bigoplus_{j \in I_{\partial \widetilde{S}}} \bigoplus_{k} \mathbb{1}_{\mathcal{H}^{(j,k)}} \otimes \mathcal{B}(\mathcal{H}_{j}^{\widetilde{S}}).$

		MLSI	
00000	000000000000000000000000000000000000000	000000000	000

TILING

Given a finite region $A \subset \mathbb{Z}^d$, we decompose the fixed-point algebra $\mathcal{F}(\mathcal{L}_A)$ as

$$\mathcal{F}(\mathcal{L}_A) := \bigoplus_{i \in I_{\partial A}} \mathcal{B}(\mathcal{H}_i^A) \otimes \mathbb{1}_{\mathcal{K}_i^A}, \quad \text{ where } \quad \mathcal{H}_\Lambda := \bigoplus_{i \in I_{\partial A}} \mathcal{H}_i^A \otimes \mathcal{K}_i^A$$

Then the conditional expectation E_{A*} is expressed in the Schrödinger picture by

$$E_{A*}(\rho) := \lim_{t \to \infty} \mathrm{e}^{t\mathcal{L}_{A*}}(\rho) \equiv \sum_{i \in I_{\partial A}} \mathrm{tr}_{\mathcal{K}_i} \left[P_i^A \rho P_i^A \right] \otimes \tau_i^A \,.$$

 $\{P_i^A\}_{i \in I_A}$ central projections of $\mathcal{F}(\mathcal{L}_A)$, and τ_i^A full-rank states supported on \mathcal{K}_i^A .

CONDITION 2

The covering $A = \bigcup_{i \in \mathcal{J}} A_i$ defined above satisfies:

(i) For all
$$i, j \in \mathcal{J}$$
, $E_{A_i} \circ E_{A_j} = E_{A_j} \circ E_{A_i} = E_{A_i \cup A_j}$; and

(ii) For any grained set $\widetilde{S} \in \widetilde{S}$, there exists a decomposition $\mathcal{K}_{j}^{\widetilde{S}} := \bigoplus_{k} \mathcal{H}^{(j,k)}$ such that $\mathcal{F}(\mathcal{L}_{A \cap \widetilde{S}}) := \mathbb{1}_{A \cap \widetilde{S}} \otimes \bigoplus_{j \in I_{\partial \widetilde{S}}} \bigoplus_{k} \mathbb{1}_{\mathcal{H}^{(j,k)}} \otimes \mathcal{B}(\mathcal{H}_{j}^{\widetilde{S}}).$

		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

CLUSTERING OF CORRELATIONS

Assuming frustration-freeness, for all $A \subset B \subset \Lambda \subset \subset \mathbb{Z}^d$, the blocks $P_i^B \mathcal{B}(\mathcal{H}_\Lambda) P_i^B$ are preserved by the conditional expectation E_A . Moreover, on each of these blocks, E_A only acts non-trivially on the factor $\mathcal{B}(\mathcal{K}_i^B)$, i.e. there exists a family of conditional expectations $\{E_A^{(i)} \in \mathcal{B}(\mathcal{B}(\mathcal{H}_{\mathcal{K}_i^B}))\}_{i \in I_{\partial B}}$ such that for each boundary condition $i \in I_{\partial B}$,

$$E_A|_{P_i^B\mathcal{B}(\mathcal{H}_\Lambda)P_i^B} := \mathrm{id}_{\mathcal{B}(\mathcal{H}_i^B)} \otimes E_A^{(i)}, \quad \text{with} \quad E_{A*}^{(i)}(\rho) := \sum_{j \in I_{\partial A}^i} \mathrm{tr}\left(P_j^{i,A} \, \rho \, P_j^{i,A}\right) \otimes \tau_j^{i,A}.$$

Clustering of correlations

 \mathcal{L} satisfies the $\mathbb{L}_1 \to \mathbb{L}_\infty$ clustering of correlations if there exist constants $c \ge 0$ and $\xi > 0$ such that for any intersecting $C, D \subset \subset \mathbb{Z}^d$,

$$\max_{i \in I_{\partial(C \cup D)}} \left\| E_C^{(i)} \circ E_D^{(i)} - E_{C \cup D}^{(i)} : \mathbb{L}_1(\tau_i^{C \cup D})_{\mathrm{sa}} \to \mathcal{B}(\mathcal{K}_i^{C \cup D})_{\mathrm{sa}} \right\| \le c \left| C \cup D \right| \mathrm{e}^{-\frac{\mathrm{d}(C \setminus D, D \setminus C)}{\xi}},$$

$$(a\mathbb{I}_d \to \mathbb{L}_\infty)$$

		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

CLUSTERING OF CORRELATIONS

Assuming frustration-freeness, for all $A \subset B \subset \Lambda \subset \subset \mathbb{Z}^d$, the blocks $P_i^B \mathcal{B}(\mathcal{H}_\Lambda) P_i^B$ are preserved by the conditional expectation E_A . Moreover, on each of these blocks, E_A only acts non-trivially on the factor $\mathcal{B}(\mathcal{K}_i^B)$, i.e. there exists a family of conditional expectations $\{E_A^{(i)} \in \mathcal{B}(\mathcal{B}(\mathcal{H}_{\mathcal{K}_i^B}))\}_{i \in I_{\partial B}}$ such that for each boundary condition $i \in I_{\partial B}$,

$$E_A|_{P_i^B\mathcal{B}(\mathcal{H}_\Lambda)P_i^B} := \mathrm{id}_{\mathcal{B}(\mathcal{H}_i^B)} \otimes E_A^{(i)}, \quad \text{with} \quad E_{A*}^{(i)}(\rho) := \sum_{j \in I_{\partial A}^i} \mathrm{tr}\left(P_j^{i,A} \,\rho \, P_j^{i,A}\right) \otimes \tau_j^{i,A}.$$

CLUSTERING OF CORRELATIONS

 \mathcal{L} satisfies the $\mathbb{L}_1 \to \mathbb{L}_\infty$ clustering of correlations if there exist constants $c \ge 0$ and $\xi > 0$ such that for any intersecting $C, D \subset \subset \mathbb{Z}^d$,

$$\max_{i \in I_{\partial(C \cup D)}} \left\| E_C^{(i)} \circ E_D^{(i)} - E_{C \cup D}^{(i)} : \mathbb{L}_1(\tau_i^{C \cup D})_{\mathrm{sa}} \to \mathcal{B}(\mathcal{K}_i^{C \cup D})_{\mathrm{sa}} \right\| \le c \left| C \cup D \right| \mathrm{e}^{-\frac{\mathrm{d}(C \setminus D, D \setminus C)}{\xi}},$$

$$(\mathfrak{gl}_4 \to \mathbb{L}_{\infty})$$

	MLSI	
	0000000000	

APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY

APPROXIMATE TENSORIZATION (C.-Rouzé-Stilck França '20)

Let \mathcal{L} be a Gibbs sampler corresponding to a commuting potential. Assume further that the family \mathcal{L} satisfies $q\mathbb{L}_1 \to \mathbb{L}_{\infty}$ with parameters $c \geq 0$ and $\xi > 0$, as well as Condition 2. Then, for any $C, D \in \widetilde{S}$ such that $C, D \subset \Lambda \subset \mathbb{Z}^d$ with $2c |C \cup D| \exp\left(-\frac{\mathrm{d}(C \setminus D, D \setminus C)}{\xi}\right) < 1$, and all $\rho \in \mathcal{D}(\mathcal{H}_{\Lambda})$,

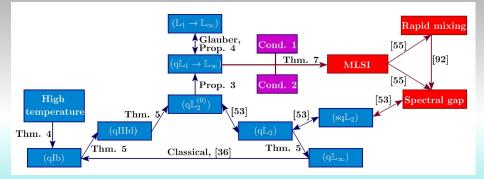
$$D(\omega \| E_{C \cup D*}(\omega)) \leq \frac{1}{1 - 2c |C \cup D| e^{-\frac{d(C \setminus D, D \setminus C)}{\xi}}} \left(D(\omega \| E_{C*}(\omega)) + D(\omega \| E_{D*}(\omega)) \right),$$

with $\omega := E_{A \cap \Lambda *}(\rho)$.

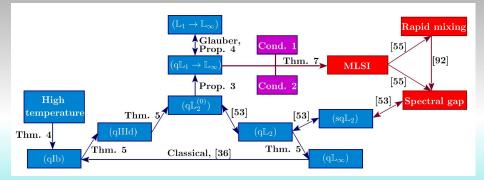
Here, we show that a condition on the **fixed points** of the generator and a condition of **decay of correlations** imply

$$d = 0, c \sim 1 + \kappa e^{-\operatorname{d}(C \setminus D, D \setminus C)}$$

		MLSI	
00000	000000000000000000000000000000000000000	0000000000	000

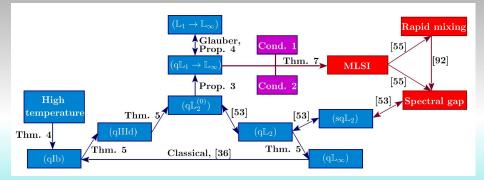


$(q\mathbb{L}_1 \to \mathbb{L}_\infty) + Condition \ 2 \Rightarrow Approximate \ tensorization$



 $(q\mathbb{L}_1 \to \mathbb{L}_\infty) + Condition \ 2 \Rightarrow Approximate tensorization$

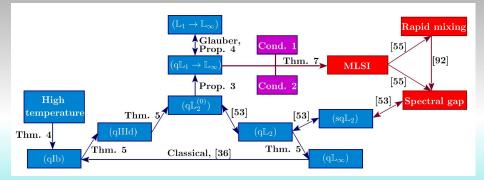
Nearest neighbour Schmidt semigroups at high T satisfy both! (Bravyi-Vyalyi '05)



 $(q\mathbb{L}_1 \to \mathbb{L}_\infty) + Condition \ 2 \Rightarrow Approximate tensorization$

Nearest neighbour Schmidt semigroups at high T satisfy both! (Bravyi-Vyalyi '05)

Condition 1 (Complete MLSI) + Approximate tensorization \Rightarrow MLSI



 $(q\mathbb{L}_1 \to \mathbb{L}_\infty) + Condition \ 2 \Rightarrow Approximate tensorization$

Nearest neighbour Schmidt semigroups at high T satisfy both! (Bravyi-Vyalyi '05)

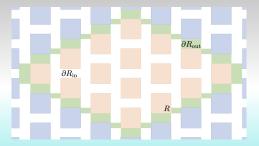
Condition 1 (Complete MLSI) + Approximate tensorization \Rightarrow MLSI

Introduction and motivation	Approximate tensorization of the relative entropy	MLSI 0000000000	Applications 000
00000	000000000000000000000000000000000000000	0000000000	000

Peeling out

We want to show that there exists $\alpha > 0$, independent of the system size, such that

 $2 \alpha D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] =: \operatorname{EP}_{\Lambda}(\rho_{\Lambda}).$



Chain rule for the relative entropy for any rhombus *R*:

 $D(\rho_{\Lambda} \| \sigma_{\Lambda}) = D(\rho_{\Lambda} \| E_{A \cap R*}(\rho_{\Lambda})) + D(E_{A \cap R*}(\rho_{\Lambda}) \| \sigma_{\Lambda}) .$

For $D(\rho_{\Lambda} \| E_{A \cap R^*}(\rho_{\Lambda}))$, we use positivity of the complete MLSI (Junge-Gao-Laracuente '19, Rouzé-Gao '21)

$$\alpha_c := \inf_{k \in \mathbb{N}} \alpha \left(\mathcal{L}^*_{\Lambda} \otimes \mathbb{1}_k \right).$$

INTRODUCTION AND MOTIVATION	Approximate tensorization of the relative entropy 000000000000000000000000000000000000	MLSI 000000000●	Applications 000
Peeling out			
	$\partial R_{ m out}$		

For $D(\rho_{\Lambda} || E_C(\rho_{\Lambda}))$, we define a **pinched MLSI**

$$2\gamma_C D(E_{A*}(\rho_\Lambda)||E_{C*} \circ E_{A*}(\rho_\Lambda)) \leq -\operatorname{tr}[\mathcal{L}_C^*(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)] \quad .$$

R

and apply the approximate tensorization result on such quantity.

 $D(\rho_{\Lambda} \| E_{\Lambda*}(\rho_{\Lambda})) = D(\rho_{\Lambda} \| E_{A*}(\rho_{\Lambda})) + D(E_{A*}(\rho_{\Lambda}) \| E_{\Lambda*}(\rho_{\Lambda}))$ $\leq \alpha_{c}(\mathcal{L}_{A*})^{-1} \mathrm{EP}_{A}(\rho_{\Lambda}) + \gamma_{\Lambda}^{-1} \mathrm{EP}_{\Lambda}(\rho_{\Lambda})$ $\leq \left(\alpha_{v}(\mathcal{L}_{A*})^{-1} + \gamma_{\Lambda}^{-1}\right) \mathrm{EP}_{\Lambda}(\rho_{\Lambda})$

INTRODUCTION AND MOTIVATION	Approximate tensorization of the relative entropy	MLSI 000000000●	Applications 000
Peeling out			
	$\partial R_{\rm out}$		
	$\partial R_{ m in}$		

For $D(\rho_{\Lambda} || E_C(\rho_{\Lambda}))$, we define a **pinched MLSI**

$$2\gamma_C D(E_{A*}(\rho_\Lambda)||E_{C*} \circ E_{A*}(\rho_\Lambda)) \leq -\operatorname{tr}[\mathcal{L}_C^*(\rho_\Lambda)(\log \rho_\Lambda - \log \sigma_\Lambda)] \quad .$$

R

and apply the approximate tensorization result on such quantity.

$$D(\rho_{\Lambda} \| E_{\Lambda*}(\rho_{\Lambda})) = D(\rho_{\Lambda} \| E_{A*}(\rho_{\Lambda})) + D(E_{A*}(\rho_{\Lambda}) \| E_{\Lambda*}(\rho_{\Lambda}))$$

$$\leq \alpha_{c} (\mathcal{L}_{A*})^{-1} EP_{A}(\rho_{\Lambda}) + \gamma_{\Lambda}^{-1} EP_{\Lambda}(\rho_{\Lambda})$$

$$\leq \left(\alpha_{c} (\mathcal{L}_{A*})^{-1} + \gamma_{\Lambda}^{-1}\right) EP_{\Lambda}(\rho_{\Lambda})$$

Finally, we prove that γ_{Λ}^{-1} does not depend on |A| (inspired by Cesi '02, Dai Pra-Paganoni-Posta '02).

INTRODUCTION AND MOTIVATION	Approximate tensorization of the relative entropy 000000000000000000000000000000000000	MLSI 000000000	Applications 000
Peeling out			
	$\partial R_{ m in}$		

For $D(\rho_{\Lambda} || E_C(\rho_{\Lambda}))$, we define a **pinched MLSI**

$$2\gamma_C D(E_{A*}(\rho_{\Lambda})||E_{C*} \circ E_{A*}(\rho_{\Lambda})) \leq -\operatorname{tr}[\mathcal{L}^*_C(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \quad .$$

R

and apply the approximate tensorization result on such quantity.

$$D(\rho_{\Lambda} \| E_{\Lambda*}(\rho_{\Lambda})) = D(\rho_{\Lambda} \| E_{A*}(\rho_{\Lambda})) + D(E_{A*}(\rho_{\Lambda}) \| E_{\Lambda*}(\rho_{\Lambda}))$$

$$\leq \alpha_{c}(\mathcal{L}_{A*})^{-1} \mathrm{EP}_{A}(\rho_{\Lambda}) + \gamma_{\Lambda}^{-1} \mathrm{EP}_{\Lambda}(\rho_{\Lambda})$$

$$\leq \left(\alpha_{c}(\mathcal{L}_{A*})^{-1} + \gamma_{\Lambda}^{-1}\right) \mathrm{EP}_{\Lambda}(\rho_{\Lambda})$$

Finally, we prove that γ_{Λ}^{-1} does not depend on $|\Lambda|$ (inspired by Cesi '02, Dai Pra-Paganoni-Posta '02).

00000	000000000000000000000000000000000000000	0000000000	•00
		MLSI	Applications

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.

00000	000000000000000000000000000000000000000	0000000000	000
		MLSI	Applications

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

00000	000000000000000000000000000000000000000	0000000000	000
		MLSI	Applications

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

00000	000000000000000000000000000000000000000	0000000000	000
		MLSI	Applications

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

• Review on results of quasi-factorization for the relative entropy.

INTRODUCTION AND MOTIVATION	Approximate tensorization of the relative entropy	MLSI 0000000000	Applications 000
	000000000000000000000000000000000000000	0000000000	000
Conclusions			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

• Extension to k-local commuting Hamiltonians.

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

- Extension to k-local commuting Hamiltonians.
- Extension to more semigroups

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

- Extension to k-local commuting Hamiltonians.
- Extension to more semigroups.

For further information, see **2009.11817**.

		MLSI	Applications
00000	000000000000000000000000000000000000000	0000000000	000
CONCLUSIONS			

- Review on results of quasi-factorization for the relative entropy.
- Application of such results of approximate tensorization of the relative entropy to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

- Extension to k-local commuting Hamiltonians.
- Extension to more semigroups.

For further information, see **2009.11817**.

Introduction and motivation	Approximate tensorization of the relative entropy	MLSI 0000000000	Applications 000
Conclusions			

THANK YOU FOR YOUR ATTENTION!