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Introduction and motivation Approximate tensorization of the relative entropy MLSI Applications

Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup {T ∗t }t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗Λ) t ≤
√

2 log(1/σmin) e−α(L∗Λ) t.

For thermal states, σmin ∼ exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗Λ) t.
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Quantum spin systems
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Quasi-factorization for the relative entropy

DA(ρABC ||σABC) := D(ρABC ||σABC)−D(ρBC ||σBC)

Quasi-factorization for the CRE (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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General superadditivity for the relative entropy

(1− 2‖H(σAC)‖∞)D(ρABC ||σABC) ≤ DAB(ρABC ||σABC) +DBC(ρABC ||σABC)

= 2D(ρABC ||σABC)−D(ρC ||σC)−D(ρA||σA).

⇔

(1 + 2‖H(σAC)‖∞)D(ρABC ||σABC) ≥ D(ρA||σA) +D(ρC ||σC).

⇔

(1 + 2‖H(σAC)‖∞)D(ρAC ||σAC) ≥ D(ρA||σA) +D(ρC ||σC).

The previous result is equivalent to (C.-Lucia-Pérez Garćıa ’18):

(1 + 2‖H(σAB)‖∞)D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB) .

Recall:

Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

Due to:

Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every quantum channel T .

we have

2D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB).
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Heat-bath with tensor product fixed point

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x

Since
E∗x(ρΛ) = σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have
L∗Λ(ρΛ) =

∑
x∈Λ

(σx ⊗ ρxc − ρΛ).

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

Let HΛ =
⊗
x∈Λ
Hx and ρΛ, σΛ ∈ SΛ such that σΛ =

⊗
x∈Λ

σx. The following inequality holds:

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ).

Theorem (C.-Lucia-Pérez garćıa ’18, Beigi-Datta-Rouzé ’20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

Previous results:

(Müller-Hermes et al. ’15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).

(Temme et al. ’14.) For this semigroup MLSI> 0, but the lower bound is not universal.
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(Müller-Hermes et al. ’15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).

(Temme et al. ’14.) For this semigroup MLSI> 0, but the lower bound is not universal.
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Heat-bath dynamics in 1D

σΛ = e−βH

tr(e−βH)
is the Gibbs state of a k-local, commuting Hamiltonian H.

Consider, for every ρΛ ∈ SΛ, the Lindbladian

L∗Λ(ρΛ) =
∑
x∈Λ
L∗x(ρΛ) =

∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)
.

Quasi-factorization for quantum Markov chains (Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Let HABCD = HA ⊗HB ⊗HC ⊗HD, where C shields A from B and D, and let
ρABCD, σABCD ∈ SABCD. Assume that σABCD is a QMC between A↔ C ↔ BD. Then,
the following inequality holds:

DAB(ρABCD||σABCD) ≤ DA(ρABCD||σABCD) +DB(ρABCD||σABCD).

σΛ =
⊕
i∈I

σA(∂c)Li
⊗ σ(∂c)Ri BD
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Heat-bath dynamics in 1D

Assumption 1

In a tripartite Hilbert space HA ⊗HC ⊗HB , A and B not connected, we have∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
≤ K <

1

2
.

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any B ⊂ Λ, B = B1 ∪B2, it holds:

DB(ρΛ||σΛ) ≤ f(σB∂)
(
DB1

(ρΛ||σΛ) +DB2
(ρΛ||σΛ)

)
.

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez Garćıa-Rouzé ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive log-Sobolev constant.

Previous results:

(Kastoryano-Brandao ’15) In 1D, for a k-local commuting Hamiltonian, the heat-bath
dynamics is always gapped.
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BS-entropy

D̂(ρAB ||σAB) := tr
[
ρAB log

(
ρ

1/2
AB σ

−1
AB ρ

1/2
AB

)]
, D̂A(ρAB ||σAB) := D̂(ρAB ||σAB)−D̂(ρB ||σB) .

H(σAB) := σ
−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB .

Theorem (Bluhm-C.-Pérez Hernández ’21)

Let HAB = HA ⊗HB and ρAB , σAB ∈ SAB . The following inequality holds whenever
‖H(σAB)‖∞ < 1/2:

D̂(ρAB ||σAB) ≤ M̃(σAB)
[
D̂A(ρAB ||σAB) + D̂B(ρAB ||σAB)

]
+ L̃(ρAB , σAB) ,

where

M̃(σAB) :=
1

1− 2‖H(σAB)‖∞
,

and

L̃(ρAB , σAB) ≤ f
(∥∥∥[ρ1/2

A , σ
−1/2
A

]∥∥∥
∞
,
∥∥∥[ρ1/2

B , σ
−1/2
B

]∥∥∥
∞

)
.

Note that if σAB = σA ⊗ σB , we have M̃(σAB) = 1, and if ρ
1/2
A σ

−1/2
A and ρ

1/2
B σ

−1/2
B are

normal (in particular, if [ρA, σA] = [ρB , σB ] = 0), then L̃(ρAB , σAB) = 0.
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BS-entropy

If L̃(ρAB , σAB) = 0 in general, the previous result would be equivalent to superadditivity for
the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the relative
entropy (Wilming et at. ’17, Matsumoto ’10).

We plot D̂(ρAB ||σAB) against D̂(ρA||σA) + D̂(ρB ||σB) for

ρAB :=
ηA ⊗ ηB + ελAB

tr[ηA ⊗ ηB + ελAB ]
.
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Quasi-factorization / Approximate tensorization

DEA(ρΛ‖σΛ) := D(ρΛ‖σ
1/2
Λ σ

−1/2
Ac ρAcσ

−1/2
Ac σ

1/2
Λ ) .
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Generalization of strong subadditivity

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai ’73)
takes the form

D

(
ρABC

∥∥∥ρB ⊗ 1AC

dHAC

)
≤ D

(
ρABC

∥∥∥ρAB ⊗ 1C

dHC

)
+D

(
ρABC

∥∥∥ρBC ⊗ 1A

dHA

)
.

For M⊂ N1,N2 ⊂ N , if EM, E1, E2 are the conditional expectations onto M,N1,N2,

respectively, we have

D(ρ‖EM∗ (ρ)) ≤ D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ)) ⇔ E1∗ ◦ E2∗ = E2∗ ◦ E1∗ = EM∗ .

Define EA∗ := lim
t→∞

etL
∗
A . Then,

D(ρ‖EA∪B∗(ρ)) ≤ D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ)) ⇔ EA∗ ◦ EB∗ = EB∗ ◦ EA∗ = EA∪B∗ .

In general, we present conditions in (Bardet-C.-Rouzé ’20) for which

D(ρ‖EA∪B∗(ρ)) ≤ c [D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ))] + d



Introduction and motivation Approximate tensorization of the relative entropy MLSI Applications

Generalization of strong subadditivity

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai ’73)
takes the form

D

(
ρABC

∥∥∥ρB ⊗ 1AC

dHAC

)
≤ D

(
ρABC

∥∥∥ρAB ⊗ 1C

dHC

)
+D

(
ρABC

∥∥∥ρBC ⊗ 1A

dHA

)
.

For M⊂ N1,N2 ⊂ N , if EM, E1, E2 are the conditional expectations onto M,N1,N2,

respectively, we have

D(ρ‖EM∗ (ρ)) ≤ D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ)) ⇔ E1∗ ◦ E2∗ = E2∗ ◦ E1∗ = EM∗ .

Define EA∗ := lim
t→∞

etL
∗
A . Then,

D(ρ‖EA∪B∗(ρ)) ≤ D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ)) ⇔ EA∗ ◦ EB∗ = EB∗ ◦ EA∗ = EA∪B∗ .

In general, we present conditions in (Bardet-C.-Rouzé ’20) for which
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MLSI for Pinching onto different bases

{∣∣∣e(1)
k

〉}
,
{∣∣∣e(2)

k

〉}
orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1`.

For i ∈ {1, 2}, Ei denotes the Pinching map onto span
{∣∣∣e(i)k 〉〈e(i)k ∣∣∣} and EM = 1

`
Tr[·].

Denote:

ε := `max
k,k′

∣∣∣∣∣∣∣〈e(1)
k

∣∣e(2)
k′

〉∣∣∣2 − 1

`

∣∣∣∣ .
Then,

D(ρ‖`−11) ≤
1

1− 2ε
(D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))) ,

and subsequently

L(X) := E1(X) + E2(X)− 2X .

has MLSI(1− 2ε).
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MLSI for quantum spin systems

MLSI, informal (C.-Rouzé-Stilck França ’20)

Let HΛ be a local commuting Hamiltonian such that one of the following conditions
holds:

1 HΛ is classical for β < βc.

2 HΛ is a nearest neighbour Hamiltonian for β < βc.

3 Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σΛ, the Gibbs
state of HΛ, such that it has a positive MLSI constant which is independent of the
system size.

∀ρΛ ∈ SΛ, D(ρt‖σΛ) ≤ e−αtD(ρΛ‖σΛ) .

It constitutes the first unconditional proof of MLSI for quantum lattice systems at
high temperature.
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Modified logarithmic Sobolev inequality

Let
{

etL
∗
Λ

}
t≥0

be a quantum Markov semigroup with L∗Λ(σΛ) = 0.

For A ⊂ Λ, let EA∗ : B(H)→ Ker(L∗A) be a conditional expectation, and

ρΛ
t−→ ρt := etL

∗
A(ρΛ)

t→∞−→ EA∗(ρΛ) .

Modified logarithmic Sobolev inequality

We say that a MLSI holds for L∗Λ if there exists a positive α such that for all
ρΛ ∈ SΛ,

2αD(ρΛ||σΛ) ≤ − tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)] .

Conditional modified logarithmic Sobolev inequality

For A ⊆ Λ, we say that a conditional MLSI on A holds for L∗Λ if there exists a
positive αA such that for all ρΛ ∈ SΛ,

2αAD(ρΛ||EA∗(ρΛ)) ≤ − tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)] .
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Tiling

Given a finite region A ⊂⊂ Zd, we decompose the fixed-point algebra F(LA) as

F(LA) :=
⊕
i∈I∂A

B(HAi )⊗ 1KAi , where HΛ :=
⊕
i∈I∂A

HAi ⊗KAi .

Then the conditional expectation EA∗ is expressed in the Schrödinger picture by

EA∗(ρ) := limt→∞etLA∗ (ρ) ≡
∑
i∈I∂A

trKi
[
PAi ρP

A
i

]
⊗ τAi .

{PAi }i∈IA central projections of F(LA), and τAi full-rank states supported on KAi .

Condition 2

The covering A =
⋃
i∈J Ai defined above satisfies:

(i) For all i, j ∈ J , EAi ◦ EAj = EAj ◦ EAi = EAi∪Aj ; and

(ii) For any grained set S̃ ∈ S̃,

there exists a decomposition KS̃j :=
⊕
kH(j,k) such that

F(L
A∩S̃) := 1A∩S̃ ⊗

⊕
j∈I

∂S̃

⊕
k

1H(j,k) ⊗ B(HS̃j ) .
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Clustering of correlations

Assuming frustration-freeness, for all A ⊂ B ⊂ Λ ⊂⊂ Zd, the blocks PBi B(HΛ)PBi are
preserved by the conditional expectation EA. Moreover, on each of these blocks, EA only
acts non-trivially on the factor B(KBi ), i.e. there exists a family of conditional expectations

{E(i)
A ∈ B(B(HKBi ))}i∈I∂B such that for each boundary condition i ∈ I∂B ,

EA|PBi B(HΛ)PBi
:= idB(HBi ) ⊗ E

(i)
A , with E

(i)
A∗(ρ) :=

∑
j∈Ii

∂A

tr
(
P i,Aj ρP i,Aj

)
⊗ τ i,Aj .

Clustering of correlations

L satisfies the L1 → L∞ clustering of correlations if there exist constants c ≥ 0 and ξ > 0
such that for any intersecting C,D ⊂⊂ Zd,

max
i∈I∂(C∪D)

∥∥E(i)
C ◦ E

(i)
D − E

(i)
C∪D : L1(τC∪Di )sa → B(KC∪Di )sa

∥∥ ≤ c |C ∪D| e− d(C\D,D\C)
ξ ,

(qL1 → L∞)
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Approximate tensorization of the relative entropy

Approximate tensorization (C.-Rouzé-Stilck França ’20)

Let L be a Gibbs sampler corresponding to a commuting potential. Assume further that the
family L satisfies qL1 → L∞ with parameters c ≥ 0 and ξ > 0, as well as Condition 2. Then,

for any C,D ∈ S̃ such that C,D ⊂ Λ ⊂⊂ Zd with 2c |C ∪D| exp
(
− d(C\D,D\C)

ξ

)
< 1, and all

ρ ∈ D(HΛ),

D(ω‖EC∪D∗(ω)) ≤
1

1− 2c |C ∪D| e−
d(C\D,D\C)

ξ

(
D(ω‖EC∗(ω)) +D(ω‖ED∗(ω))

)
,

with ω := EA∩Λ∗(ρ).

Here, we show that a condition on the fixed points of the generator and a condition of
decay of correlations imply

d = 0, c ∼ 1 + κ e− d(C\D,D\C) .
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Quantum spin systems

(qL1 → L∞) + Condition 2⇒ Approximate tensorization

Nearest neighbour Schmidt semigroups at high T satisfy both! (Bravyi-Vyalyi ’05)

Condition 1 (Complete MLSI) + Approximate tensorization⇒ MLSI
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Peeling out

We want to show that there exists α > 0, independent of the system size, such that

2αD(ρΛ‖σΛ) ≤ − tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)] =: EPΛ(ρΛ) .

Chain rule for the relative entropy for any rhombus R:

D(ρΛ‖σΛ) = D(ρΛ‖EA∩R∗(ρΛ)) +D(EA∩R∗(ρΛ)‖σΛ) .

For D(ρΛ‖EA∩R∗(ρΛ)), we use positivity of the complete MLSI (Junge-Gao-Laracuente ’19,
Rouzé-Gao ’21)

αc := inf
k∈N

α
(
L∗Λ ⊗ 1k

)
.
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Peeling out

For D(ρΛ‖EC(ρΛ)), we define a pinched MLSI

2 γC D(EA∗(ρΛ)||EC∗ ◦ EA∗(ρΛ)) ≤ − tr[L∗C(ρΛ)(log ρΛ − log σΛ)] .

and apply the approximate tensorization result on such quantity.

D(ρΛ‖EΛ∗(ρΛ)) = D(ρΛ‖EA∗(ρΛ)) +D(EA∗(ρΛ)‖EΛ∗(ρΛ))

≤ αc(LA∗ )−1EPA(ρΛ) + γ−1
Λ EPΛ(ρΛ)

≤
(
αc(LA∗ )−1 + γ−1

Λ

)
EPΛ(ρΛ)

Finally, we prove that γ−1
Λ does not depend on |Λ| (inspired by Cesi ’02, Dai

Pra-Paganoni-Posta ’02).
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Applications

The output energy of an Ising quantum annealer subject to finite range
classical thermal noise at high enough temperature outputs a state whose energy
is close to that of the thermal state of the noise after an annealing time that is
constant in system-size.

In the context of quantum asymmetric hypothesis testing, we show a decay
estimate on the type II error for two Gibbs states corresponding to commuting
potentials in the finite blocklength regime.

We obtain efficient quantum Gibbs samplers for certain Gibbs states
corresponding to commuting potentials, only requiring the implementation of a
circuit of local quantum channels of logarithmic depth.
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Conclusions

In this talk:

Review on results of quasi-factorization for the relative entropy.

Application of such results of approximate tensorization of the relative entropy
to prove MLSI.

First unconditional proof of MLSI on quantum lattice systems for classical,
nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

Extension to k-local commuting Hamiltonians.

Extension to more semigroups.

For further information, see 2009.11817.
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THANK YOU FOR YOUR ATTENTION!


	Introduction and motivation
	Approximate tensorization of the relative entropy
	MLSI
	Applications

