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Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QU JM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
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NOTATION

Figure: A quantum spin lattice system.

Finite lattice A cc Z<.

o To every site z € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®I€A H.
The set of bounded linear endomorphisms on H, is denoted by
Ba = B(Hna).

o The set of density matrices is denoted by

Sa :=8(Ha) = {pa € Ba : pa >0 and tr[ps] = 1}.
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main motivation:

One problem: Appearance of noise.
Some kinds of noise can be modelled using quantum dissipative
evolutions.
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:
e Computational power
o Conditions against noise

e Time to obtain certain states
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EVOLUTION OF A SYSTEM

Isolated system.

Physical evolution: p — UpU* ~» Reversible

Dissipative quantum system (non-reversible evolution)
T:p—T(p)

e States to states = Linear, positive and trace preserving.
pRo € SH®H), o with trivial evolution
T: SHOH) — SHOH) A
- =T=T®1
Tlp®o) = T(p)®o

o Completely positive.

T quantum channel
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OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: [¢) (|5
prrp®[Y) (Ylp = U(p® [¥) (W) U = tre[U (p @ [¥) (]5) U1 =5

T: SMH) — SH)

o o % quantum channel

For every ¢t > 0, the corresponding time slice is a realizable evolution 7
(quantum channel).
Continuous-time description: Markovian approximation.
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QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous
semigroup {7;* }t20 of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in Sy.

Semigroup:
o T oTr =T
o Ty =1.

d
T =T e Li=Lio T,

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Lindbladian.

d *
77; ‘t=0-

T* — tLh P
t € AT
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DISSIPATIVE QUANTUM SYSTEMS

PriMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which
we denote by o.

REVERSIBILITY

We also assume that the quantum Markov process studied is
reversible, i.e. it satisfies the detailed balance condition:

(£, £(9)), = (L(f), 9)o
for every f,g € A, in the Heisenberg picture.

Notation: p; := T;"(p).

t—o0

pa — pe =T (pa) = €3 (pp) =5 04
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RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lp: — oall; < poly(|A])e™".
PAESA

PA
\,p,

poly(|A)e™"

TA

PROBLEM
Find examples of rapid mixing!
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Decay of correlations

Quasi-factorization Geometric
of the recursive
relative Definition argument
entropy conditional
Log-Sobolev
constant

Positive conditional
log-Sobolev constant

on the Gibbs state
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This
Log-Sobolev constant project

Kastoryano-Temme, "13

Kastoryano-Temme, '13

S I ) Exponential
pectra’gap K"‘“"'Y"‘“‘}'Br“d"”’ e decay of correlations
X Rapid mixing %al, 13
Cubitt et al, ’1y Vranda@ et al, ’15

Stability = Arealaw
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LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).

Liouville’s equation:
pr = Ly (pr)-

Relative entropy of p; and oy:
D(ptllon) = tr[pi(log py — log ap)].
Differentiating:

0D (ptl|loa) = tr[L) (pe)(log pr —logop)].

Lower bound for the derivative of D(p;||oy) in terms of itself:

2aD(pyllop) < —tr[L3 (pr)(log py — log an)].



LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

(L) = inf —EA(PA)(08 o) —logon)]
PAESA 2D(PA||O'A)




LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT
The log-Sobolev constant of £} is defined as:

o —tr[L3(pa)(log pa —logaa)]
L3) = inf
allh) = inf 2D(pal[on)

If lim inf a(L3) > 0:
hy a(L})

D(pi|loa) < D(palloa)e 2“0t



LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT
The log-Sobolev constant of £} is defined as:

f = tr[L3 (pa)(log pa — logan )]
PAESA 2D(pA||O'A)

a(LRy) =

If lim inf a(L3) > 0:
hy a(L})

D(pi|loa) < D(palloa)e 2“0t

and with Pinsker’s inequality, we have:

o = oally < VZD(oallon) R < \/2Tog(T/ormm) e~ *(EV".



LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT
The log-Sobolev constant of £} is defined as:

o —tr[L(pa)(log pa —logay)]
L) = f
allh) = inf 2D (p[on)

If lim inf (L} :
i\rr}‘% ally) >0

D(pi|loa) < D(palloa)e 2“0t

and with Pinsker’s inequality, we have:

o = oally < VZD(oallon) R < \/2Tog(T/ormm) e~ *(EV".

Using the spectral gap (Kastoryano-Temme ’13):

||pt - U/\”l < V 1/U-min e_A(LT\)t-
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RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lpr — oall; < poly(|A]) e
PAESA

For thermal states, o1 ~ exp(|A|).

Log-Sobolev constant = Rapid mixing. )

PROBLEM
Find positive log-Sobolev constants!
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FIRST MAIN OBJECTIVE OF THIS TALK

Develop a strategy to find positive log-Sobolev constants from
static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS TALK

Apply that strategy to certain dissipative dynamics.
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J

I

Positive log-Sobolev constant. )
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LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

o —tr[LA(pa)(log pa —logon)]
inf
PAESA 2D(PA||0'A)

CONDITIONAL LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state oa, A C A. We define the conditional log-Sobolev constant of L}
on A by

a(Ly) =

. o —tr[Lh(pa)(log pa —logaa )
L) = f
an(Lh) = inf 2D a(pallon)
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CONDITIONAL RELATIVE ENTROPY

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Enty,(f) = p(flog f) — u(f) log u(f).

Conditional entropy:

Ent,(f | G) = u(f(log f —logu(f | G)) | G).

QUANTUM RELATIVE ENTROPY

The quantum relative entropy of pa and oa is defined by:

D(palloa) = tr [pa(log pa — log aa)].

CONDITIONAL RELATIVE ENTROPY

Given a bipartite space Hap, we define the conditional relative entropy in
A by:

Da(paglloas) = D(paglloas) — D(psllos)

for every pap,cap € SaBp.

-

(C.-Lucia-Pérez Garcia, ’18) — Axiomatic characterization of the CRE.
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3. Quasi-factorization for the relative entropy
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ORIZATION OF THE RELATIVE ENTROPY

The strategy is based on a solution for the following problem.

BC

/—/%

AB

PROBLEM

Let Hapc = Ha ® Hp ® He and papc,casc € Sapc. Can we prove
something like

D(pasclloasc) < &(casc) [Dag(pasclloasc) + Dec(pasclloasc)]

where &(0aBc) depends only on o04pc and measures how far oac is from
o4 Roc?




QUASI-FACTORIZATION
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Figure: Choice of indices in Hapc = Ha @ Hp @ Hc-

Result of quasi-factorization of the relative entropy, for every
PABC,0ABC € SaBC:

D(pasclloasc) < &(oasc) [Dap(pasclloasc) + Dec(pasclloasc)].

QUASI-FACTORIZATION FOR THE CRE, (C.-Lucia-Pérez Garcia, ’18)

In the previous inequality,

1
80a5e) = T Hoao)lL’

where
H(JAc) = 0;1/2 ® 0‘51/2 OAC 021/2 ® 0‘51/2 —Tac.

Note that H(ocac) = 0 if oac is a tensor product between A and C.




'ACTORIZATION

(1 =2||H(cac)ll.)D(pabsclloasc) <
Dag(papcl|loasc) + Dec(papcl|loasc) =
=2D(papclloasc) — D(pclloc) — D(palloa).
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(1 —=2||H(cac)lloo)D(parclloasc) <
Dag(paclloac) + Dec(papclloasc) =
=2D(papclloasc) — D(pclloc) — D(palloa).

=

(1+2||H(cac)|lo)D(parclloasc) = D(palloa) + D(pclloc).
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(1 —=2||H(cac)lloo)D(parclloasc) <
Dag(papcl|loasc) + Dec(papcl|loasc) =
= 2D(pabcl|loasc) — D(pclloc) — D(palloa).
&
(1+2||H(cac)|lo)D(parclloasc) = D(palloa) + D(pclloc).
&

(1+2||H(cac)lloo)D(paclloac) = D(palloa) + D(pclloc).
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[e]e]e]e] }

This result is equivalent to (C.-Lucia-Pérez Garcia, *18):

(1+2H(045)|l..)D(paslloas) 2 D(palloa) + Dipslios) |

Recall:
e Superadditivity. D(pag|loa ® o) > D(pal|loa) + D(psllos).

Due to:

e Monotonicity. D(pag|loar) > D(T(pag)||T(caB)) for every
quantum channel T'.

we have

2D(paslloas) = D(palloa) + D(psllos).



4. Logarithmic Sobolev inequalities |
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IV INEQUALITIES
00000

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (C.-Lucia-Pérez Garcia, ’18)

The heat-bath dynamics, with tensor product fixed point, has a
positive log-Sobolev constant.
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THEOREM (C.-Lucia-Pérez Garcia, ’18)

The heat-bath dynamics, with tensor product fixed point, has a
positive log-Sobolev constant.

Consider the local and global Lindbladians
Lr=FE; -1, Li=) L}
zeEA

Since
—1/20[1\/2

* 1/2 —1/2
Ez (PA) = UA/ Oge d PxcOge =03 @ Pge

for every pp € Sa, we have

L3 (pr) = Z (02 ® pee — pA).-
TEA

General depolarizing semigroup
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

ASSUMPTION

or = o,

TEA
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

CONDITIONAL LOG-SOBOLEV CONSTANT

For x € A, we define the conditional log-Sobolev constant of £}
in x by

o —tr[L3(pa)(log pa —logon)]
an(ls) = lof 2D, (pallon) ’

where o, is the fixed point of the evolution, and D, (pa||oa) is the
conditional relative entropy.




GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Hy = @ H, and pp,0p € S such that oy = ®az The

zEA zEA

following inequality holds:

D(palloa) <Y Da(pallon).
TEA




LEMMA (Positivity of the conditional log-Sobolev constant)




HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

D(palloa) < 3_ Dalpallon)

TEA
— tr[£5(pa)(log pa —logoa )]
<
- a;x 2ax (£3)

1
S — _ * _
S Efann 2y UlEHen) o s logon)

1

2inf an(L7) (= tr[C3(pa)(log pa — logan)])

< (= tr[Li(pa)(log pa —logop)]) .
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

POSITIVE LOG-SOBOLEV CONSTANT
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

POSITIVE LOG-SOBOLEV CONSTANT

Previous results:

o Miiller-Hermes et al. ’15. Lower bound 1/2 for the usual
depolarizing semigroup, with fixed point 1/d.

o Temme et al. ’14. For this semigroup, the log-Sobolev constant
is positive, with a lower bound that is not universal.
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EXAMPLE 2, (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19)

HEAT-BATH DYNAMICS IN 1D
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HEAT-BATH DYNAMICS IN 1D

op = % the Gibbs state of a k-local, commuting Hamiltonian H.



HEAT-BATH DYNAMICS IN 1D

op = % the Gibbs state of a k-local, commuting Hamiltonian H.

Consider the local and global Lindbladians
Ly=FEr— 1y, Lh =) L3,
zEA
with
E;(pn) = 032052 paeoyd 2o,

for every pp € Sa,
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LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS
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LOG-SOBOLEV INEQUALITY FOR THE HEA! ATH DYNAMICS

The dynamics: For every pp € Sa,

* 1/2 _—1/2 —-1/2 _1/2
‘CA(pA) = Z (UA/ 0-930/ prUxC/ UA/ - PA)
zEA
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LOG-SOBOLEV INEQUALITY FOR THE HE ATH DYNAMICS

The dynamics: For every pp € Sa,
" 1/2 _—1/2 —1/2 1/2
‘CA(pA) = Z (UA/ 0-930/ prUxC/ UA/ - PA)
zeA

Given A C A, can we prove something like

a(L}) > U(A) aa(Ly) ?
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LOG-SOBOLEV INEQUALITY FOR THE HE ATH DYNAMICS

The dynamics: For every pp € Sa,

* 1/2 _—1/2 —-1/2 _1/2
‘CA(pA) = Z (UA/ 0-930/ prUxC/ UA/ - PA)
zEA

Given A C A, can we prove something like
a(Ly) = ¥(A)aa(Ly) ?
If so, we could use it to prove

h}\n/(lznfa(ﬁA) > 0.



HEAT-BATH DYNAMICS IN 1D

CONDITIONAL LOG-SOBOLEV CONSTANT
For A C A, we define the conditional log-Sobolev constant of L}
in A by
. —tr[L%(pa)(log pa —logay)]
inf
PAESA 2DA(pA||0A)

b

ap(Ly) =

where o, is the fixed point of the evolution, and

Da(palloa) = D(palloa) — D(pac|loac).
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QUASI-FACTORIZATION FOR THE CRE

Let Hxyz and pxyz,0xvyz € Sxyz. The following holds

D(pxvzlloxyz) < &(oxz) [Dxy(pxyvzl||loxyz) + Dyz(pxyzlloxyz)],

where
1

l—QHU;{l/z@aEl 2axzcr 1/2 R0,

{(oxz) =

—1/2

= ]IXZH
oo

D(pxyzl|loxyz) Dxy(pxyzlloxyz) Dyz(pxyzlloxyz)

XI <§(§:§) Xz - xBlz




STEP 1 J




STEP 1 J

A= LnJAZ and B = LnJBJ
j=1

=1

1
1 —2[|h(0acBe)l o

h(gacpe) = 0pe > @ o/

D(palloa) < [Da(palloa) + Da(palloa)l,

1/

GACBCUAC

2 —-1/2
®UBC —]lAch,



SKETCH OF THE PROOF

STEP 2 J

Da(pallon) <Y Da,(pallon)

i=1
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SKETCH OF THE PROOF

STEP 2 J

Da(pallon) <Y Da,(pallon)

i=1

op is a QMC between Ay > 041 <> A\ (A1 UOA,)

op = _@IUAl(aal)f ® O (9a,)RA\(A1UDAL)
1€
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® He ® Hp, A and B not connected,
we have

_ _ _ _ 1
1h(aB)lloe = [|[o2"/* ® 05 *0apos"? @ 5" — as|_ <K <.
o0

In particular, Gibbs states at high-enough temperature satisfy this.




HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® He ® Hp, A and B not connected,
we have

_ _ _ _ 1
1h(aB)lloe = [|[o2"/* ® 05 *0apos"? @ 5" — as|_ <K <.
o0

In particular, Gibbs states at high-enough temperature satisfy this.

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

Dg(palloa) < f(ops) (D, (palloa) + Dp,(palloa)) -
In particular, tensor products satisfy this (with f = 1).

A\




HEAT-BATH DYNAMICS IN 1D

STEP 3 J

Using locality of the Lindbladian
Ly+Ls =LA+ Lans
and quasi-factorization:

Assumption 1 = a(L}) > f( gln {OéA L4, CYA(KTB)}
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1ICS IN 1D

STEP 4 J

Assumption 2 = ax(L},) > g(oa,0) > 0.
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HEAT-BATH DYNAMICS IN 1D

THEOREM (Bardet-C.-Lucia-Pérez Garcia-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting
Hamiltonian, the heat-bath dynamics has a positive log-Sobolev
constant.
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HEAT-BATH DYNAMICS IN 1D

THEOREM (Bardet-C.-Lucia-Pérez Garcia-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting
Hamiltonian, the heat-bath dynamics has a positive log-Sobolev
constant.

Previous results:

o Kastoryano-Brandao, ’15. In 1D, for a k-local commuting
Hamiltonian, the heat-bath dynamics is always gapped.
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ExAMPLE 3 (Bardet-C.-Rouzé, *20)

DAVIES DYNAMICS
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DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:
Li( ) - Z H A; + Z [rB
keA

where

=wzajx§,k<w>( ()X Sa(@) — 3 {52 w>,X}).
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DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:

LR(X) =i[Hp, X]+ > LX)
keA

where

=wzajx§,k<w>( ()X Sa(@) — 3 {52 w>,X}).

Important property: Given A C A,
EX(X) = E(X|Na) = lim €4 (X).

is a conditional expectation onto the subalgebra of fixed points of Ei.
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DAVIES DYNAMICS

CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of £
in A by

, — e[ £5 (o) (log pa — log orn) |
ap(L)) == inf 3
PASEL 2D (pallon)

)

where o, is the fixed point of the global evolution (the Gibbs state of
a local commuting Hamiltonian), and

D (pallon) = D(pall(€5)* (pn))-
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DAVIES DYNAMICS

EXPONENTIAL DECAY OF CORRELATIONS

If 0 € S(H) is a fixed point of the evolution and f,g € A(H) such
that f € As and g € Ap, then

ltr[o fg] — tr[o f] trlog]] < el £l ]lglly, e~ HANEB\D)

’ Spectral gap \ Log-Sobolev constant ‘
Change |||l = I'lls., Change ||l = lIll15
Conditional version Conditional version

Assume it for every fixed point
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DAVIES DYNAMICS

QUASI-FACTORIZATION (Bardet-C.-Rouzé, ’20)

1
Assume that there exists a constant 0 < ¢ < ————— such that
2(4+2)
there is exponential conditional IL;-clustering of correlations with
corresponding constant ¢. Then, the following inequality holds for

every p € S(H):
b
1-2(4+2)c

for every o = £} 5(0).

Dis(pllo) < (DA (ello) + D3 (ello))
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GEOMETRIC RECURSIVE ARGUMENT

Figure: Splitting in A,, and By,.
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CONJECTURE

Given A ccC 72, L} : Sp — Sp the Lindbladian associated to the
Davies dynamics and a finite lattice and A C A, we have

an (£57) = v(4) >0,

where (| A|) might depend on A, but is independent of its size.

Uses Junge et al. ’19.
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DAVIES DYNAMICS

THEOREM (Bardet-C.-Rouzé, ’20)

Under exponential conditional IL;-clustering of correlations, and
assuming that the previous conjecture holds, for a k-local commuting
Hamiltonian, the Davies dynamics has a positive log-Sobolev constant.

Previous results:

o Kastoryano-Brandao, ’15. Under strong clustering, for a
k-local commuting Hamiltonian, the Davies dynamics is gapped.
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5. Conclusions )

Kastoryano-Temme, ’13 This

Log-Sobolev constant V%'ect
Kastoryano-Temme, ’13

Spectral gap
X Rapid mixing %bitt: al, 13

Cubitt et al, *13‘/ wrandao et al, '15

Stability Area law

< > Exponential
KastoryanofBrandao, °14 decay of correlations




OPEN PROBLEMS

PROBLEM 1
Does the heat-bath result hold for larger dimension?

PROBLEM 2
Is there a better definition for conditional relative entropy?

PROBLEM 3

—
—
—

Can we do something similar for different dynamics?
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EXTENSION OF LOG-SOBOLEV FOR HEAT-BATH TO LARGER
DIMENSIONS

2 possible approaches:

o D(papclloapc) < &(capc) (Da+ Dp+ D¢) (pasclloasc)



CONCLUSIONS
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EXTENSION OF LOG-SOBOLEV FOR HEAT-BATH TO LARGER
DIMENSIONS

@ Dag(pasc|loapc) < &(oasc) (Da(papclloasc) + De(pasc|loasc))



OTHER APPROACHES

o In (Bardet-C.-Rouzé, ’20), we deal with approximate
tensorization, namely:

D5 5(pllo) < ¢ (DA (pllo) + D (pllo) ) +d,



OTHER APPROACHES

o In (Bardet-C.-Rouzé, ’20), we deal with approximate
tensorization, namely:

D5 5(pllo) < ¢ (DA (pllo) + D (pllo) ) +d,

o In an ongoing project (C.-Rouzé-Stilck Franga, ’20), we consider
instead global approximate tensorization:

Di(plle) < e Di(pllo),
TEA
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