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Main topic of this talk

Field of study

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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No experiment can be executed at zero temperature or
be completely shielded from noise.

⇒ Open quantum many-body systems.

Figure: An open quantum many-body system.

Dynamics of S is dissipative!
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Notation

Figure: A quantum spin lattice system.

Finite lattice Λ ⊂⊂ Zd.
To every site x ∈ Λ we associate Hx (= CD).

The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.

The set of bounded linear endomorphisms on HΛ is denoted by
BΛ := B(HΛ).

The set of density matrices is denoted by
SΛ := S(HΛ) = {ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.
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One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative
evolutions.
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Quantum dissipative evolutions useful?

Recent change of perspective ⇒ Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:

Computational power

Conditions against noise

Time to obtain certain states

...
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Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel
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Open systems

Open systems ⇒ Environment and system interact.

Figure: Environment + System form a closed system.

State for the environment: |ψ〉 〈ψ|E
ρ 7→ ρ⊗ |ψ〉 〈ψ|E 7→ U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗ 7→ trE [U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗] = ρ̃

T : S(H) → S(H)
ρ 7→ ρ̃

quantum channel

For every t ≥ 0, the corresponding time slice is a realizable evolution Tt
(quantum channel).
Continuous-time description: Markovian approximation.
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Quantum dissipative systems

Quantum dissipative systems

A quantum dissipative system is a 1-parameter continuous
semigroup {T ∗t }t≥0 of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.
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Dissipative quantum systems

Primitive QMS

We assume that {T ∗t }t≥0 has a unique full-rank invariant state, which
we denote by σ.

Reversibility

We also assume that the quantum Markov process studied is
reversible, i.e. it satisfies the detailed balance condition:

〈f,L(g)〉σ = 〈L(f), g〉σ
for every f, g ∈ A, in the Heisenberg picture.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε

}
.
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Rapid mixing

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

Problem

Find examples of rapid mixing!
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2. General strategy for log-Sobolev inequalities
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Classical spin systems
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Log-Sobolev inequality (MLSI)

Recall: ρt := T ∗t (ρ).

Liouville’s equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Log-Sobolev constant

Log-Sobolev constant

The log-Sobolev constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Log-Sobolev constant

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|) e−γt.

For thermal states, σ−1
min ∼ exp(|Λ|).

Log-Sobolev constant ⇒ Rapid mixing.

Problem

Find positive log-Sobolev constants!
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First main objective of this talk

Develop a strategy to find positive log-Sobolev constants from
static properties on the fixed point.

Second main objective of this talk

Apply that strategy to certain dissipative dynamics.



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

First main objective of this talk

Develop a strategy to find positive log-Sobolev constants from
static properties on the fixed point.

Second main objective of this talk

Apply that strategy to certain dissipative dynamics.



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Classical spin systems

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev

constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

⇓

Positive log-Sobolev constant.
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Strategy



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Conditional log-Sobolev constant

Log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ. We define the log-Sobolev constant of L∗Λ by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ, A ⊆ Λ. We define the conditional log-Sobolev constant of L∗Λ
on A by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Conditional log-Sobolev constant

Log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ. We define the log-Sobolev constant of L∗Λ by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ, A ⊆ Λ. We define the conditional log-Sobolev constant of L∗Λ
on A by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Conditional relative entropy

Classical entropy and conditional entropy

Entropy:

Entµ(f) = µ(f log f)− µ(f) logµ(f).

Conditional entropy:

Entµ(f | G) = µ(f(log f − logµ(f | G)) | G).

Quantum relative entropy

The quantum relative entropy of ρΛ and σΛ is defined by:

D(ρΛ||σΛ) = tr [ρΛ(log ρΛ − log σΛ)] .

Conditional relative entropy

Given a bipartite space HAB , we define the conditional relative entropy in
A by:

DA(ρAB ||σAB) = D(ρAB ||σAB)−D(ρB ||σB)

for every ρAB , σAB ∈ SAB .

(C.-Lucia-Pérez Garćıa, ’18) → Axiomatic characterization of the CRE.
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3. Quasi-factorization for the relative entropy
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Quasi-factorization of the relative entropy

The strategy is based on a solution for the following problem.

Problem

Let HABC = HA ⊗HB ⊗HC and ρABC , σABC ∈ SABC . Can we prove
something like

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)]

where ξ(σABC) depends only on σABC and measures how far σAC is from
σA ⊗ σC?
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Figure: Choice of indices in HABC = HA ⊗HB ⊗HC .

Result of quasi-factorization of the relative entropy, for every
ρABC , σABC ∈ SABC :

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] .

Quasi-factorization for the CRE, (C.-Lucia-Pérez Garćıa, ’18)

In the previous inequality,

ξ(σABC) =
1

1− 2‖H(σAC)‖∞
,

where

H(σAC) = σ
−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC .

Note that H(σAC) = 0 if σAC is a tensor product between A and C.



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

(1− 2‖H(σAC)‖∞)D(ρABC ||σABC) ≤
DAB(ρABC ||σABC) +DBC(ρABC ||σABC) =

= 2D(ρABC ||σABC)−D(ρC ||σC)−D(ρA||σA).

⇔

(1 + 2‖H(σAC)‖∞)D(ρABC ||σABC) ≥ D(ρA||σA) +D(ρC ||σC).

⇔

(1 + 2‖H(σAC)‖∞)D(ρAC ||σAC) ≥ D(ρA||σA) +D(ρC ||σC).
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This result is equivalent to (C.-Lucia-Pérez Garćıa, ’18):

(1 + 2‖H(σAB)‖∞)D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB) .

Recall:

Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

Due to:

Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every
quantum channel T .

we have

2D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB).
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4. Logarithmic Sobolev inequalities
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Example 1 (C.-Lucia-Pérez Garćıa, ’18)

Heat-bath dynamics with tensor product fixed point
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Heat-bath with tensor product fixed point

Theorem (C.-Lucia-Pérez Garćıa, ’18)

The heat-bath dynamics, with tensor product fixed point, has a
positive log-Sobolev constant.

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x

Since
E∗x(ρΛ) = σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have

L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ).

General depolarizing semigroup
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Strategy
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Heat-bath with tensor product fixed point

Assumption

σΛ =
⊗
x∈Λ

σx.
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Heat-bath with tensor product fixed point

Conditional log-Sobolev constant

For x ∈ Λ, we define the conditional log-Sobolev constant of L∗Λ
in x by

αΛ(L∗x) := inf
ρΛ∈SΛ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2Dx(ρΛ||σΛ)
,

where σΛ is the fixed point of the evolution, and Dx(ρΛ||σΛ) is the
conditional relative entropy.
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Heat-bath with tensor product fixed point

General quasi-factorization for σ a tensor product

Let HΛ =
⊗
x∈Λ

Hx and ρΛ, σΛ ∈ SΛ such that σΛ =
⊗
x∈Λ

σx. The

following inequality holds:

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ).
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Heat-bath with tensor product fixed point

Lemma (Positivity of the conditional log-Sobolev constant)

αΛ(L∗x) ≥ 1

2
.
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Heat-bath with tensor product fixed point

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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Heat-bath with tensor product fixed point

Positive log-Sobolev constant

α(L∗Λ) ≥ 1

2
.

Previous results:

Müller-Hermes et al. ’15. Lower bound 1/2 for the usual
depolarizing semigroup, with fixed point 1/d.

Temme et al. ’14. For this semigroup, the log-Sobolev constant
is positive, with a lower bound that is not universal.
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2
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Example 2, (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19)

Heat-bath dynamics in 1D
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Heat-bath dynamics in 1D

σΛ = e−βH

tr(e−βH)
the Gibbs state of a k-local, commuting Hamiltonian H.

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x,

with
E∗x(ρΛ) = σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ ,

for every ρΛ ∈ SΛ,
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Log-Sobolev inequality for the heat-bath dynamics

The dynamics: For every ρΛ ∈ SΛ,

L∗Λ(ρΛ) :=
∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)
.

Given A ⊂ Λ, can we prove something like

α(L∗Λ) ≥ Ψ(A)αΛ(L∗A) ?

If so, we could use it to prove

lim inf
Λ↗Z

α(L∗Λ) > 0.
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Heat-bath dynamics in 1D

Conditional log-Sobolev constant

For A ⊂ Λ, we define the conditional log-Sobolev constant of L∗Λ
in A by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
,

where σΛ is the fixed point of the evolution, and

DA(ρΛ||σΛ) = D(ρΛ||σΛ)−D(ρAc ||σAc).
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Quasi-factorization for the CRE

Let HXY Z and ρXY Z , σXY Z ∈ SXY Z . The following holds

D(ρXY Z ||σXY Z) ≤ ξ(σXZ) [DXY (ρXY Z ||σXY Z) +DY Z(ρXY Z ||σXY Z)] ,

where

ξ(σXZ) =
1

1− 2
∥∥∥σ−1/2

X ⊗ σ−1/2
Z σXZ σ

−1/2
X ⊗ σ−1/2

Z − 1XZ
∥∥∥
∞

.



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Quasi-factorization of the relative entropy

STEP 1

A =

n⋃
i=1

Ai and B =

n⋃
j=1

Bj

D(ρΛ||σΛ) ≤ 1

1− 2‖h(σAcBc)‖∞
[DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

h(σAcBc) := σ
−1/2
Ac ⊗ σ−1/2

Bc σAcBcσ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc .



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Quasi-factorization of the relative entropy

STEP 1

A =

n⋃
i=1

Ai and B =

n⋃
j=1

Bj

D(ρΛ||σΛ) ≤ 1

1− 2‖h(σAcBc)‖∞
[DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

h(σAcBc) := σ
−1/2
Ac ⊗ σ−1/2

Bc σAcBcσ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc .



Introduction General strategy Quasi-factorization Log-Sobolev inequalities Conclusions

Sketch of the proof

STEP 2

DA(ρΛ||σΛ) ≤
n∑
i=1

DAi(ρΛ||σΛ)

σΛ is a QMC between A1 ↔ ∂A1 ↔ Λ \ (A1 ∪ ∂A1)

σΛ =
⊕
i∈I
σA1(∂a1)Li

⊗ σ(∂a1)Ri Λ\(A1∪∂A1)
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Heat-bath dynamics in 1D

Assumption 1

In a tripartite Hilbert space HA ⊗HC ⊗HB , A and B not connected,
we have

‖h(σAB)‖∞ =
∥∥∥σ−1/2

A ⊗ σ−1/2
B σABσ

−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
≤ K <

1

2
.

In particular, Gibbs states at high-enough temperature satisfy this.

Assumption 2

For any B ⊂ Λ, B = B1 ∪B2, it holds:

DB(ρΛ||σΛ) ≤ f(σB∂) (DB1
(ρΛ||σΛ) +DB2

(ρΛ||σΛ)) .

In particular, tensor products satisfy this (with f = 1).
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Heat-bath dynamics in 1D

STEP 3

Using locality of the Lindbladian

L∗A + L∗B = L∗A∪B + L∗A∩B
and quasi-factorization:

Assumption 1⇒ α(L∗Λ) ≥ K̃ min
i∈{1,...n}

{
αΛ(L∗Ai), αΛ(L∗Bi)

}
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Heat-bath dynamics in 1D

STEP 4

Assumption 2⇒ αΛ(L∗Ai) ≥ g(σAi∂) > 0.
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Heat-bath dynamics in 1D

Theorem (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting
Hamiltonian, the heat-bath dynamics has a positive log-Sobolev
constant.

Previous results:

Kastoryano-Brandao, ’15. In 1D, for a k-local commuting
Hamiltonian, the heat-bath dynamics is always gapped.
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Example 3 (Bardet-C.-Rouzé, ’20)

Davies dynamics
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Davies dynamics

Generator

The generator of the Davies dynamics is of the following form:

LβΛ(X) = i[HΛ, X] +
∑
k∈Λ

Lβk(X) ,

where

Lβk(X) =
∑
ω,α

χβα,k(ω)

(
S∗α,k(ω)XSα,k(ω)− 1

2

{
S∗α,k(ω)Sα,k(ω), X

})
.

Important property: Given A ⊆ Λ,

EβA(X) := E(X|NA) = lim
t→∞

etL
β
A(X) .

is a conditional expectation onto the subalgebra of fixed points of LβA.
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Davies dynamics

Conditional log-Sobolev constant

For A ⊂ Λ, we define the conditional log-Sobolev constant of LβΛ
in A by

αΛ(LβA) := inf
ρΛ∈SΛ

− tr
[
LβA(ρΛ)(log ρΛ − log σΛ)

]
2Dβ

A(ρΛ||σΛ)
,

where σΛ is the fixed point of the global evolution (the Gibbs state of
a local commuting Hamiltonian), and

Dβ
A(ρΛ||σΛ) = D(ρΛ||(EβA)∗(ρΛ)).
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Davies dynamics

Exponential decay of correlations

If σ ∈ S(H) is a fixed point of the evolution and f, g ∈ A(H) such
that f ∈ AA and g ∈ AB , then

|tr[σfg]− tr[σf ] tr[σg]| ≤ c‖f‖∞‖g‖∞ e−d(A\B,B\A) .

Spectral gap Log-Sobolev constant

Change ‖·‖∞ 7→ ‖·‖2,σ Change ‖·‖∞ 7→ ‖·‖1,σ
Conditional version Conditional version

Assume it for every fixed point
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Davies dynamics

Quasi-factorization (Bardet-C.-Rouzé, ’20)

Assume that there exists a constant 0 < c <
1

2(4 +
√

2)
such that

there is exponential conditional L1-clustering of correlations with
corresponding constant c. Then, the following inequality holds for
every ρ ∈ S(H):

Dβ
AB(ρ||σ) ≤ 1

1− 2(4 +
√

2) c

(
Dβ
A(ρ||σ) +Dβ

B(ρ||σ)
)
,

for every σ = E∗AB(σ).
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Geometric recursive argument

α
(
Lβ∗Λ

)
≥ Ψ(L0) min

R∈RL0

αΛ

(
Lβ

∗

R

)
,

Figure: Splitting in An and Bn.
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Conjecture

Given Λ ⊂⊂ Zd, L∗Λ : SΛ → SΛ the Lindbladian associated to the
Davies dynamics and a finite lattice and A ⊂ Λ, we have

αΛ

(
Lβ∗A

)
≥ ψ(|A|) > 0,

where ψ(|A|) might depend on Λ, but is independent of its size.

Uses Junge et al. ’19.
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Davies dynamics

Theorem (Bardet-C.-Rouzé, ’20)

Under exponential conditional L1-clustering of correlations, and
assuming that the previous conjecture holds, for a k-local commuting
Hamiltonian, the Davies dynamics has a positive log-Sobolev constant.

Previous results:

Kastoryano-Brandao, ’15. Under strong clustering, for a
k-local commuting Hamiltonian, the Davies dynamics is gapped.
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5. Conclusions
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Open problems

Problem 1

Does the heat-bath result hold for larger dimension?

Problem 2

Is there a better definition for conditional relative entropy?

Problem 3

Can we do something similar for different dynamics?
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Extension of log-Sobolev for heat-bath to larger
dimensions

2 possible approaches:

D(ρABC ||σABC) ≤ ξ(σABC) (DA +DB +DC) (ρABC ||σABC)
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Extension of log-Sobolev for heat-bath to larger
dimensions

DAB(ρABC ||σABC) ≤ ξ(σABC) (DA(ρABC ||σABC) +DB(ρABC ||σABC))
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Other approaches

In (Bardet-C.-Rouzé, ’20), we deal with approximate
tensorization, namely:

Dβ
AB(ρ||σ) ≤ c

(
Dβ
A(ρ||σ) +Dβ

B(ρ||σ)
)

+ d ,

In an ongoing project (C.-Rouzé-Stilck França, ’20), we consider
instead global approximate tensorization:

Dβ
A(ρ||σ) ≤ c

∑
x∈A

Dβ
x(ρ||σ) ,
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