GENERAL STRATEGY

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions 0000000

Logarithmic Sobolev Inequalities for Quantum Many-Body Systems

Ángela Capel (Technische Universität München)

Joint work with: Ivan Bardet (INRIA, Paris), Angelo Lucia (Caltech), Cambyse Rouzé (T. U. München) and David Pérez-García (U. Complutense de Madrid).

UCL Quantum Information Theory Seminar, 25 June 2020

Technical University of Munich

Munich Center for Quantum Science and Technology

Introduction 00000000000	General strategy 0000000000000	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions 0000000
Quantum	[

$\mathbf{Communication\ channels}\longleftrightarrow \mathbf{Physical\ interactions}$

Introduction	General strategy 0000000000000	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions 0000000
Quantum	4			
C	Quantum Infor	mation	Quantum Many-Body	

Physics

$\textbf{Communication channels} \longleftrightarrow \textbf{Physical interactions}$

Theory

Tools and ideas \longrightarrow Solve problems

Introduction	General strategy 0000000000000	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions 0000000
Quantum	1			
G	uantum Infor	mation	Ouantum Many-Body	

$\textbf{Communication channels} \longleftrightarrow \textbf{Physical interactions}$

Tools and ideas \longrightarrow Solve problems

Storage and transmision \leftarrow Models of information

Introduction 0000000000	General strategy 000000000000	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions 0000000
Quantum	4			
C	uantum Infori	mation	Quantum Many-Body	

Quantum Information Theory Physics

$\textbf{Communication channels} \longleftrightarrow \textbf{Physical interactions}$

Tools and ideas \longrightarrow Solve problems

Storage and transmision \leftarrow Models of information

MAIN TOPIC OF THIS TALK

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

MAIN TOPIC OF THIS TALK

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

Content	S			
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

1 INTRODUCTION AND MOTIVATION

- **2** General strategy for log-Sobolev inequalities
- 3 QUASI-FACTORIZATION FOR THE RELATIVE ENTROPY

4 Logarithmic Sobolev inequalities

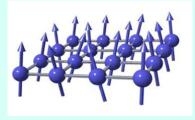
- Heat-bath dynamics with tensor product fixed point
- Heat-bath dynamics in 1D
- Davies dynamics

6 CONCLUSIONS

INTRODUCTION GENERAL STRATEGY QUASI-FACTORIZATION
0000000000 0000000000 00000

Conclusions 0000000

1. Introduction and motivation



OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

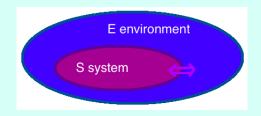


Figure: An open quantum many-body system.

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

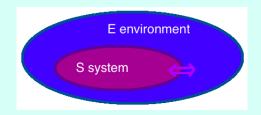


Figure: An open quantum many-body system.

• Dynamics of S is dissipative!

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

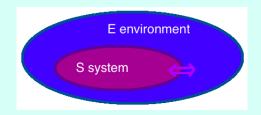


Figure: An open quantum many-body system.

• Dynamics of S is dissipative!

INTRODUCTION		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclu
000000000	000000000000	00000	000000000000000000000000000000000000000	00000
Νοτάτιο	N			

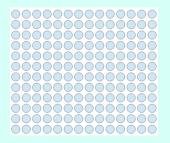


Figure: A quantum spin lattice system.

- Finite lattice $\Lambda \subset \mathbb{Z}^d$.
- To every site $x \in \Lambda$ we associate \mathcal{H}_x (= \mathbb{C}^D).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.
- The set of bounded linear endomorphisms on \mathcal{H}_{Λ} is denoted by $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda}).$
- The set of density matrices is denoted by $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \ge 0 \text{ and } tr[\rho_{\Lambda}] = 1 \}.$

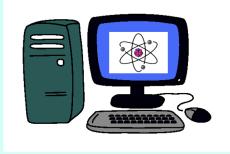
General strateg

Quasi-factorizatio! 00000 DG-SOBOLEV INEQUALITIES

Conclusions

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main motivation:



One problem: Appearance of noise.

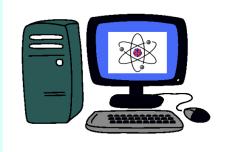
General strateg

Quasi-factoriz 00000 OG-SOBOLEV INEQUALITIES

Conclusions 0000000

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main motivation:



One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative evolutions.

INTRODUCTION GENERAL 0000000000 000000

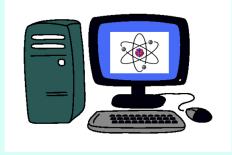
ENERAL STRATEGY

Quasi-factorizatio 00000 og-Sobolev inequalities

Conclusions

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main motivation:



One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative evolutions.

General Strateg

Quasi-factorization

DG-SOBOLEV INEQUALITIES

Conclusions

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

GENERAL STRATEGY

Quasi-factorization

DG-SOBOLEV INEQUALITIES

Conclusions 0000000

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states

• ...

GENERAL STRATEGY

Quasi-factorization 00000 DG-SOBOLEV INEQUALITIES

Conclusions 0000000

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states

• ...

Evolutic	N OF A SYST	EM		
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
INTRODUCTION		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$$

• States to states \Rightarrow Linear, positive and trace preserving.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$ $\hat{\mathcal{T}}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{\mathcal{T}}(\rho \otimes \sigma) = \quad \mathcal{T}(\rho) \otimes \sigma \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution $\hat{\mathcal{T}}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{\mathcal{T}}(\rho \otimes \sigma) = \quad \mathcal{T}(\rho) \otimes \sigma \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

• Completely positive.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

- States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution $\hat{\mathcal{T}}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{\mathcal{T}}(\rho \otimes \sigma) = \quad \mathcal{T}(\rho) \otimes \sigma \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$
- Completely positive.

 ${\mathcal T}$ quantum channel

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

- States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution $\hat{\mathcal{T}}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{\mathcal{T}}(\rho \otimes \sigma) = \quad \mathcal{T}(\rho) \otimes \sigma \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$
- Completely positive.

${\mathcal{T}}$ quantum channel

0000000000	00000000000	00000	000000000000000000000000000000000000000	0000000
INTRODUCTION		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

OPEN SYSTEMS

Open systems \Rightarrow Environment and system interact.

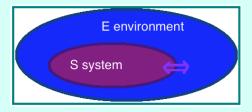


Figure: Environment + System form a closed system.

INTRODUCTION				
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
ODDN GVO				

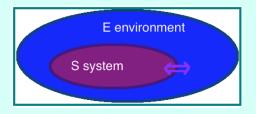


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes |\psi\rangle \langle \psi|_E \mapsto U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^* \mapsto \operatorname{tr}_E[U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^*] = \tilde{\rho}$

ODEN EVEREME				
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
Introduction		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

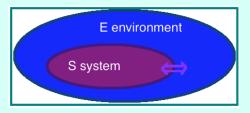


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \operatorname{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

 $egin{array}{rcc} \mathcal{T}: & \mathcal{S}(\mathcal{H}) & o & \mathcal{S}(\mathcal{H}) \ &
ho & \mapsto & ilde
ho & ext{quantum channel} \end{array}$

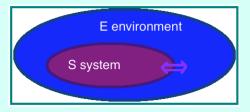


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \operatorname{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

$$\mathcal{T}: \begin{array}{ccc} \mathcal{S}(\mathcal{H}) &
ightarrow \begin{array}{ccc} \mathcal{S}(\mathcal{H}) \\ \rho & \mapsto & ilde{
ho} \end{array}$$
 quantum channel

For every $t \ge 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

ODEN OVO	TEMO			
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
INTRODUCTION		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

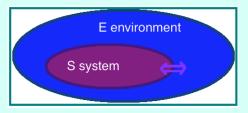


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \mathrm{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

$$\begin{array}{cccc} \mathcal{T}: & \mathcal{S}(\mathcal{H}) & \to & \mathcal{S}(\mathcal{H}) \\ & \rho & \mapsto & \tilde{\rho} \end{array} \quad \text{quantum channel} \end{array}$$

For every $t \ge 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel). Continuous-time description: Markovian approximation.

ODEN EVEREME				
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
Introduction		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

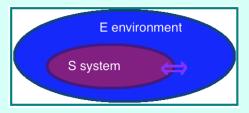


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \mathrm{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

$$\begin{array}{cccc} \mathcal{T}: & \mathcal{S}(\mathcal{H}) & \to & \mathcal{S}(\mathcal{H}) \\ & \rho & \mapsto & \tilde{\rho} \end{array} \quad \text{quantum channel} \end{array}$$

For every $t \ge 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel). Continuous-time description: Markovian approximation.

INTRODUCTION				
00000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$
.
• $\mathcal{T}_0^* = \mathbb{1}$.

0				
00000000000	00000000000	00000	000000000000000000000000000000000000000	0000000
INTRODUCTION				

QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

0				
00000000000	00000000000	00000	000000000000000000000000000000000000000	0000000
INTRODUCTION				

QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$
.
• $\mathcal{T}_0^* = \mathbb{1}$.
 $\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*$.

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

INTRODUCTION				
00000000000	000000000000	00000	000000000000000000000000000000000000000	000000
_				

Dissipative quantum systems

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by σ .

Reversibility

We also assume that the quantum Markov process studied is **reversible**, i.e. it satisfies the **detailed balance condition**:

 $\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}$

for every $f, g \in \mathcal{A}$, in the Heisenberg picture.

D				
00000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
INTRODUCTION				

Dissipative quantum systems

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by σ .

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible, i.e. it satisfies the detailed balance condition:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}$$

for every $f, g \in \mathcal{A}$, in the Heisenberg picture.

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_t := \mathcal{T}_t^*(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} \sigma_{\Lambda}$$

D				
00000000000	000000000000	00000	000000000000000000000000000000000000000	000000
INTRODUCTION				

Dissipative quantum systems

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by σ .

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible, i.e. it satisfies the detailed balance condition:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}$$

for every $f, g \in \mathcal{A}$, in the Heisenberg picture.

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

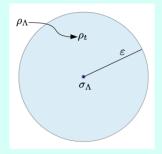
$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

	Log-Sobolev inequalities	Conclusions 0000000

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \le \varepsilon\right\}.$$



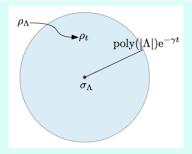
D				
000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
Introduction		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

RAPID MIXING

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Problem

Find examples of rapid mixing!

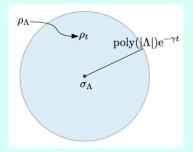
D .				
000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
Introduction		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

RAPID MIXING

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

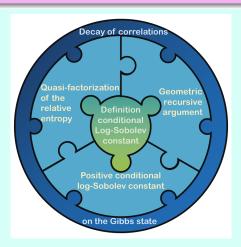
$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Problem

Find examples of rapid mixing!

2. General strategy for log-Sobolev inequalities

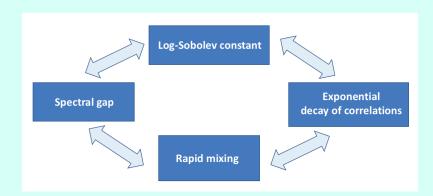


General strategy

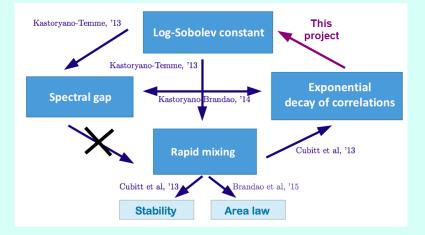
Quasi-factorizati 00000 log-Sobolev inequalities

Conclusions

CLASSICAL SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



INTRODUCTION GENERAL STRATEGY QUASE-FACTORIZATION LOG-SOBOLEV INEQUALITIES CONCLUSIONS OCOOOCOCOCOCOCOCO OCOO LOG-SOBOLEV INEQUALITY (MLSI)

Recall:
$$\rho_t := \mathcal{T}_t^*(\rho).$$

Liouville's equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_\Lambda)].$$

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho).$

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

 $\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho).$

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$

Lower bound for the derivative of $D(\rho_t || \sigma_\Lambda)$ in terms of itself: $2\alpha D(\rho_t || \sigma_\Lambda) \leq -\operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho).$

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$

Lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Quasi-factorizati 00000 .og-Sobolev inequalities

Conclusions

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

 $D(\rho_t || \sigma_{\Lambda}) \le D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}^*_{\Lambda}) t},$

QUASI-FACTORIZATIO

.0G-Sobolev inequalities

Conclusions 0000000

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$$

and with **Pinsker's inequality**, we have:

 $\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$

QUASI-FACTORIZATI

.og-Sobolev inequalities

Conclusions 0000000

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}^*_\Lambda) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

Using the spectral gap (Kastoryano-Temme '13): $\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_{\Lambda}) t}.$

QUASI-FACTORIZATI

.og-Sobolev inequalities

Conclusions

LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}^*_\Lambda) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_\Lambda\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_\Lambda) t}.$$

	General strategy		
0000000000	000000000000	00000	000000000000000000000000000000000000000

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For thermal states, $\sigma_{\min}^{-1} \sim \exp(|\Lambda|)$.

	General Strategy			
0000000000	00000000000	00000	000000000000000000000000000000000000000	0000000

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For thermal states, $\sigma_{\min}^{-1} \sim \exp(|\Lambda|)$.

Log-Sobolev constant \Rightarrow Rapid mixing.

	General strategy			
0000000000	00000000000	00000	000000000000000000000000000000000000000	0000000

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For thermal states, $\sigma_{\min}^{-1} \sim \exp(|\Lambda|)$.

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

	General Strategy			
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For thermal states, $\sigma_{\min}^{-1} \sim \exp(|\Lambda|)$.

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

	General Strategy		
0000000000	000000000000	00000	000000000000000000000000000000000000000

FIRST MAIN OBJECTIVE OF THIS TALK

Develop a strategy to find positive log-Sobolev constants from static properties on the fixed point.

Second main objective of this talk

Apply that strategy to certain dissipative dynamics.

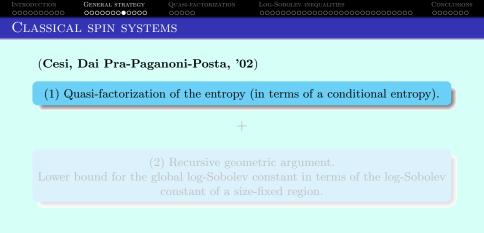
QUASI-FACTORIZATION	
 00000	000000000000000000000000000000000000000

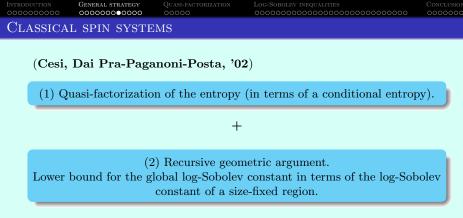
FIRST MAIN OBJECTIVE OF THIS TALK

Develop a strategy to find positive log-Sobolev constants from static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS TALK

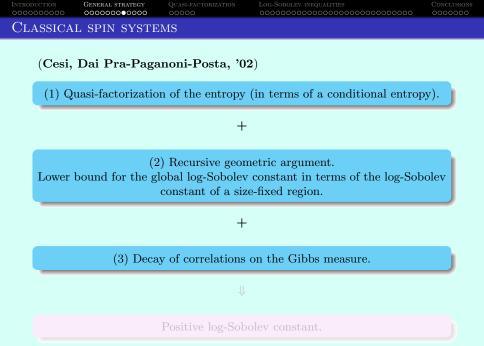
Apply that strategy to certain dissipative dynamics.

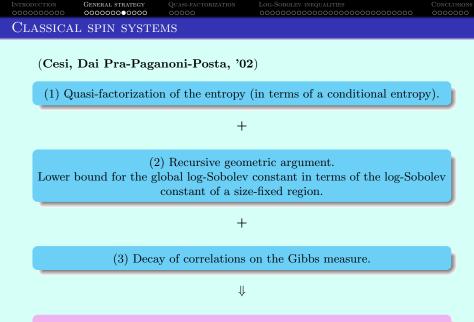




+

(3) Decay of correlations on the Gibbs measure.





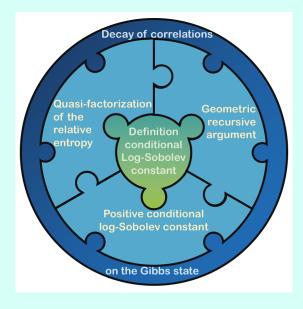
Positive log-Sobolev constant.

Introduction 0000000000

General Strategy

Quasi-factorizatio 00000 Log-Sobolev inequalities 00000000000000000000000000000000 Conclusions

STRATEGY



GENERAL STRATEGY

Quasi-factorization 00000 .og-Sobolev inequalities

Conclusions

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}^*_{Λ} by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Conditional log-Sobolev <u>constant</u>

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state $\sigma_{\Lambda}, A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Quasi-factorizatio: 00000 .og-Sobolev inequalities

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}^*_{Λ} by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state $\sigma_{\Lambda}, A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

General strategy

QUASI-FACTORIZATI

.og-Sobolev inequalities

Conclusions 0000000

CONDITIONAL RELATIVE ENTROPY

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f(\log f - \log \mu(f \mid \mathcal{G})) \mid \mathcal{G}).$$

QUANTUM RELATIVE ENTROPY

The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

 $D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$

General strategy

Quasi-factorizatio

.og-Sobolev inequalities

Conclusions

CONDITIONAL RELATIVE ENTROPY

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f(\log f - \log \mu(f \mid \mathcal{G})) \mid \mathcal{G}).$$

QUANTUM RELATIVE ENTROPY

The quantum relative entropy of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Conditional relative entropy

Given a bipartite space \mathcal{H}_{AB} , we define the conditional relative entropy in A by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$.

 $(C.-Lucia-Pérez García, '18) \rightarrow Axiomatic characterization of the CRE.$

General strategy

Quasi-factorizatio

.og-Sobolev inequalities

Conclusions

CONDITIONAL RELATIVE ENTROPY

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f(\log f - \log \mu(f \mid \mathcal{G})) \mid \mathcal{G}).$$

QUANTUM RELATIVE ENTROPY

The quantum relative entropy of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

CONDITIONAL RELATIVE ENTROPY

Given a bipartite space \mathcal{H}_{AB} , we define the conditional relative entropy in A by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$.

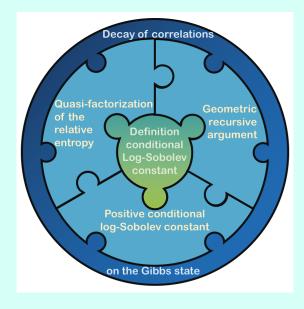
(C.-Lucia-Pérez García, '18) \rightarrow Axiomatic characterization of the CRE.

INTRODUCTION GENERAL STRATEGY QUASI-FACTORIZATION

.0G-SOBOLEV INEQUALITIES

Conclusions

STRATEGY

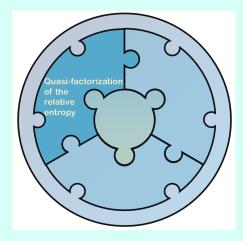


GENERAL STRATEGY

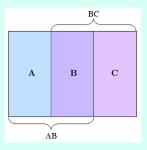
QUASI-FACTORIZATION

Conclusions

3. Quasi-factorization for the relative entropy



The strategy is based on a solution for the following problem.



Problem

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

 $D(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$ where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$?

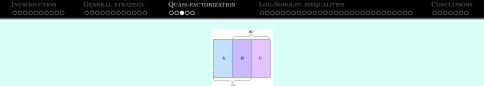


Figure: Choice of indices in $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Result of **quasi-factorization** of the relative entropy, for every $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$:

 $D(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right].$

QUASI-FACTORIZATION FOR THE CRE, (C.-Lucia-Pérez García, '18)

In the previous inequality,

$$\xi(\sigma_{ABC}) = \frac{1}{1 - 2\|H(\sigma_{AC})\|_{\infty}}$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

	QUASI-FACTORIZATION	
	00000	

 $(1 - 2 \|H(\sigma_{AC})\|_{\infty}) D(\rho_{ABC} || \sigma_{ABC}) \leq$ $D_{AB}(\rho_{ABC} || \sigma_{ABC}) + D_{BC}(\rho_{ABC} || \sigma_{ABC}) =$ $= 2D(\rho_{ABC} || \sigma_{ABC}) - D(\rho_{C} || \sigma_{C}) - D(\rho_{A} || \sigma_{A}).$

 \Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}\|\sigma_{ABC}) \ge D(\rho_A\|\sigma_A) + D(\rho_C\|\sigma_C).$

		QUASI-FACTORIZATION		
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

\Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

		QUASI-FACTORIZATION		
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

 \Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

	QUASI-FACTORIZATION	
	00000	

This result is equivalent to (C.-Lucia-Pérez García, '18):

 $(1+2||H(\sigma_{AB})||_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$.

		QUASI-FACTORIZATION		
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

This result is equivalent to (C.-Lucia-Pérez García, '18):

 $(1+2||H(\sigma_{AB})||_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) \, .$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

 $2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

		QUASI-FACTORIZATION		
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

This result is equivalent to (C.-Lucia-Pérez García, '18):

 $\left\| (1+2\|H(\sigma_{AB})\|_{\infty}) D(\rho_{AB}\|\sigma_{AB}) \ge D(\rho_A\|\sigma_A) + D(\rho_B\|\sigma_B) \right\|.$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$.

Due to:

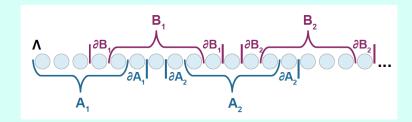
• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

	Log-Sobolev inequalities	
	•••••••••••••••••••••••••••••	

4. Logarithmic Sobolev inequalities



			Log-Sobolev inequalities	
0000000000	000000000000	00000	0 00000000 0000000000000000000000000000	0000000

EXAMPLE 1 (C.-Lucia-Pérez García, '18)

HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT

GENERAL STRATEGY

QUASI-FACTORIZATION

Log-Sobolev inequalities

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (C.-Lucia-Pérez García, '18)

The **heat-bath dynamics**, with tensor product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_{\Lambda}, \ \mathcal{L}_{\Lambda}^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(
ho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes
ho_{x^c} -
ho_{\Lambda}).$$

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (C.-Lucia-Pérez García, '18)

The **heat-bath dynamics**, with tensor product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \; \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathbb{E}^*_x(
ho_\Lambda)=\sigma_\Lambda^{1/2}\sigma_{x^c}^{-1/2}
ho_{x^c}\sigma_{x^c}^{-1/2}\sigma_\Lambda^{1/2}=\sigma_x\otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

General depolarizing semigroup

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (C.-Lucia-Pérez García, '18)

The **heat-bath dynamics**, with tensor product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \; \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

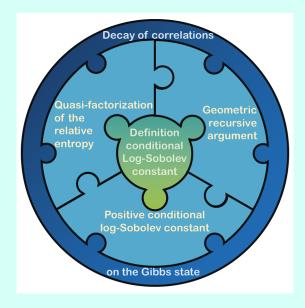
$$\mathbb{E}^*_x(
ho_\Lambda)=\sigma_\Lambda^{1/2}\sigma_{x^c}^{-1/2}
ho_{x^c}\sigma_{x^c}^{-1/2}\sigma_\Lambda^{1/2}=\sigma_x\otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

General depolarizing semigroup

0				
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000
			Log-Sobolev inequalities	



GENERAL STRATEG

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

ASSUMPTION

$$\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x.$$

GENERAL STRATEG

QUASI-FACTORIZATION

Log-Sobolev inequalities

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

CONDITIONAL LOG-SOBOLEV CONSTANT

For $x \in \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} in x by

$$\alpha_{\Lambda}(\mathcal{L}_x^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_x^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_x(\rho_{\Lambda}||\sigma_{\Lambda})}$$

where σ_{Λ} is the fixed point of the evolution, and $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$ is the conditional relative entropy.

GENERAL STRATEG

QUASI-FACTORIZATION 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

General quasi-factorization for σ a tensor product

Let
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}).$$

GENERAL STRATEGY

QUASI-FACTORIZATION 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

LEMMA (Positivity of the conditional log-Sobolev constant)

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \geq \frac{1}{2}.$$

GENERAL STRATEG

QUASI-FACTORIZATION 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

GENERAL STRATEG

QUASI-FACTORIZATION 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

POSITIVE LOG-SOBOLEV CONSTANT

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \frac{1}{2}.$$

Previous results:

- Müller-Hermes et al. '15. Lower bound 1/2 for the usual depolarizing semigroup, with fixed point 1/d.
- **Temme et al. '14.** For this semigroup, the log-Sobolev constant is positive, with a lower bound that is not universal.

GENERAL STRATEG

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

Positive log-Sobolev constant $lpha(\mathcal{L}^*_\Lambda) \geq rac{1}{2}.$

Previous results:

- Müller-Hermes et al. '15. Lower bound 1/2 for the usual depolarizing semigroup, with fixed point 1/d.
- **Temme et al. '14.** For this semigroup, the log-Sobolev constant is positive, with a lower bound that is not universal.

			Log-Sobolev inequalities	
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

EXAMPLE 2, (Bardet-C.-Lucia-Pérez García-Rouzé, '19)

HEAT-BATH DYNAMICS IN 1D

0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

HEAT-BATH DYNAMICS IN 1D

$$\sigma_{\Lambda} = \frac{e^{-\beta H}}{\operatorname{tr}(e^{-\beta H})}$$
 the Gibbs state of a k-local, commuting Hamiltonian H.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_\Lambda, \ \mathcal{L}_\Lambda^* = \sum_{x \in \Lambda} \mathcal{L}_x^*,$$

with

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2},$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

**				
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

HEAT-BATH DYNAMICS IN 1D

$$\sigma_{\Lambda} = \frac{e^{-\beta H}}{\operatorname{tr}(e^{-\beta H})}$$
 the Gibbs state of a k-local, commuting Hamiltonian H.

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \; \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x,$$

with

$$\mathbb{E}_{x}^{*}(\rho_{\Lambda}) = \sigma_{\Lambda}^{1/2} \sigma_{x^{c}}^{-1/2} \rho_{x^{c}} \sigma_{x^{c}}^{-1/2} \sigma_{\Lambda}^{1/2},$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$,

General strategy 000000000000 QUASI-FACTORIZATION

Log-Sobolev inequalities

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS

^

The dynamics: For every $\rho_{\Lambda} \in S_{\Lambda}$,

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \Big(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \Big).$$

GENERAL STRATEGY

QUASI-FACTORIZATION

Log-Sobolev inequalities

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS

^

The dynamics: For every $\rho_{\Lambda} \in S_{\Lambda}$,

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \Big(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \Big).$$

Given $A \subset \Lambda$, can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(A) \, \alpha_{\Lambda}(\mathcal{L}^*_{\Lambda}) \; ?$

General strategy 000000000000 QUASI-FACTORIZATION

Log-Sobolev inequalities

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS

^

The dynamics: For every $\rho_{\Lambda} \in S_{\Lambda}$,

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \Big(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \Big).$$

Given $A \subset \Lambda$, can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(A) \, \alpha_{\Lambda}(\mathcal{L}^*_{A}) \; ?$

If so, we could use it to prove

 $\liminf_{\Lambda \nearrow \mathbb{Z}} \alpha(\mathcal{L}^*_{\Lambda}) > 0.$

General strategy 000000000000 QUASI-FACTORIZATION

Log-Sobolev inequalities

LOG-SOBOLEV INEQUALITY FOR THE HEAT-BATH DYNAMICS

^

The dynamics: For every $\rho_{\Lambda} \in S_{\Lambda}$,

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \Big(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \Big).$$

Given $A \subset \Lambda$, can we prove something like

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(A) \, \alpha_{\Lambda}(\mathcal{L}^*_A) \; ?$$

If so, we could use it to prove

 $\liminf_{\Lambda \nearrow \mathbb{Z}} \alpha(\mathcal{L}^*_{\Lambda}) > 0.$

INTRODUCTION 000000000C GENERAL STRATEG

QUASI-FACTORIZATIO

Log-Sobolev inequalities

Conclusions

HEAT-BATH DYNAMICS IN 1D

CONDITIONAL LOG-SOBOLEV CONSTANT

For $A \subset \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} in A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda} || \sigma_{\Lambda})}$$

where σ_{Λ} is the fixed point of the evolution, and

$$D_A(\rho_\Lambda || \sigma_\Lambda) = D(\rho_\Lambda || \sigma_\Lambda) - D(\rho_{A^c} || \sigma_{A^c}).$$

			Log-Sobolev inequalities	
0000000000	00000000000	00000	000000000000000000000000000000000000000	0000000

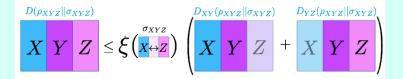
QUASI-FACTORIZATION FOR THE CRE

Let \mathcal{H}_{XYZ} and $\rho_{XYZ}, \sigma_{XYZ} \in \mathcal{S}_{XYZ}$. The following holds

 $D(\rho_{XYZ}||\sigma_{XYZ}) \le \xi(\sigma_{XZ}) \left[D_{XY}(\rho_{XYZ}||\sigma_{XYZ}) + D_{YZ}(\rho_{XYZ}||\sigma_{XYZ}) \right],$

where

$$\xi(\sigma_{XZ}) = \frac{1}{1 - 2 \left\| \sigma_X^{-1/2} \otimes \sigma_Z^{-1/2} \sigma_{XZ} \sigma_X^{-1/2} \otimes \sigma_Z^{-1/2} - \mathbb{1}_{XZ} \right\|_{\infty}}.$$

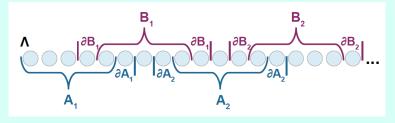


General strategy 00000000000000 QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



$$A = \bigcup_{i=1}^{n} A_i$$
 and $B = \bigcup_{j=1}^{n} B_j$

 $D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \frac{1}{1-2\|h(\sigma_{A^cB^c})\|_{\infty}} \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda})\right],$ $h(\sigma_{A^cB^c}) := \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}.$

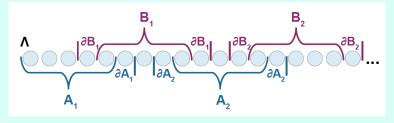
GENERAL STRATEGY

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions

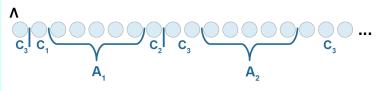
QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



$$A = \bigcup_{i=1}^{n} A_i$$
 and $B = \bigcup_{j=1}^{n} B_j$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \frac{1}{1-2\|h(\sigma_{A^cB^c})\|_{\infty}} \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda})\right],$$
$$h(\sigma_{A^cB^c}) := \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}.$$

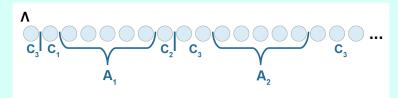
	General strategy 0000000000000	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions 0000000		
SUPECIA OF THE PROOF						



$$D_A(
ho_\Lambda || \sigma_\Lambda) \le \sum_{i=1}^n D_{A_i}(
ho_\Lambda || \sigma_\Lambda)$$

 σ_{Λ} is a QMC between $A_1 \leftrightarrow \partial A_1 \leftrightarrow \Lambda \setminus (A_1 \cup \partial A_1)$

 $\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A_1(\partial a_1)_i^L} \otimes \sigma_{(\partial a_1)_i^R \Lambda \setminus (A_1 \cup \partial A_1)}$



$$D_A(
ho_\Lambda||\sigma_\Lambda) \leq \sum_{i=1}^n D_{A_i}(
ho_\Lambda||\sigma_\Lambda)$$

 σ_{Λ} is a QMC between $A_1 \leftrightarrow \partial A_1 \leftrightarrow \Lambda \setminus (A_1 \cup \partial A_1)$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A_1(\partial a_1)_i^L} \otimes \sigma_{(\partial a_1)_i^R \Lambda \setminus (A_1 \cup \partial A_1)}$$

General strateg

QUASI-FACTORIZATION 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH DYNAMICS IN 1D

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\|h(\sigma_{AB})\|_{\infty} = \left\|\sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}$$

In particular, Gibbs states at high-enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

 $D_B(\rho_\Lambda || \sigma_\Lambda) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_\Lambda || \sigma_\Lambda) + D_{B_2}(\rho_\Lambda || \sigma_\Lambda) \right).$

In particular, tensor products satisfy this (with f = 1).

General strateg

QUASI-FACTORIZATION 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH DYNAMICS IN 1D

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\|h(\sigma_{AB})\|_{\infty} = \left\|\sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}$$

In particular, Gibbs states at high-enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

 $D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$

In particular, tensor products satisfy this (with f = 1).

GENERAL STRATEG

QUASI-FACTORIZATIO 00000 Log-Sobolev inequalities

Conclusions 0000000

HEAT-BATH DYNAMICS IN 1D

STEP 3

Using locality of the Lindbladian

$$\mathcal{L}_A^* + \mathcal{L}_B^* = \mathcal{L}_{A \cup B}^* + \mathcal{L}_{A \cap B}^*$$

and quasi-factorization:

Assumption
$$1 \Rightarrow \alpha(\mathcal{L}^*_{\Lambda}) \ge \tilde{K} \min_{i \in \{1, \dots, n\}} \left\{ \alpha_{\Lambda}(\mathcal{L}^*_{A_i}), \alpha_{\Lambda}(\mathcal{L}^*_{B_i}) \right\}$$

GENERAL STRATEGY

Quasi-factorization 00000 Log-Sobolev inequalities

Conclusions

HEAT-BATH DYNAMICS IN 1D

STEP 4

Assumption $2 \Rightarrow \alpha_{\Lambda}(\mathcal{L}_{A_i}^*) \ge g(\sigma_{A_i\partial}) > 0.$

GENERAL STRATEG

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions

HEAT-BATH DYNAMICS IN 1D

THEOREM (Bardet-C.-Lucia-Pérez García-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

Previous results:

• Kastoryano-Brandao, '15. In 1D, for a k-local commuting Hamiltonian, the heat-bath dynamics is always gapped.

GENERAL STRATEG

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions

HEAT-BATH DYNAMICS IN 1D

THEOREM (Bardet-C.-Lucia-Pérez García-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

Previous results:

• Kastoryano-Brandao, '15. In 1D, for a k-local commuting Hamiltonian, the heat-bath dynamics is always gapped.

			Log-Sobolev inequalities	
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000

EXAMPLE 3 (Bardet-C.-Rouzé, '20)

DAVIES DYNAMICS

D				
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:

$$\mathcal{L}^{\beta}_{\Lambda}(X) = i[H_{\Lambda}, X] + \sum_{k \in \Lambda} \mathcal{L}^{\beta}_{k}(X) \,,$$

where

$$\mathcal{L}_{k}^{\beta}(X) = \sum_{\omega,\alpha} \chi_{\alpha,k}^{\beta}(\omega) \left(S_{\alpha,k}^{*}(\omega) X S_{\alpha,k}(\omega) - \frac{1}{2} \left\{ S_{\alpha,k}^{*}(\omega) S_{\alpha,k}(\omega), X \right\} \right) \,.$$

Important property: Given $A \subseteq \Lambda$,

$$\mathcal{E}^{\beta}_{A}(X) := \mathcal{E}(X|\mathcal{N}_{A}) = \lim_{t \to \infty} \mathrm{e}^{t\mathcal{L}^{\beta}_{A}}(X).$$

is a conditional expectation onto the subalgebra of fixed points of \mathcal{L}_A^β .

DAVIES D	YNAMICS			
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

Generator

The generator of the Davies dynamics is of the following form:

$$\mathcal{L}^{\beta}_{\Lambda}(X) = i[H_{\Lambda}, X] + \sum_{k \in \Lambda} \mathcal{L}^{\beta}_{k}(X) \,,$$

where

$$\mathcal{L}_{k}^{\beta}(X) = \sum_{\omega,\alpha} \chi_{\alpha,k}^{\beta}(\omega) \left(S_{\alpha,k}^{*}(\omega) X S_{\alpha,k}(\omega) - \frac{1}{2} \left\{ S_{\alpha,k}^{*}(\omega) S_{\alpha,k}(\omega), X \right\} \right) \,.$$

Important property: Given $A \subseteq \Lambda$,

$$\mathcal{E}^{\beta}_{A}(X) := \mathcal{E}(X|\mathcal{N}_{A}) = \lim_{t \to \infty} \mathrm{e}^{t\mathcal{L}^{\beta}_{A}}(X).$$

is a conditional expectation onto the subalgebra of fixed points of \mathcal{L}_A^β .

Jeneral strategy

Quasi-factorization

Log-Sobolev inequalities

Conclusions

DAVIES DYNAMICS

CONDITIONAL LOG-SOBOLEV CONSTANT

For $A \subset \Lambda$, we define the **conditional log-Sobolev constant** of $\mathcal{L}^{\beta}_{\Lambda}$ in A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{\beta}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \Big[\mathcal{L}_{A}^{\beta}(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \Big]}{2D_{A}^{\beta}(\rho_{\Lambda} || \sigma_{\Lambda})}$$

where σ_{Λ} is the fixed point of the global evolution (the Gibbs state of a local commuting Hamiltonian), and

$$D_A^{\beta}(\rho_{\Lambda}||\sigma_{\Lambda}) = D(\rho_{\Lambda}||(\mathcal{E}_A^{\beta})^*(\rho_{\Lambda})).$$

DAVIES DYNAMICS

EXPONENTIAL DECAY OF CORRELATIONS

If $\sigma \in \mathcal{S}(\mathcal{H})$ is a fixed point of the evolution and $f, g \in \mathcal{A}(\mathcal{H})$ such that $f \in \mathcal{A}_A$ and $g \in \mathcal{A}_B$, then

 $\left|\operatorname{tr}[\sigma fg] - \operatorname{tr}[\sigma f]\operatorname{tr}[\sigma g]\right| \le c \|f\|_{\infty} \|g\|_{\infty} e^{-d(A \setminus B, B \setminus A)}.$

Spectral gap	Log-Sobolev constant
Change $\left\ \cdot\right\ _{\infty} \mapsto \left\ \cdot\right\ _{2,\sigma}$	Change $\left\ \cdot\right\ _{\infty} \mapsto \left\ \cdot\right\ _{1,\sigma}$
Conditional version	Conditional version
	Assume it for every fixed point

General strategy 0000000000000 Quasi-factorization 00000 Log-Sobolev inequalities

Conclusions 0000000

DAVIES DYNAMICS

QUASI-FACTORIZATION (Bardet-C.-Rouzé, '20)

Assume that there exists a constant $0 < c < \frac{1}{2(4 + \sqrt{2})}$ such that there is exponential conditional \mathbb{L}_1 -clustering of correlations with

corresponding constant c. Then, the following inequality holds for every $\rho \in \mathcal{S}(\mathcal{H})$:

$$D_{AB}^{\beta}(\rho||\sigma) \leq \frac{1}{1 - 2(4 + \sqrt{2})c} \left(D_A^{\beta}(\rho||\sigma) + D_B^{\beta}(\rho||\sigma) \right),$$

for every $\sigma = \mathcal{E}_{AB}^*(\sigma)$.

GENERAL STRATEGY

QUASI-FACTORIZATION

Log-Sobolev inequalities

Conclusions 0000000

Geometric recursive argument

$$\alpha\left(\mathcal{L}_{\Lambda}^{\beta*}\right) \geq \Psi(L_0) \min_{R \in \mathcal{R}_{L_0}} \alpha_{\Lambda}\left(\mathcal{L}_{R}^{\beta^*}\right) \,,$$

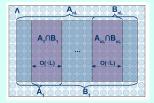


Figure: Splitting in A_n and B_n .

Introduction

GENERAL STRATEGY

Quasi-factorization

Log-Sobolev inequalities

Conclusions 0000000

Conjecture

Given $\Lambda \subset \subset \mathbb{Z}^d$, $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ the Lindbladian associated to the Davies dynamics and a finite lattice and $A \subset \Lambda$, we have

$$\alpha_{\Lambda}\left(\mathcal{L}_{A}^{\beta*}\right) \geq \psi(|A|) > 0,$$

where $\psi(|A|)$ might depend on Λ , but is independent of its size.

Uses Junge et al. '19.

ENERAL STRATEGY

Quasi-factorization 00000 Log-Sobolev inequalities

DAVIES DYNAMICS

THEOREM (Bardet-C.-Rouzé, '20)

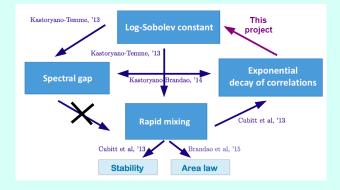
Under exponential conditional \mathbb{L}_1 -clustering of correlations, and assuming that the previous conjecture holds, for a k-local commuting Hamiltonian, the Davies dynamics has a positive log-Sobolev constant.

Previous results:

• Kastoryano-Brandao, '15. Under strong clustering, for a *k*-local commuting Hamiltonian, the Davies dynamics is gapped.

				Conclusions
0000000000	000000000000	00000	000000000000000000000000000000000000000	000000

5. Conclusions



INTRODUCTION 0000000000	General strategy 0000000000000	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions 0000000
Open pro	OBLEMS			

PROBLEM 1

Does the heat-bath result hold for larger dimension?

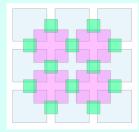
Problem 2

Is there a better definition for conditional relative entropy?

PROBLEM 3

Can we do something similar for different dynamics?

- 2 possible approaches:
 - $D(\rho_{ABC} || \sigma_{ABC}) \leq \xi(\sigma_{ABC}) \left(D_A + D_B + D_C \right) \left(\rho_{ABC} || \sigma_{ABC} \right)$



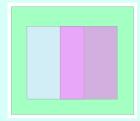
General strategy 0000000000000 QUASI-FACTORIZATION

OG-SOBOLEV INEQUALITIES

Conclusions

EXTENSION OF LOG-SOBOLEV FOR HEAT-BATH TO LARGER DIMENSIONS

• $D_{AB}(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{ABC}) \left(D_A(\rho_{ABC}||\sigma_{ABC}) + D_B(\rho_{ABC}||\sigma_{ABC}) \right)$



OTHER A	PPROACHES			
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

• In (Bardet-C.-Rouzé, '20), we deal with approximate tensorization, namely:

$$D_{AB}^{\beta}(\rho||\sigma) \leq c \left(D_{A}^{\beta}(\rho||\sigma) + D_{B}^{\beta}(\rho||\sigma) \right) + d$$

• In an ongoing project (C.-Rouzé-Stilck França, '20), we consider instead global approximate tensorization:

$$D_A^{\beta}(\rho||\sigma) \le c \sum_{x \in A} D_x^{\beta}(\rho||\sigma)$$

OTHER A	PPROACHES			
0000000000	000000000000	00000	000000000000000000000000000000000000000	0000000
		QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

• In (Bardet-C.-Rouzé, '20), we deal with approximate tensorization, namely:

$$D_{AB}^{\beta}(\rho||\sigma) \le c \left(D_{A}^{\beta}(\rho||\sigma) + D_{B}^{\beta}(\rho||\sigma) \right) + d$$

• In an ongoing project (C.-Rouzé-Stilck França, '20), we consider instead global approximate tensorization:

$$D_A^{\beta}(\rho||\sigma) \le c \sum_{x \in A} D_x^{\beta}(\rho||\sigma)$$

REFERENC		00000		
Introduction	General strategy	QUASI-FACTORIZATION	Log-Sobolev inequalities	Conclusions

- A. Capel, A. Lucia, D. Pérez-García. Superadditivity of quantum relative entropy for general states IEEE Transactions on Information Theory, 64 (7), 4758-4765, 2018.
 A. Capel, A. Lucia, D. Pérez-García. Quantum conditional relative entropy and quasi-factorization of the relative entropy Journal of Physics A: Mathematical and Theoretical, 51, 484001, 2018.
- I. Bardet, A. Capel, A. Lucia, D. Pérez-García and C. Rouzé On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems Preprint, arXiv: 1908.09004, 2019.
- I. Bardet, A. Capel and C. Rouzé Approximate tensorization of the relative entropy for noncommuting conditional expectations Preprint, arXiv: 2001.07981, 2020.

