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Introduction and motivation Mixing time and log-Sobolev inequalities Main result

Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Quantum Markov semigroups

Λ ⊂ Zd a finite lattice.

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup {T ∗t }t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.

For ρΛ ∈ SΛ, L∗Λ(ρΛ) = −i[HΛ, ρΛ] +
∑
k∈Λ

L∗k(ρΛ) .
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Rapid mixing

Λ ⊂ Zd a finite lattice.

Notation: ρt := T ∗t (ρ) and σΛ the unique fixed-point.

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified log-Sobolev inequality (MLSI)

Recall: ρt := T ∗t (ρ).

Master equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:
∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Modified logarithmic Sobolev inequality

Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

For thermal states, σmin ∼ 1/exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Quantum spin systems

Exp. decay of correlations:
sup

‖OA‖=‖OB‖=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]| ≤ K e−γd(A,B) .
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Objective

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .
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Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ =
∑
k∈Λ

L∗k is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ ξ(σABC) [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] ,

for ρΛ, σΛ ∈ D(HABC), where ξ(σABC) depends only on σABC and measures how far
σAC is from σA ⊗ σC .
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Example: Tensor product fixed point

(C.-Lucia-Pérez Garćıa ’18) L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ) heat-bath

Dx(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρxc‖σxc)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) . ⇒ α(L∗Λ) ≥ 1/2.
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Quasi-factorization of the relative entropy
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Main result

MLSI for 1D Davies generators, (Bardet-C.-Gao-Lucia-Pérez Garćıa-Rouzé, ’21)

Let L∗Λ be a Davies generator with unique fixed point σΛ given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, L∗Λ satisfies a positive MLSI α(L∗Λ) = Ω(ln(|Λ|)−1).

Rapid mixing:

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

For α(L∗Λ) a MLSI constant:

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗
Λ) t.

Rapid mixing

In the setting above, L∗Λ has rapid mixing.
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Proof: Quasi-factorization + Geometric recursion

σ ≡ σΛ = e−βHΛ

tr(e−βHΛ )
Gibbs state of local, comm., t-i Ham.

Cond. relative entropies: DX(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρXc‖σXc ) ,

D(ρΛ‖EX(ρΛ)) with EX(·) := lim
n→∞

(
σ

1/2
Λ σ

−1/2
Xc trX [ · ]σ−1/2

Xc σ
1/2
Λ

)n
.

Quasi-factorization + Decay of correlations

Let (∪iAi) ∪ (∪iBi) = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ K
∑
i

[
DAi (ρΛ||σΛ) +DBi (ρΛ||σΛ)

]
≤ K̃

∑
x∈Λ

[D(ρΛ||Ex(ρΛ))] ,

where K is constant as long as # segments = O(|Λ|/ ln |Λ|) and K̃ = O(log |Λ|).
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Proof: Positive conditional MLSI

MLSI and conditional MLSI

α(L∗Λ) = inf
ρΛ∈SΛ

− tr
[
L∗Λ(ρΛ)(log ρΛ − log σΛ)

]
2D(ρΛ‖σΛ)

, αx(L∗Λ) = inf
ρΛ∈SΛ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ‖Ex(ρΛ))

Therefore, we have

α(L∗Λ) ≥ K̃−1 min
x∈Λ
{αx(L∗Λ)} .

for K̃−1 = Ω(ln |Λ|−1).

Positive conditional MLSI

The conditional MLSI of the local generators is positive:

αx(L∗Λ) > 0 .

Conclusion

For L∗Λ, there is a positive MLSI constant α(L∗Λ) = Ω(ln |Λ|−1).
Therefore, L∗Λ has rapid mixing.
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Consequences

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every β > 0.

Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |Λ|).

Corollary for SPT phases

For every β > 0, 1D SPT phases thermalize in time logarithmic in |Λ|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ⊗X ⊗ Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.
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Conclusions

In this talk:

Introduction of MLSI as a tool to prove rapid mixing.

Use of results of quasi-factorization and decay of correlations to prove MLSI.

Proof of MLSI for a relevant physical system in 1D.

Open problems:

Can the MLSI be independent of the system size?

Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!
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