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OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal

equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

= Open quantum many-body systems.

o Dynamics of S is dissipative!

o The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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A quantum Markov semigroup is a 1-parameter continuous semigroup {7;"},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
o Ty o TS = Tihs.
o 7y =1.

d * * * * *
aﬁ :7; OLA:LAOﬂ.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

a

dt

For pa € Sa, Li(pa) = —i[Ha, pal + > Li(pa)
keA

* HET * *
7; =e A@EA: 7; |t:0~
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RAPID MIXING

A C Z% a finite lattice.

Notation: p; := 7;"(p) and oa the unique fixed-point.

t—o0

pr == pr =T (pa) = €3 (pa) =5 o

RAPID MIXING

We say that £} satisfies rapid mixing if

sup [|pe — oall; < poly(JA)e™ "
PAESA

p.
A_\‘ﬂt

r//jfgﬂAﬁF“

oA
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MODIFIED LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Master equation:
Otpe = Lx(pt)-

Relative entropy of p; and ox:

D(pt|loa) = tr[p(log pt — log aa)].

Differentiating:
9:D(pellon) = tr[Lh(pe)(log pr — log aa)].

Lower bound for the derivative of D(pt||oa) in terms of itself:

2aD(pil|on) < — tr[Li (pe) (log pr — log o).
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A/‘Zd

D(ptlloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:
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For thermal states, omin ~ 1/exp(|A]).

MLSI = Rapid mixing. )

Using the spectral gap (Kastoryano-Temme ’13):

llpe = oally < V/1/0min e X R,
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QUANTUM SPIN SYSTEMS

Kastoryano-Temme, 13 This
project

Kastoryano-Temme, '13

Cubitt et al, "13

e~BHa
Cubitt et al, '13/ \’3:‘;::\&::” et al, ’15 Hy:=Y ®() oa= Tr (e=PHa)
jea

Stability Area law

A (pp) '2F oa

Exp. decay of correlations:

sup [tr[04 ® Op(0ap — 04 @ oB)]| < K e 1A
I0all=lOBlI=1
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What do we want to prove?

lim inf a(£3) > W(|A]) > 0.
A 74

A

Can we prove something like

a(LR) = V([A]) a(£h) > 07

No, but we can prove

a(£}) = V(|A]) an(Li) >0 .
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MLSIT CONSTANT
The MLSI constant of £} = > L, is defined by

keA
* .o —tr[L3(pa)(log pa —logon)]
Ly) = f
olla) = Jof, 2D (pallon)
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MLSI CONSTANT

The MLSI constant of £} = > L, is defined by

keA
* .o —tr[L3(pa)(log pa —logon)]
Ly) = f
olla) = Jof, 2D (pallon)

.

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

an(Ly) = inf —tr[L% (pa)(log pa — logoa)]

PAESA 2D a(palloa)
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STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

on the Gibbs state
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ORIZATION OF THE RELATIVE ENTROPY

A B C

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oapc) [Das(palloa) + Deo(palloa)]

for pr,on € D(Hapc), where £(oaBc) depends only on 04pc and measures how far
oac i1s from o4 ® oc.
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ExXAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia '18)  Li(pa) = Z (02 ® pze — pA) heat-bath
TEA
Dz (palloa) := D(palloa) = D(pac|loe)

O\ = ® Oz,

TEA
D(palloa) <
-
A
< S Da(pallon)
zEA
sy Z —tr[L (pa)(log pa — logoa)]
2aa (L)

IA

IA

TEA

1 *
S S0 P - —
= 2inf an (L) ZEZA tr[L3 (pa)(log pa — log o)

= Siaran(es)
2jal ealte)

—tr[L3(pa)(log pa — logon)])

K4
IN

(= tr[La(pa)(log pa —logoa)]) . = a(L3) 2 1/2.
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QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dag(palloa) + Dac(palloa)] +d

Classical quasi-factorization C = Strong subadditivity

Ent(f) < cpu[Ent(f|F1) + Ent(f| )] S(pasc) +5(pp) < S(pas) + S(psc)

D= D(p|| EXM(p))

General superadditivity By, 0 By, = By, 0 By, = B!
- Dy < D1+ Dy

~ CLP1®'

Pinching onto
- different bases

L(X) = Fa(X)
+E5(X) - 2X

DE(pallon) = Dipa |l Ex(pa))

2 assumptions,

D < ¢[Dy + Do

Local 0 Hamiltonian, high
‘Generallzed depolarizing 1D Heat-bath generator, 2 t;:ll;asslcal
L7(pa) = 02 ® pae — pa 2 assumptions Nearet




MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £} be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in

1D. Then, L} satisfies a positive MLST a(L3) = Q(In(|A]) ™).




MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £} be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, L} satisfies a positive MLST a(L3) = Q(In(|A]) ™).

Rapid mixing:

sup ||p: — oall; < poly(|A])e™".
PAESA



MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let L} be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in

1D. Then, L} satisfies a positive MLST a(L3) = Q(In(|A]) ™).

Rapid mixing:

sup |lpt — oall; < poly(|Al)e
PAESA

For a(L}) a MLSI constant:

llpr — oally < v/210g(1/mm) e~ *FA)*




MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let L} be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, L} satisfies a positive MLST a(L3) = Q(In(|A]) ™).

Rapid mixing:

sup |lpt — oall; < poly(|Al)e
PAESA

For a(L}) a MLSI constant:

ot — oally < /210g(1/omin) e~ <At

In the setting above, £} has rapid mixing.




MAIN RESULT
[¢] lele]e}

PROOF: QUASI-FACTORIZATION + GEOMETRIC RECURSION

_ _ e BHA : .
og=0p = 7tr(e_5HA) Gibbs state of local, comm., t-i Ham.
Cond. relative entropies: Dx (pa|loa) :== D(pallon) — D(pxcl|loxe) ,

D(pallEx (p)) with Ex ()= lim (03203t trx[-]oxt/?0)/*)"

QUASI-FACTORIZATION + DECAY OF CORRELATIONS
Let (U;4;) U (U;B;) = A C Z and pp,op € Sp- The following holds

D(palloa) <KD [Da,(palloa) + D, (palloa)]

i

<KD [D(pallEx(pn))]
TEA

where K is constant as long as # segments = O(JA|/In|A]) and K = O(log|A]). y

b) Da,(ollo) Da,(pllo)

d) CPRPRPRPRPRPRRRER]

9000@9090)000E59099) Z D (pllE=(p))

a) A
90900900000000000
D(pllo) %

) 9999s905090005000
—

+

oB a4 ope* o4
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MLSI AND CONDITIONAL MLSI

—tr[£3 (pa)(log pa — logop)]

—tr|L} It —1
a(L}) = inf *[£3(pr)(10g pa —logon)] ,ag(LR) = in
PAESA 2D(pallon) PAESA 2D(pal|Ez(pa))

Therefore, we have

a(Ly) > K min {a(L3)}-

for K~ = Q(In]A|7Y).
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—tr| L% 1 —1 —tr[LF 1 — 1
a([’x) = i I‘[ A(pA)( Og PA OgUA)] : az([r?\) — I‘[ z(pA)(ngA OgO'A)]
PAESA 2D(pallon) PAESA 2D(pal|Ez(pa))

Therefore, we have _
a(ly) > K" mi}\l {az(LA)}.

[AS
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MLSI AND CONDITIONAL MLSI

—tr| L% 1 —1 —tr[LF 1 — 1
a([’x) = i I‘[ A(pA)( Og PA OgO'A)] : az([r?\) — o I‘[ z(pA)(ngA OgO'A)]
PAESA 2D(pallon) PAESA 2D(pal|Ez(pa))

Therefore, we have _
alLy) > KT min {az (L)} -

[AS

for K~ = Q(In|A|7Y).

POSITIVE CONDITIONAL MLSI

The conditional MLSI of the local generators is positive:
az(Ly) > 0.

CONCLUSION

For £}, there is a positive MLSI constant a(£3) = Q(In |A|71).
Therefore, £} has rapid mixing.
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Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every S > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

e Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log|Al).

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ® X ® Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.
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