Rapid thermalization of spin chain commuting Hamiltonians

Ángela Capel (Universität Tübingen)

Joint work with: Ivan Bardet (Inria, Paris) Li Gao (U. Houston) Angelo Lucia (U. Complutense Madrid) David Pérez-García (U. Complutense Madrid) Cambyse Rouzé (T. U. München)

arXiv: 2112.00593 & 2112.00601

DPG Spring Meeting 2022, 21 March 2022

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

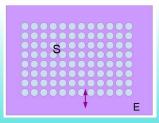
No experiment can be executed at zero temperature or be completely shielded from noise.

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

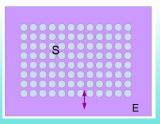


Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



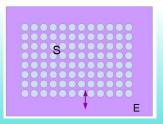
- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

 $\Lambda \subset \mathbb{Z}^d$ a finite lattice.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = \mathbb{1}$.

 $\Lambda \subset \mathbb{Z}^d$ a finite lattice.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

 $\Lambda \subset \mathbb{Z}^d$ a finite lattice.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

 $\Lambda \subset \mathbb{Z}^d$ a finite lattice.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator $\mathcal{L}^{*}_{\Lambda}$ of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

For $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, $\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = -i[H_{\Lambda}, \rho_{\Lambda}] + \sum L^*_k(\rho_{\Lambda})$.

▲@▶▲글▶▲글▶ 글 ∽의

 $\Lambda \subset \mathbb{Z}^d$ a finite lattice.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

For $\rho_\Lambda \in \mathcal{S}_\Lambda$, $\mathcal{L}_\Lambda^*(\rho_\Lambda) = -i[H_\Lambda, \rho_\Lambda] + \sum_{k \in \Lambda} L_k^*(\rho_\Lambda)$.

RAPID MIXING

 $\Lambda \subset \mathbb{Z}^d$ a finite lattice.

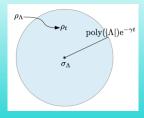
<u>Notation</u>: $\rho_t := \mathcal{T}_t^*(\rho)$ and σ_{Λ} the unique fixed-point.

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda}\in\mathcal{S}_{\Lambda}}\left\|\rho_{t}-\sigma_{\Lambda}\right\|_{1}\leq \operatorname{poly}(|\Lambda|)e^{-\gamma t}.$$



Recall: $\rho_t := \mathcal{T}_t^*(\rho).$

Master equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

Relative entropy of ρ_t and σ_{Λ} :

 $D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

 $\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$

Lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

 $2lpha D(
ho_t || \sigma_\Lambda) \leq -\operatorname{tr}[\mathcal{L}^*_\Lambda(
ho_t)(\log
ho_t - \log \sigma_\Lambda)].$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$

Lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

 $2\alpha D(\rho_t || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

 $D(\rho_t || \sigma_{\Lambda}) \le D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha (\mathcal{L}_{\Lambda}^*) t},$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

 $\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

 $MLSI \Rightarrow Rapid mixing.$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13)

$$\left\| \rho_t - \sigma_\Lambda \right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_\Lambda^*) \, t}.$$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

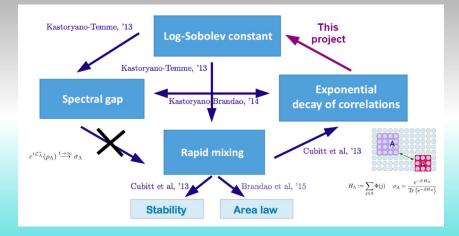
$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}^*_{\Lambda}) \, t}.$$

INTRODUCTION AND MOTIVATION

MIXING TIME AND LOG-SOBOLEV INEQUALITIES

Main result 00000

QUANTUM SPIN SYSTEMS



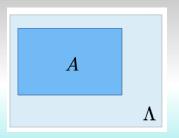
Exp. decay of correlations:

 $\sup_{\|O_A\|=\|O_B\|=1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]| \le K \operatorname{e}^{-\gamma d(A,B)}$

OBJECTIVE

What do we want to prove?

 $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|\Lambda|) > 0.$



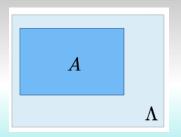
Can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|A|) \ \alpha(\mathcal{L}^*_{\Lambda}) > 0 \ ?$

OBJECTIVE

What do we want to prove?

 $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|\Lambda|) > 0.$



Can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}^*_{\Lambda}) > 0 \ ?$

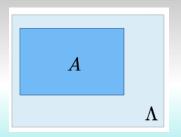
No, but we can prove

 $\alpha(\mathcal{L}^*_\Lambda) \geq \Psi(|A|) \ lpha_\Lambda(\mathcal{L}^*_A) > 0 \ .$

OBJECTIVE

What do we want to prove?

 $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|\Lambda|) > 0.$



Can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}^*_{\Lambda}) > 0 \ ?$

No, but we can prove

 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}^*_{A}) > 0 \ .$

Mixing time and log-Sobolev inequalities

CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The **MLSI constant** of
$$\mathcal{L}^*_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}^*_k$$
 is defined by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Mixing time and log-Sobolev inequalities

CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The **MLSI constant** of
$$\mathcal{L}_{\Lambda}^* = \sum_{k \in \Lambda} \mathcal{L}_k^*$$
 is defined by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

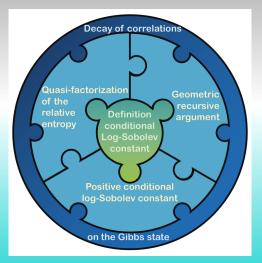
$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

000	

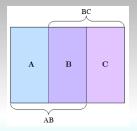
MIXING TIME AND LOG-SOBOLEV INEQUALITIES

STRATEGY

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

 $D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right] \,,$

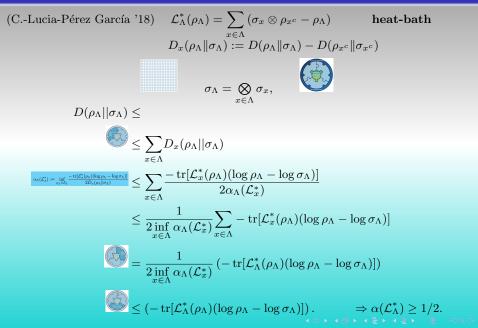
for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{D}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.

INTRODUCTION AND MOTIVATION

Mixing time and log-Sobolev inequalities 0000000000

Main result 00000

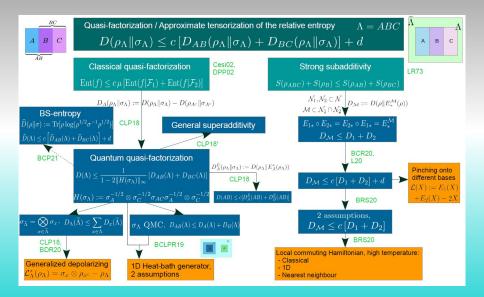
EXAMPLE: TENSOR PRODUCT FIXED POINT



Mixing time and log-Sobolev inequalities 00000000

Main result 00000

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



Let \mathcal{L}^*_{Λ} be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, \mathcal{L}^*_{Λ} satisfies a positive MLSI $\alpha(\mathcal{L}^*_{\Lambda}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

Let \mathcal{L}^*_{Λ} be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, \mathcal{L}^*_{Λ} satisfies a positive MLSI $\alpha(\mathcal{L}^*_{\Lambda}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a **MLSI constant**:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}.$$

▲□▶ ▲圖▶ ▲重▶ ▲重▶ 三 - のへぐ

Let \mathcal{L}^*_{Λ} be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, \mathcal{L}^*_{Λ} satisfies a positive MLSI $\alpha(\mathcal{L}^*_{\Lambda}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a **MLSI constant**:

$$\left\|\rho_t - \sigma_\Lambda\right\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_\Lambda^*) t}$$

RAPID MIXING

In the setting above, \mathcal{L}^*_{Λ} has rapid mixing.

Let \mathcal{L}^*_{Λ} be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, \mathcal{L}^*_{Λ} satisfies a positive MLSI $\alpha(\mathcal{L}^*_{\Lambda}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a **MLSI constant**:

$$\left\|\rho_t - \sigma_\Lambda\right\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_\Lambda^*)t}$$

RAPID MIXING

In the setting above, \mathcal{L}^*_{Λ} has rapid mixing.

PROOF: QUASI-FACTORIZATION + GEOMETRIC RECURSION

$$\sigma \equiv \sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$$
 Gibbs state of local, comm., t-i Ham.

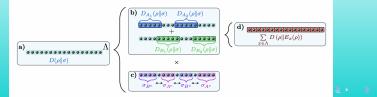
Cond. relative entropies: $D_X(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| \sigma_\Lambda) - D(\rho_{X^c} \| \sigma_{X^c})$, $D(\rho_\Lambda \| E_X(\rho_\Lambda))$ with $E_X(\cdot) := \lim_{n \to \infty} \left(\sigma_\Lambda^{1/2} \sigma_{X^c}^{-1/2} \operatorname{tr}_X[\cdot] \sigma_{X^c}^{-1/2} \sigma_\Lambda^{1/2} \right)^n$.

QUASI-FACTORIZATION + DECAY OF CORRELATIONS

Let $(\cup_i A_i) \cup (\cup_i B_i) = \Lambda \subset \mathbb{Z}$ and $\rho_\Lambda, \sigma_\Lambda \in \mathcal{S}_\Lambda$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \mathcal{K} \sum_{i} \left[D_{A_{i}}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_{i}}(\rho_{\Lambda}||\sigma_{\Lambda}) \right]$$
$$\leq \widetilde{\mathcal{K}} \sum_{x \in \Lambda} \left[D(\rho_{\Lambda}||E_{x}(\rho_{\Lambda})) \right],$$

where \mathcal{K} is constant as long as # segments = $\mathcal{O}(|\Lambda|/\ln|\Lambda|)$ and $\widetilde{\mathcal{K}} = O(\log|\Lambda|)$.



PROOF: POSITIVE CONDITIONAL MLSI

MLSI AND CONDITIONAL MLSI

$$\alpha(\mathcal{L}^*_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \right]}{2D(\rho_{\Lambda} \| \sigma_{\Lambda})}, \ \alpha_x(\mathcal{L}^*_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^*_x(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \right]}{2D(\rho_{\Lambda} \| \mathcal{L}_x(\rho_{\Lambda}))}$$

Therefore, we have

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \widetilde{\mathcal{K}}^{-1} \min_{x \in \Lambda} \left\{ \alpha_x(\mathcal{L}^*_{\Lambda}) \right\}.$$

for $\widetilde{\mathcal{K}}^{-1} = \Omega(\ln |\Lambda|^{-1}).$

Positive conditional MLSI

The conditional MLSI of the local generators is positive:

 $\alpha_x(\mathcal{L}^*_\Lambda) > 0 \, .$

PROOF: POSITIVE CONDITIONAL MLSI

MLSI AND CONDITIONAL MLSI

$$\alpha(\mathcal{L}^*_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \right]}{2D(\rho_{\Lambda} \| \sigma_{\Lambda})}, \ \alpha_x(\mathcal{L}^*_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^*_x(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \right]}{2D(\rho_{\Lambda} \| E_x(\rho_{\Lambda}))}$$

Therefore, we have

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \widetilde{\mathcal{K}}^{-1} \min_{x \in \Lambda} \left\{ \alpha_x(\mathcal{L}^*_{\Lambda}) \right\}.$$

for
$$\widetilde{\mathcal{K}}^{-1} = \Omega(\ln |\Lambda|^{-1}).$$

Positive conditional MLSI

The conditional MLSI of the local generators is positive:

 $\alpha_x(\mathcal{L}^*_\Lambda) > 0 \, .$

CONCLUSION

For \mathcal{L}^*_{Λ} , there is a positive MLSI constant $\alpha(\mathcal{L}^*_{\Lambda}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, \mathcal{L}^*_{Λ} has rapid mixing.

PROOF: POSITIVE CONDITIONAL MLSI

MLSI AND CONDITIONAL MLSI

$$\alpha(\mathcal{L}^*_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \right]}{2D(\rho_{\Lambda} \| \sigma_{\Lambda})}, \ \alpha_x(\mathcal{L}^*_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^*_x(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \right]}{2D(\rho_{\Lambda} \| E_x(\rho_{\Lambda}))}$$

Therefore, we have

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \widetilde{\mathcal{K}}^{-1} \min_{x \in \Lambda} \left\{ \alpha_x(\mathcal{L}^*_{\Lambda}) \right\}.$$

for
$$\widetilde{\mathcal{K}}^{-1} = \Omega(\ln |\Lambda|^{-1}).$$

Positive conditional MLSI

The conditional MLSI of the local generators is positive:

 $\alpha_x(\mathcal{L}^*_\Lambda) > 0 \, .$

CONCLUSION

For \mathcal{L}^*_{Λ} , there is a positive MLSI constant $\alpha(\mathcal{L}^*_{\Lambda}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, \mathcal{L}^*_{Λ} has rapid mixing.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

• **Dissipative phase transitions:** Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- **Dissipative phase transitions:** Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- **Dissipative phase transitions:** Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- **Dissipative phase transitions:** Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local interactions given by $Z \otimes X \otimes Z$ (and p.b.c.).

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- **Dissipative phase transitions:** Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local interactions given by $Z \otimes X \otimes Z$ (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- **Dissipative phase transitions:** Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local interactions given by $Z \otimes X \otimes Z$ (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.

In this talk:

• Introduction of MLSI as a tool to prove rapid mixing.

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.

Conclusions

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

• Can the MLSI be independent of the system size?

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!