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INTRODUCTION

@ Hap=HAaRHp (or Hape = Ha @ Hp @ Hc).

@ Bp := B(H,), set of bounded linear operators.

o Ap C By, set of Hermitian operators.

o Sp:={feApr : f>0and tr[f] =1}

@ f € By has support on A C A if f = f4 ® 1 for certain
fa € Ba.

o Modified partial trace: trg : f +— tra[f] ® 14, where tra[f]
has support in B.

@ We denote by fp the observable tr4[f] with support in B.
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MOTIVATION

MOTIVATION

E environment

S system

Figura: An open quantum many-body system.

@ Interesting for information processing = Open (unavoidable
interactions).

@ Dynamics of S is dissipativel!

@ The continuous-time evolution of a state on S is given by a
quantum Markov semigroup.
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MOTIVATION

MOTIVATION

Figura: A quantum spin lattice system.

o Lattice A C Z¢.
o For every site z, H, (= C%).
@ The global Hilbert space associated to A is Hp = ®xeA H,.
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DISSIPATIVE QUANTUM SYSTEM

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous

semigroup {7;},~, of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in B,.

@ Positive: Maps positive operators to positive operators.

o Completely positive: T @1 : By @ M,, — By @ M, is
positive Vn € N.

o Trace preserving: tr[T (f)] = tr[f] Vf € Ba.
Semigroup:

© TtoTs = Tits.

o To=1.
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MOTIVATION

d
ZTi=TioL"=L7oT.

QMS GENERATOR

The infinitesimal generator £* of the previous semigroup of
quantum channels is called Liouvillian, or Lindbladian.

* d
T, =X o L£* = @7; li=o0.

We will denote, for every state p,

pt = Te(p).
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MOTIVATION

PRIMITIVE QMS

We assume that {7;},-, has a unique full-rank invariant state,
which we denote by o.

REVERSIBILITY

| A\

We also assume that the quantum Markov proccess studied is
reversible, i.e., satisfies the detailed balance condition:

(f,£(9)); = (L(f):9)s

for every f,g € A, in the Heisenberg picture.

\
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MOTIVATION

MIXING TIME

We define the mixing time of 7; by

T(e) =minqt > 0: sup ||Te(p) — Too(p)|l; < €

PESA

RAPID MIXING
We say that £* satisfies rapid mixing if

| \

sup [|pr — o]} < poly(|A)e™".
PESA

PROBLEM
Find bounds for the mixing time!
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MOTIVATION

LOG-SOBOLEV INEQUALITY (MLSI)

Let op be the stationary state of a semigroup generated by the
quantum dynamical master equation

Orpt = LA(pt), (1)
where L is the Liouvillian in the Heisenberg picture.
We define the relative entropy of p, and o by:
D(pt|loa) = tr[pi(log pr —log on)]. (2)

Therefore, since p; evolves according to L}, the derivate of
D(pt||oa) is given by

9t D(pelloa) = tr[Lx(pr)(log pr —log an)], (3)

and we want to find a lower bound for the derivative of D(p¢||op)
in terms of itself:

2aD(pillon) < —tr[L} (pe)(log pr — log oa)]. (4)
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LOG-SOBOLEV CONSTANT

Let £ : Bx — Bp be a primitive reversible Lindbladian with
stationary state . We define the log-Sobolev constant (MLSI
constant) of L} by

a(Ly) = inf — tr[L} (pa)(log pa — log a4 )]

PAESA 2D(palloa)

Integrating, we have:
D(pilloa) < D(pallon)e >R, (5)

and putting this together with Pinsker’s inequality, we have:

ot — oall; < v/2D(palloa) e R < \/21og(1/omin) e *FV1,
(6)
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MOTIVATION

If a(L3}) >0,

loc = oally < v/ZIog( omm)eER).

Log-Sobolev inequality = Rapid mixing. J

PROBLEM
Find positive log-Sobolev constants!
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CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space (2, F, 1) and define, for every f > 0,
the entropy of f by

Ent,(f) = u(flog f) — u(f) log p(f).

Given a g-algebra G C F, we define the conditional entropy of f
in G by

Ent,(f | G) = u(flog f | G) — u(f | G)logu(f | G).
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CLASSICAL CASE

With these definitions, the following lemma is proven:

LEMMA, Dai Pra et al. '02

Let (2, F, u) be a probability space, and Fi, Fy sub-c-algebras of
F. Suppose that there exists a probability measure i that makes
F1 and F3 independent, u < pand pu | F; =@ | F; fori=1,2.
Then, for every f > 0 such that flog f € L'(u) and u(f) =1,

Ent#(f) W [Entu(f | .7:1) 4F Entu(f | .7'—2)],

<
1—4fh—1]

where h = @
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CLASSICAL CASE

PROBLEM

Let Hapo = Ha ® Hp @ Heo and papc,oaBc € Sapc- Can we
prove something like

D(papclloapc) <
&(oaB) [Da(pasclloapc) + Dpc(papclloasc)] ?

Yes! (We will see how later) )
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4. CONDITIONAL RELATIVE ENTROPY |
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CONDITIONAL RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let f,g € Ap, f verifying tr[f] # 0. The quantum relative
entropy of f and g is defined by:

1
r(f]

D(fllg) = g tr [f(log f —logg)]. (7)

In this talk, we only consider density matrices (with trace 1). In
this case, the quantum relative entropy is given by:

D(pllo) = tr [p(log p — log o)]. (8)
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CONDITIONAL RELATIVE ENTROPY

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha® Hp and pap,o4ap € Sap. The following
properties hold:

© Continuity. pap — D(pap||loap) is continuous.
Q@ Additivity. D(pa @ pglloa ® o) = D(palloa) + D(psllos).
© Superadditivity.

D(paglloa ® o) = D(palloa) + D(psl|os).

@ Monotonicity. D(pag||oas) > D(T(pa)||T(caB)) for
every quantum channel 7T'.

CHARACTERIZATION OF THE RELATIVE ENTROPY, Wilming et

al. '17

If f:S8aB X Sap — Rsr satisfies 1 — 4, then f is the relative
entropy.
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CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha ® Hp. We define a conditional relative entropy
in A as a function

DA(H) : SAB X SAB — R(—)’_
verifying the following properties for every pap,oap € Sap:

@ Continuity: The map pap — Da(pap|loap) is continuous.
@ Non-negativity: Dy(pagp|loap) > 0 and
(2.1) Da(paglloas)=0if, and only if, pap = E¥(paB).
© Semi-superadditivity: D4(pag|loa®op) > D(palloa) and
(3.1) Semi-additivity: if pap = pa ® pB,
Da(pa ® pslloa ® op) = D(palloa).
@ Semi-motonicity: For every quantum channel 7T,
DA(T (paB)|[T(oaB)) + Dp((tra oT)(paB)l|(tra oT)(caB))

< Da(paglloas) + Dp(tra(pas)||tra(oas))-
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REMARK

Consider for every pap,oap € Sap
D} g(paslloas) = Da(paslloas) + Dg(paglloas).

Then, D:X p Vverifies the following properties:

© Continuity: pap — DXB(pABHO'AB) is continuous.
Q Additivity:
D} p(pa ® pplloa ® ap) = D(palloa) + D(pslloB).
© Superadditivity:
D} p(paslloa ® op) > D(palloa) + D(ppllos).
However, it does not satisfy the property of monotonicity.




QUANTUM RE
£ ENTROPY
CONDITIONAL RELATIVE ENTROPY

AXIOMATIC CHARACTERIZATION OF THE CONDIITONAL
RELATIVE ENTROPY

The only possible conditional relative entropy is given by:
Da(paslloas) = D(paslloas) — D(pslloB)

for every pap,oaB € SaB-
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Figura: Choice of indices in Hapc = Ha @ Hp @ Hc.

Result of quasi-factorization of the relative entropy, for every
PABC;0ABC € SABC:

(1 —&(oaBc))D(paBclloapc) <
Dag(papclloasc) + Dpc(papc|loase),

where {(o4pc) depends only on o 4pc and measures how far o 4¢
is from 04 ® o¢.
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QUASI-FACTORIZATION FOR THE CRE

Let Hapc = HA @ Hp @ Ho and paBc,oape € Sapc. Then,
the following inequality holds

(1 =2[|H(cac)lloe)P(pasclloase) <
Dap(papclloasc) + Dpc(pascl|loasc),

where

/ /2 /

—1/2 -1 —1/2 —1/2
H(oac)=0,"'"®og O'ACO'A/®GC — T ac.

Note that H(cac) = 0 if o4¢ is a tensor product between A and
C.
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QUASI—FA(‘TORIZAT[ON FOR THE CONDITIONAL RELATIVE ENTROPY

(1 —-2||H(0ac)|lo)P(paBclloasc) <
Dag(papclloasc) + Dpc(papclloasc) =
= 2D(papclloasc) — D(pclloc) — D(palloa).

=

(1+2[|H(cac)lloo)D(papclloasc) >
D(palloa) + D(pclloc).

(1+2[|H(cac) o) D(paclloac) >
D(palloa) + D(pclloc).
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QUASI—FA(‘TORIZATION FOR THE CONDITIONAL RELATIVE ENTROPY

Recall:

o Superadditivity.
D(paglloa ®@ o) > D(palloa) + D(psllos).

Due to:

e Monotonicity. D(pap|loas) > D(T(pap)||T(caB)) for
every quantum channel 7T'.

we have

2D(paBlloas) > D(palloa) + D(psllos)

Our result:

(14 2||H(04B)lloo)P(paslloas) = D(palloa) + D(psllos) |
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5. CONDITIONAL RELATIVE ENTROPY
BY EXPECTATIONS
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WEAK CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha ® Hp. We define a weak conditional relative
entropy in A as a function

DA(H) 3 SAB X SAB — R(—)i_

verifying the following properties for every pap,oap € Sap:

Q Continuity: The map pap — Da(pag|loap) is continuous.
@ Non-negativity: Dy(pap|loap) > 0 and
(21) DA(pABHUAB):O if, and onIy if, PAB — Ez(pAB)-
© Semi-superadditivity: D4(pag|loa®op) > D(palloa) and
(3.1) Semi-additivity: if pap = pa ® pB,
Da(pa® pBlloa ® o) = D(palloa).
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Let Hap = Ha R Hp and oap € Sap, fap € Aap . We define
the minimal conditional expectation of o 45 on A by

E%(fap) == tralng fas %], (9)

where 1% = (trA[O'AB])_l/zU,lél/Bg'

For pap € Sap, (E%)* (hereafter denoted by E¥) is given by

E%(paB) :i= 0114/; 01_31/2 B 01_31/2 O'l/é (10)

It coincides with the Petz recovery map for the partial trace.
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CONDITIONAL RELATIVE ENTROPY BY
EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let Hap = Ha @ Hp and pap,ocap € Sap. Let EY be defined as
above. We define the conditional relative entropy by
expectations of pap and o4p in A by:

DR (paslloas) = D(pas|Ei(pas))-

PROPERTY

| \

DE(pag|loap) is a weak conditional relative entropy.
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PROBLEM

Under which conditions holds

Da(paslloas) = DX (paplloas)?

v

Q If [pp,04B] = [pB,0B] = [0B,04B] =0,
Da(paslloas) = DE(paslloas).
Q Ifo =04 ®op, then

Da(paslloas) = DE(paslloas).
Q@ Dulpaslloas) =0 < DE(paglloap) = 0.

In general, it is an open question.

—
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CONDITIONAL /B TROPY BY I
CONDITIONAL RELATIVE ENTROPY BY EXPE

RELATION WITH THE CLASSICAL CASE

STATES OBSERVABLES

trloanfap logfan]

fap =T5},(paB)

QUANTUM Dipas|/as)

—
SIS D(paslloas) — Dipsllor) fs=T5,(rB) trftraloap fap logfag] — opfp logfp]
PAB =V trfo] = p(-)
OAB = [t tral] = p(1F)
CLASSICAL H(, 1) ; (1 logf)
SETTING Hr(v.p) 1 (p( f logf|F) — pu(f|F )logpu(f|F))

Figura: Identification between classical and quantum quantities when the
states considered are classical.
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QUASI-FACTORIZATION CRE BY EXPECTATIONS

Let Hap = Ha® Hp and pap,o0ap € Sap. The following inequality
holds

(1—&(0aB))D(paslloas) < DX (paslloas) + D5(paslloas), (11)

where
£(daBco) = 2 (Er(t) + Ea(t)),

and

. Er(t) =

o —14it 1—it —14it _ 1tit
/ dtﬁo(t)HaB IR NG —11ABH HaAl/zcrAg 031/2H :
—&9 oo (S
+o0 —1—it  14iit —1—it
Es(t) :/ dt Bo(t) HUB Y oap 047 — ]lABH

Note that £(cap) = 0 if oap is a tensor product between A and B.
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6. QUANTUM SPIN LATTICES |




ATION OF THE QUANTUM RELATIVE ENTROPY
(QU:\I\"TL'I\I SPIN LATTICES

QUANTUM SPIN LATTICES

Figura: A quantum spin lattice system A and A, B C A such that
AUB=A.
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GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Hx = ® Hx and pa,on € Sp such that oy = (X) o, The

following inequality holds:

D(palloa) <Y Daulpallon). (12)
TEA

Proof based on strong subadditivity.
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QUANTUM SPIN LATTICES

The heat-bath dynamics, with product fixed point, has a positive
log-Sobolev constant. }

Consider the local Lindbladian
Lr =K — 14,
and the global Lindbladian
Ly=> Lk
e
Since

1/2 _—1/2 —1/2011\/2

E;(p/\) =O0p Oge PzcOge =0z & Pge

for every ppy € Sp, we have

Li(pn) = Z (02 ® pze — pa).
xEA
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CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of
L} in A by

‘ .o — tr[L5 (pa)(log pa —log oy
L£%) = inf
an (L) ey 2D a(palloa)

where oy is the fixed point of the evolution, and D 4(pa||loa) is
the conditional relative entropy.

LEMMA

| A\

an(Ly) >

N =
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POSITIVE LOG-SOBOLEV CONSTANT

1
a(L}y) 2 5
D(pallon) <D _Da(pallon)
zEA
= tr[L3(pa)(log pa —logap)]
= ap(L3)
1
<= N e _
S oD &~ trlLi(ea)log pa ~logow)]
TzEA zEA

1

Traa(ey  Eh(en)logen —log )]

2 (—tr[LA(pa)(log pa —logon)]) .
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7. PROOF OF QUASI-FACTORIZATION
FOR THE CRE
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QUASI-FACTORIZATION FOR THE CRE

Let Hapc = HA @ Hp @ Ho and paBc,oape € Sapc. Then,
the following inequality holds

(1 =2[|H(cac)lloe)P(pasclloase) <
Dap(papclloasc) + Dpc(pascl|loasc),

where

/ /2 /

—1/2 -1 —1/2 —1/2
H(oac)=0,"'"®og O'ACO'A/®GC — T ac.

Note that H(cac) = 0 if o4¢ is a tensor product between A and
C.
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D(paglloap) = D(palloa) + D(ppllop) —logtr M, (13)

where M = exp [logoap —logoa ® op +log pa ® pB|.

It holds that:

D(paslloa) = [D(palloa) + D(psllos)] =

=tr [pap | logpap — (logoap —logoa ® op +1logpa ® pp)
log M
:D(pABHM) Z —|OgtI‘M.
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logtr M < tr[L(0ap) (pa —04) ® (p —0B)],  (14)

where

L(0aB) = Tos0op (04B) — LaB.
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THEOREM (LIEB)

Let g a positive operator, and define

To(f) = / Tt g+ g r o

Ty is positive-semidefinite if g is. We have that

trlexp(—f + g+ h)] < tr[e"T.s (e7)].

We apply Lieb's theorem to the previous equation :

trM < tr[pa @ ppTos00s(04B)]

tr|pa ® pB (Toagos(0aB) — LaB) | +trlpa ® p5].

L(O’AB) 1
By using the fact log(xz) < 2 — 1, we conclude

logtr M <trM — 1 < tr[L(oap) pa ® pB]-
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LEMMA (SUTTER ET AL.)

For f € Sap and g € Aap the following holds:

To(f) = / dt fo(t) g5 £ 975,

—00

with

Bo(t) = g(cosh(mﬁ) +1)7L

LEMMA

For every operator O4 € B4 and Op € Bp the following holds:

tI‘[L(UAB) oA ® OB] = tI‘[L((TAB) O4® O'B] = 0.
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tr[L(caB) (pa —0a) ® (pB —0B)] < QHL(O’AB)HOOD(pABHUfEB)-)
15

In virtue of Holder's inequality and tensorization of Schatten norms,

tr[L(oaB) (pa —04) ® (pB — 0B)] <
IL(caB)lloll(pa —0a) ® (pB — oB)l,
= [|[L(caB)llllpa — oallillps — oBll;-



(QU ASI-FACTORIZATION OF THE QUANTUM RELATIVE ENTROPY
PROOF OF QUASI-FACTORIZATION FOR THE CRE

Theorem (Pinsker)

For pap and o 4p density matrices, it holds that

lpas — oasli < 2D(paslloas).

Using Pinsker's theorem and the data-processing inequality, we can
conclude:

tr[L(cap) (pa —04) ® (pB — 0B)] < 2| L(0aB)|oD(paBlloas).
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HL(UAB)HOO < HUZI/Q ® 01—31/2 5 021/2 2 051/2 . ]1ABH

“(16)
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