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MAIN TOPIC OF THIS TALK

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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QUANTUM DISSIPATIVE SYSTEMS

NOTATION

Figure: A quantum spin lattice system.

Finite lattice A CcC Z.

To every site © € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®I€A H.
The set of bounded linear endomorphisms on H, is denoted by
Ba = B(Ha).

@ The set of density matrices is denoted by

Sa :=8(Ha) ={pa € Ba : pa >0 and tr[ps] = 1}.
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Isolated system.
Physical evolution: p +— UpU* ~» Reversible
Dissipative quantum system (non-reversible evolution)
T:p—=T(p)
o States to states = Linear, positive and trace preserving
p®o€S(H®H'), o with trivial evolution
. / / N
T: SA(’H®H) — S(HeH) T Tl
Tlpwo) = Tp)®o

o Completely positive.
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p +— UpU* ~» Reversible

Dissipative quantum system (non-reversible evolution)

T:p—=T(p)

o States to states = Linear, positive and trace preserving
p®o€S(H®H'), o with trivial evolution

T: SHOH) — SHOH) M Tel

Teoo) = T oo

o Completely positive.
T quantum channel
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Open systems = Environment and system interact.

E environment

S system

Figure: Environment 4+ System form a closed system.

State for the environment: |¢) (|5
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QUANTUM DISSIPAT

OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment 4+ System form a closed system.

State for the environment: |¢) (|5

P p@ ) (Plp = U (p@ ) (¢lg) UT = tre[U (p @ W) (Wl) U] =5

- S(ﬁ) quantum channel
— P
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QUANTUM DISSIPATIV

MARKOVIAN APPROXIMATION

Continuous-time description: For every t > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).
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irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
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MARKOVIAN APPROXIMATION

Continuous-time description: For every t > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present. J

Markovian approximation
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DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T:"},~, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T o TS =T
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QUANTUM DISSIPATIVE SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T:"},~, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T T = Thh.
o Ty =1.

d >k >k * * *
aﬁ =T oLy=LyoT .

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

d

T*: tﬂl*\<:>£*:7
t € A dt

T¢ le=o-
Notation: p; := T (p).

pr = po =Ty (pa) = €A (pa) =5 oa
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New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process
works in favor (protecting the system from noisy evolutions).
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QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process
works in favor (protecting the system from noisy evolutions).

Interesting problems:
o Computational power
o Conditions against noise
o Time to obtain certain states
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QUANTUM DISSIPATIVE SYSTEMS

We define the mixing time of {7,*} by

7(e) =ming > 0: sup [T (p) — T (p)ll; <

PAESA
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We define the mixing time of {7,*} by

T@)Zlmn{t>0 :MPIW*() Tl < }-

AESA

RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lp; — oall; < poly(|A))e".
PAESA
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QUANTUM DISSIPAT

We define the mixing time of {7,*} by

7(e) =ming > 0: sup [T (p) — T (p)ll; <

PAESA

RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lp; — oall; < poly(|A))e".
PAESA

PROBLEM

Find examples of rapid mixing!
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decay of correlations

Rapid mixing
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QUANTUM SPIN SYSTEMS

Wy r<D, AxD ™2

G=K> —a—1
Ric(L)> K == HWI (k) MLSI(c) = TCo(c2) ﬁ PI(\) == Exp.
Wy <D, axD™2, e1=dez
(’At)tzﬂ unital

TCi(¢1) == Gauss.
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QUA TUM SPIN SYSTEMS

Wa,<D, AxD~?
Kastoryano-Temme, 2013

= ~

Fa=k>03 ermal
Ric (£)> k == HWI () MLSI(a) 2== TCs(c2) === PI(\) == Exp.

Wy <D, axD™2, ci=dez

(At)g>0 unital

TCi(¢;) == Gauss.
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Recall: p := T (p).

Liouville’s equation:
Ot = L7 (pt)-

Relative entropy of p; and oy:

D(pt|lon) = tr[ps(log pr — logon)].

Differentiating:

9 D(pil|on) = tr[L3 (pr)(log pr —log op)]- (1)
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p := T (p).

Liouville’s equation:
Ot = L7 (pt)-

Relative entropy of p; and oy:

D(pt|lon) = tr[ps(log pr — logon)].

Differentiating:

9 D(pil|on) = tr[L3 (pr)(log pr —log op)]- (1)

We want to find a lower bound for the derivative of D(p¢||oa) in
terms of itself:

2aD(pillon) < —tr[Lh(pe)(log pr —log on)]. (2)
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LOG-SOBOLEV CONSTANT

The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L) = f
alfa) = inf 2D(pallon)

If a(L}) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
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The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
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and with Pinsker’s inequality, we have:
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The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L)) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:
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LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:

llo: — oall, < v/2D(palloa) e *ER" < \/2Tog(1/amm) e 1),

Log-Sobolev constant = Rapid mixing. )

PROBLEM
Find positive log-Sobolev constants!
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(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). )

_|_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

_|_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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(3) Decay of correlations on the Gibbs measure. J
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). )

_|_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
U

Positive log-Sobolev constant. J

a Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body Sy



QUANTUM DISSIPATIVE SYSTEMS

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£h) = il 2D(pallon)
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LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

x o —tr[LA(pa)(log pa —logon)]
L) = f
al£h) = il 2D(pallon)

CONDITIONAL LOG-SOBOLEV CONSTANT

Let £} : SA — Sa be a primitive reversible Lindbladian with stationary
state oa, A C A. We define the conditional log-Sobolev constant of L}
on A by

. o —tr[Lh(pa)(log pa —logoa )]
L) = f
an(£a) = il 9D 4(pallon)
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PROBLEM

Let Hapc = Ha ® He @ He and papc,caBc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(pasc|loasc) + Dec(pasc|loasc)] ?
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STATEMENT OF THE PROBLEM

BC

AB

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocaBc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(pasc|loasc) + Dec(pasc|loasc)] ?

QUANTUM RELATIVE ENTROPY

D(pllo) = tr [p(log p — log 0)]

for Quantum Many-Bod
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f)

plEnt,(f | F1) + Entu(f | F2),

1
e —
T 1-4|h -1,
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ACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f) < m;t[Entu(f | 71) + Enty (f | F2)],

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Ent,.(f) = u(flog f) — u(f) log u(f).

Conditional entropy:

Ent,(f|G) =p(flog f|G) — p(f|G)logu(f|G).

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZA N OF 2 RELATIVE ENTROPY .
(QUASI-FACTORIZATION OF THE RELATIVE ENTROPY )N OF THE RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logoa)] .

for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY N 5
N OF THE RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and oa is defined
by:

D(palloa) = tr[pa(log pa —logoa)] .

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pap — D(pag||oar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(psl||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagl|lcas) > D(T (pa)||T (cag)) for every
quantum channel 7.

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY N 5
N OF THE RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and oa is defined
by:

D(palloa) = tr[pa(log pa —logoa)] .

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pap — D(pag||oar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(psl||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagl|lcas) > D(T (pa)||T (cag)) for every
quantum channel 7.

CHARACTERIZATION OF THE RE, Wilming et al. ’17, Matsumoto '10

If f:S4aB X Sap — R()L satisfies 1 — 4, then f is the relative entropy.

apel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as

a function
DA(H) :SaB X SaBp — ]Ra—
verifying the following properties for every pap,ocap € Sap:

@ Continuity: The map pap — Da(par||loar) is continuous.
@ Non-negativity: Da(pag|locas) > 0 and
(2.1) Da(pagllcas)=0 if, and only if, pap = 0'114/;0'5 V= PB 0_1/201/§
@ Semi-superadditivity: Da(pag|loa ® o) > D(pal|loa) and
(3.1) Semi-additivity: if pap = pa ® pp,
Da(pa ® pplloa ® o) = D(palloa).
© Semi-motonicity: For every quantum channel T,
Da(T(paB)l|T(0a8)) + Da((tra oT)(pas)||(tra oT)(cas))

< Da(paBlloas) + Da(tra(pas)||tra(cas)).

apel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body Syst.



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

REMARK

Consider for every pap,oas € SaB

D} 5(paslloas) = Da(paslloas) + De(pas|loas).

Then, DX, p verifies the following properties:
QO Continuity: pap — DXB(pABHUAB) is continuous.
@ Additivity: D ,(pa @ pslloa @ 75) = D(palloa) + D(psllos).
@ Superadditivity: DX’B(pABHO'A ® o) > D(palloa) + D(ps||los)-

However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE (C-Lucia-Pérez Garcia, ’18)

The only possible conditional relative entropy is given by:
Da(paglloas) = D(paglloas) — D(psllos)

for every pap,0aB € SaB.

1 (ICMAT-UCM, ) b e >s for Quantum Many-Bod,



CTORIZATION OF THE ATIVE ENTROPY

BC

%/—/

AB
Figure: Choice of indices in Hapc = Ha Q Hp @ Hc-

Result of quasi-factorization of the relative entropy, for every
pABC,0ABC € SaBc:

D(pasclloasc) < &(oasc) [Dap(pascl|loasc) + Dec(pase|loasc)],

where £(0capc) depends only on oapc and measures how far cac is from
oA ®oc.




IVE ENTROPY

QUASI-FACTORIZA N OF )
JUASI-FACTORIZATION OF THE ORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CRE (C-Lucia-Pérez Garcia, '18)

Let Hapc = Ha @ Hp ® Heo and papc,ocasc € Sapc. Then, the following
inequality holds

D(paBclloasc) <
1

m [DAB(pABC||UABC) = DBC(pABCHUABC’)] ,

where

H(oac) = 021/2 ® 051/2 oAC 021/2 ® 051/2 —Tac.

Note that H(cac) =0 if cac is a tensor product between A and C.

obolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[[H(0ac)|l)D(pasclloasc) <
Dag(papclloasc) + Dec(papcl|loasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

apel (ICMAT-UCM, Madrid bbolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[[H(0ac)|l)D(pasclloasc) <
Dag(papclloasc) + Dec(papcl|loasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

=

(1+2|H(cac)lloo)D(pasclloasc) > D(palloa) + D(pclloc).

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[[H(0ac)|l)D(pasclloasc) <
Dag(papclloasc) + Dec(papcl|loasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

<
(1+2[|H(0ac)ll)D(pasclloasc) = D(palloa) + D(pclloc).
=

(1+2||H(cac)lloo)D(paclloac) = D(palloa) + D(pclloc).

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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This result is equivalent to:

(1+2[|H(0a8)l)D(paslloas) = D(palloa) + D(psllos) |

obolev Ine
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to:

(1+2[|H(0a8)l)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

apel (ICMAT-UCM, Madrid og-Sobolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to:

(1+2[|H(0a8)l)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

Due to:

o Monotonicity. D(pag|loas) > D(T(paB)||T(cas)) for every
quantum channel T

we have

2D(paslloas) 2 D(palloa) + D(psllos).

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

RELATION WITH THE CLASSICAL CASE

STATES OBSERVABLES

QUANTUM D(paglloas) fas =Tz, (Paz) tr{oag faplogfas|

+—p
LU D(o,,ll00) — Dipsllo)  fo=Toiw)  trltralousfuslogfus] — onfslogfl
Pas =V troas -1 = u()
G =1 [ = (- 16)
CLASSICAL H(v.p) =z u(f logf)
4+——p
Selille Hg(v. ) 1(u(f 1ogf1G) — u(f 1G) log u(f 16))

Figure: Identification between classical and quantum quantities when the states
considered are classical.

1 (ICMAT-UCM, ) obolev Inequalities for Quantum Many-Bod.
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LOG-SOBOLEV CONSTANT

QUANTUM SPIN LATTICES

>

00000
s0000
sccee X
S —

A

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.

PROBLEM

For a certain £}, can we prove a(£}) > 0 using the result of
quasi-factorization of the relative entropy?

bolev Inequalities for Quantum Many-Bod
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HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT I
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LOG-SOBOLEV CONSTANT

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (C-Lucia-Pérez Garcia, ’18)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

a Capel (ICMAT-UCM, Madrid bo equa es for Quantum Many-Body



LOG-SOBOLEV CONSTANT

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (C-Lucia-Pérez Garcia, ’18)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Lo =K, —1a, LA =) L}
TzEA
Since

~1/2, 1/2

E:(pa) = 0y 0,02 poea; =00 ® pae

for every pa € Sa, we have

Li(pr) =Y (02 @ pac — pa).

zEA

a Capel (ICMAT-UCM, Madrid bo equa es for Quantum Many-Body
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LOG-SOBOLEV CONSTANT

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

ASSUMPTION

or = Q os.

TEA

Decay of correlations

Sobolev Inequalities for Quantum Many-Bod,



LOG-SOBOLEV CONSTANT

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

CONDITIONAL LOG-SOBOLEV CONSTANT

For x € A, we define the conditional log-Sobolev constant of £} in x by

inf —trLa(pa)(log pa —logan)]
PAESA 2D (pallon) 7

an(Ly) =

where o, is the fixed point of the evolution, and D4 (palloa) is the
conditional relative entropy.

a Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Ha = @ H. and pa,on € Sa such that op = ®0m. The following

TEA zEA

D(palloa) <Y Dulpallon).
zEA

inequality holds:

el (ICMAT-UCM, M d) sbolev Inequalities for Quantum Many-Body
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HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

LEMMA (Positivity of the conditional log-Sobolev constant)

es for Quantum Many-Body



LOG-SOBOLEV CONSTANT

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

D(pallon) <Y Du(pallon)

zEA
—tr[£5(pa)(log pa — logaa)]
<
- g;\ 20 (L3)

1

< St an(zn) 2y~ M) og o~ logon)

zEA

1 *
= Tiafan(cy) MRz en ~logon)

IN

(= tr[L3(pa)(log pa —logan)]) .




LoG-SoBOLEV €O NT

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

POSITIVE LOG-SOBOLEV CONSTANT

a(L}) >

N —

Decay of correlations'

for Quantum Mar
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LOG-SOBOLEV CONSTANT

HEAT-BATH DYNAMICS IN 1D

CONDITIONAL LOG-SOBOLEV CONSTANT
For A C A, we define the conditional log-Sobolev constant of £} in A
by

inf —EEA(pa)(log pa —log oa)]

an(Ly) =
a(£a):= il 2D A(pa]lon)

)

where o, is the fixed point of the evolution, and

Da(palloa) = D(pallon) — D(pac|loac).

a Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body Sy
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ _ _ _ 1
[Ih(oaB)|l = H0A1/2 ®O’Bl/20'ABO'A1/2 ®031/2 — ]lABH <K< o

oo

In particular, classical Gibbs states satisfy this.

el (ICMAT-UCM, M d) sbolev Inequalities for Quantum Many-Body



LOG-SOBOLEV CONSTANT

HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ 1
1/2—]IABH §K<§

oo

Ih(0a8) ] = 03" ® 05 *0an05 * @ 0

In particular, classical Gibbs states satisfy this.

N\,

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

Dg(palloa) < f(opa) (Dp, (palloa) + De,(palloa)) -

In particular, tensor products satisfy this (with f = 1).

apel (ICMAT-UCM, Madrid) og-Sobolev Inequalities for Quantum Many-Body
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EXAMPLES OF POSITIVE LOG-SOBOLEV CONSTANTS

THEOREM (Bardet-C-Lucia-Pérez Garcia-Rouzé, ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

a Capel (ICMAT-UCM, Madrid bo equa es for Quantum Many-Body
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SKETCH OF THE PROOF

STEP 1 J

a Capel (ICMAT-UCM, Madrid bo equa es for Quantum Many-Body
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SKETCH OF THE PROOF

STEP 1 J

A= OAZ and B = LnJB]'
i=1 j=1

1

D < D D
(palloa) < 7= 2hoa s )l [Da(palloa) + Dp(palloa)],
h(oacpe) = a;§/2 ® Ugcl./zaACBcJch/z @ope’? —Lacpe.

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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SKETCH OF THE PROOF

STEP 2 )

Da(palloa) <> Da,(palloa)

i=1

Sobolev Inequalities for Quantum Many-Bod,
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SKETCH OF THE PROOF

STEP 2 J

Da(palloa) <> Da,(palloa)

i=1

oa is a QMC between Ay <> 0A1 <> A\ (A1 UOA)

74 = B4 00t © T(0an) A\ (410041)
1€

a Capel (ICMAT-UCM, Madrid bo equa es for Quantum Many-Body
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SKETCH OF THE PROOF

STEP 3 )

Assumption 1 = a(L}) > K ?1111 {aa(Lh,), an(LE;)}

for Quantum Many-Body
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SKETCH OF THE PROOF

STEP 4 J

Assumption 2 = aa(L}y,) > g(oa,a) > 0.

for Quantum Many-Body
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LOG-SOBOLEV CONSTANT

DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:

LX) =i[Ha, X1+ > Lo(X

keA

where

= 3 (o) (S XS0k) = 5 {524)S0s@) X} )

Angela Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body



LOG-SOBOLEV CONSTANT

DAVIES DYNAMICS

GENERATOR

The generator of the Davies dynamics is of the following form:
LX) =i[Ha, X1+ > Lo(X
keA

where

= 3 (o) (S XS0k) = 5 {524)S0s@) X} )

Important property: Given A C A,
£(X) = E(X|N) = lim e'“4(X).

t— o0

is a conditional expectation onto the subalgebra of fixed points of Ef‘.

apel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body
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DAVIES DYNAMICS

CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of Elﬁ\ in A
by

5 —tr [ﬁi(pA)(log pa — log JA)]
an(Ly) ;== inf E
PAESA 2D (palloa)

I

where o, is the fixed point of the global evolution (the Gibbs state of a
local commuting Hamiltonian), and

D (palloa) = D(pall€5 (pa))-

apel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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DAVIES D 11CS

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.
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DAVIES DYNAMICS

CLUSTERING OF CORRELATIONS

The state o € S(#) is said to satisfy exponential conditional
Li-clustering of correlations with respect to the triple (Ma, Np, Nag) if
there exists a constant ¢ := ¢(Na, Ng,Nag, o) such that, for any

X € B(H),

| Covnrgp.o(Ea(X),E8(X))| < || XIIE, (e HMNPEND/E,
Moreover, the triple (Ma, N5, Nag) is said to satisfy exponential
conditional L;-clustering of correlations if there exists a constant

¢ := c(Na,NB,Nag,o) such that any state o = £} 5(0) satisfies
conditional IL;-clustering of correlations with constant c.

Decay of correlations

-

a Capel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body Sy
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DAVIES DYNAMICS

QUASI-FACTORIZATION, Bardet-C-Rouz

1
Assume that there exists a constant 0 < ¢ < ————— such that the triple
2(4 ++/2)
(N A, N, Na B) satisfies the exponential conditional Li-clustering of
correlations with corresponding constant c. Then, the following inequality

holds for every p € S(H):

Ds(ello) < ———— (DAGello) + DEGelI) . (3)

1-2(4+2)

for every o = E45(0).

apel (ICMAT-UCM, Madrid) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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GEOMETRIC RECURSIVE ARGUMENT, Bardet-C-Rouzé ’19

@ (Cﬁ") > \II(LO)Rm7iZn an (Eg) ,

€RL,

Figure: Splitting in A,, and By,.

for Quantum Many-Bod,
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THEOREM, Junge-LaRacuente-Rouzé ’19

Given A cC Z4, L} : Sn — Sa the Lindbladian associated to the Davies
dynamics and a finite lattice and A C A, we have

an (£57) 2 (4D >0,

where (| A|) might depend on A, but is independent of its size.

for Quantum Many-Bod
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OPEN PROBLEMS

PROBLEM 1

Can we use any of the quasi-factorization results to prove log-Sobolev
constants in a more general setting?

PROBLEM 2

Does the heat-bath example hold for greater dimension?

PROBLEM 3

Is there a better definition for conditional relative entropy?

for Quantum Many-Bod.
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