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INTRODUCTION AND MOTIVATION

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system. J

No experiment can be executed at zero temperature or be completely
shielded from noise.

Angela Capel (Univ ingen) Rapid thermalization of spin chain comm. Hamiltonians



INTRODUCTION AND MOTIVATION

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system. J

No experiment can be executed at zero temperature or be completely
shielded from noise.

@ Finite lattice A CC Z%.

S =SS @ Hilbert space associated to A is
( Ha = Qpep Ha-

"""" ‘ St @ Density matrices: Sy := S(Ha) =
1 ) {pr € Ba : pao > 0 and tr[pa] = 1}.

o Dynamics of S is dissipative!

@ The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).

Angela Capel (Univ ) apid thermalization of spin chain comm. Hamiltonians



INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
T = et o L = a?? [t=o0.
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
57?=7§O£A=EAO7§-

QMS GENERATOR

The infinitesimal generator £ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

d
T =eh o L = %7; [t=o0.
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
57?=7§O£A=EAO7§-

QMS GENERATOR

The infinitesimal generator £ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

d
T =eh o L = %7; [t=o0.

For pa € Sa, La(pa) = —i[Ha,pal + 32 Lr(ps) GKLS equation.
keA
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

Angela Capel (Uni ) id ther izati f spi in comm. Hamiltoni



INTRODUCTION AND MOTIVATION
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Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition:

(£, £5(9))s = (L7(F) 9)5

for every f,g € Ba and Hermitian, where

(f9), = tx[f "2 goM?] .
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition:

(£, £5(9))s = (L7(F) 9)5

for every f,g € Ba and Hermitian, where

(f9), = tx[f "2 goM?] .

Notation: p; := T¢(p).
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INTRODUCTION AND MOTIVATION

MIXING TIME

@ Under the previous conditions, there is always convergence to oa.
o How fast does convergence happen?
Note T (p) := oa for every p.

We define the mixing time of {7;} by

tose(e) =minf > 03 sup |7i(s) = Tl < -

PAESA
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INTRODUCTION AND MOTIVATION

RAPID MIXING

We define the mixing time of {7;} by

tmix(e) =mind t > 0: sup |pt —oal; <e
PAESA

Recall: p; := Ti(p), oa = Teo(p)-

PA
XPL

poly(JA[)e "

oA
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INTRODUCTION AND MOTIVATION

RAPID MIXING

We define the mixing time of {7;} by

tmix(€) =mind t > 0: sup |pt —oall; <ep.
PAESA

Recall: p; := Ti(p), oa = Teo(p)-

RAPID MIXING

We say that £ satisfies rapid mixing if

R lloe = oall; < poly(JA)e™7".
PAESA

tmix () ~ poly log(|Al).

ﬂ
AXP
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFOR.MATION/QUANTUM COMPUTING

Rapid mixing

sup || T3(p) — ol < poly(|A[)e™
PES(Ha)

What are the implications
of rapid mixing?

Mixing time: 7(€) = O(polylog(|A]))

“Negative” point of view:

e Quantum properties that hold in the ground state but not in the Gibbs state are
suppressed too fast for them to be of any reasonable use.

“Positive” point of view:

o Thermal states with short mixing time can be constructed efficiently with a
quantum device that simulates the effect of the thermal bath.

o This has important implications as a self-studying open problem as well as in
optimization problems via simulated annealing type algorithms.
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFOR.MATION/QUANTUM COMPUTING

If rapid mixing, no error correction:

Rapid mixing Easy tmix ~ log(n) tmix ~ poly(n) tmix ~ exp(n) Hard,>
an 17200) — ol < poly((ANe=" T — .
pes(gA) IT2(e) Il < poly(JAD Error correction Self-correction
Mixing time: () = O(polylog(AD) Efficient prediction Topological order Quantum memories

Speed-up for SDP solvers

Angela Capel (Uni ) id ther izati f spi in comm. Hamiltoni



INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFOR.MATION/QUANTUM COMPUTING

If rapid mixing, no error correction:

Rapid mixing Easy tmix ~ log(n) tmix ~ poly(n) tmix ~ exp(n) Hard,>
an [T200) — ol < polv(lAne=" T — .
,,es(%\) IT2(e) Il < poly(JAD Error correction Self-correction
Mixing time: () = O(polylog(AD) Efficient prediction Topological order Quantum memories

Speed-up for SDP solvers
Main applications or consequences:
@ Robust and efficient preparation of topologically ordered phases of matter via
dissipation.

@ Design of more efficient quantum error-correcting codes optimized for correlated
Markovian noise models.

@ Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-Garcia ‘15)

@ Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-Garcia ’15)

@ Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca ’20)

@ Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca '20)

@ Quantum annealers: Output an energy closed to that of the fixed point after short
time (C., Rouzé, Stilck Franca ’20)

@ Preparation Gibbs states: Existence of local quantum circuits with logarithmic

depth to prepare the Gibbs state (C., Rouzé, Stilck Franca ’20)
o Establish the absence of dissipative phase transitions (Bardet, C., Gao, Lucia,
Pérez-Garcia, Rouzé '21)
@ Examples of interacting SPT phases with decoherence time growing logarithmically
with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-Garcia, Rouzé '21)
And many more. ..
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).
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i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS : e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Ocpe = La(pt).
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

TIME AND MODIFIED L
RRELATIONS

HMIC SOBOLEV INEQUALITIES

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:

Ocpe = La(pt).

Relative entropy of p; and o,:

D(ptlloa) = tr[pe(log pr
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TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS hedp—

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Ocpe = La(pt).

Relative entropy of p; and o,:

D(pe|loa) = tr[p:(log pr — logon)].
Differentiating:

9:D(pel|oa) = tr[La(pe)(log pr — logoa)].

Angela Capel (Univ ingen) Rapid thermalization of spin chain comm. Hamiltonians



IE AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS hedp—

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Ocpe = La(pt).

Relative entropy of p; and o,:

D(ptlloa) = tr[pi(log pr — log on)].

Differentiating:

9:D(pel|oa) = tr[La(pe)(log pr — logoa)].

Lower bound for the derivative of D(pt||oa) in terms of
itself:

2aD(pelloa) < —tr[La(pe)(log pr —logon)].

Modified logarithmic Sobolev inequality
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

NCTIONAL INEQUALITIES AND CORRELATIONS Di : e

MODIFIED LOGARITHMIC SOBOLEV INEQUALIT

The MLSI constant of £, is defined as:

o —tr[La(pa)(log pa —logon)]
Lp) = f
clta)i= 2D(pallon)
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

ORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,

76H]7 Rapid mixing
llpt—oall; <poly(|A)e=7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-
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IE AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,

For thermal states oy = e ?H /tr[efBH]7 Rapid mixing
Omin ~ 1/exp(|A]). llos—oall, <poly(|Ae=7*

MLSI = Rapid mixing. J

Rapid thermalization of spin chain comm. Hamiltonians



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

ORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
AT
D(pi|loa) < D(palloa)e™>>E0)1,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e * N < \/21og(1/0min) e~ * 5N,

76H]7 Rapid mixing
llpt—oall; <poly(|A)e=7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-

MLSI = Rapid mixing. J

Using the spectral gap (Kastoryano-Temme ’13):

Hpt - 0A||1 S \Y4 1/Umin e_A(EX)t-

Rapid thermalization of spin chain comm. Hamiltonians
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TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

\Y OF CORRELATIONS

Mix ME, FUNCTIONAL 1)

QUANTUM SPIN SY

Rapid mixing

sup | Ty(p) — ol < poly(|Al)e™
PES(HA)

Mixing time: 7(e) = O(polylog(|A[))

s Notation: A CC Z“ lattice Mixing time of the semigroup {T}} ;>
T} e i
{ t)t_o Quantum Markov semigroup r(e)=min{t>0: sup |Tu(p)—ocli<e
t L Inf. generator (Lindbladian) PES(Ha)
E

miltoniar



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES
DECAY OF CORRELATIONS

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

UM SPIN SY

Kastoryano-Temme, ‘13

{ . D(Tp)llo) < Dpllo) e2)"
Rapid mixin Relative entropy: D(p||o) := tr[p(logp — logo)]

sup [ Ty(p) — oll1 < poly(|A)e™
S(Ha)

Mixing time: 7(€) = O(polylog(|A]))

A cC Z¢ lattice Mixing time of the semigroup (Tt}tzo

{Tt}tzo Quantum Markov semigroup
L Inf. generator (Lindbladian)

m(e)=min{t>0: sup [T(p)—ol1<e
PES(HaA)
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3 TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

NCTIONAL INEQUALITIES AND CORRELATIONS

TUM SPIN SYSTEMS

PRTme——a— Modified Logarithmic Sobolev Inequalit
{ . DIT(p)lr) < Dlpllo) o2
Rapid mixi Relative entropy: D(p||o) := tr[p(logp — logo)]
sup ”Tc(l’) — 0“1 < poly(\z\|)e"" * Kastoryano-Temme, ‘13
PES(Ha)

Mixing time: 7(¢) = O(polylog(|A])) Poincaré Inequality

. Varg(Ti(p)) < Vary(p) e~ 2200

« Variance; Var, (p) := tr[(p"/20)?] - tr[po]?

“‘Slower” mixing

sup [ T3(p) — o1 < exp(v/[Al)e="
PES(HaA)

Mixing time: 7(e) = O(v/|Al)

MLSI

Notation: A CC Z lattice Mixing time of the semigroup {7 };>¢
T} i
{T3}+>0 Quantum Markov semigroup (€)=min{t>0: sup |Tu(p)—ocls<e
t """ L Inf. generator (Lindbladian) PES(Ha)
E

ion of spin i Hamiltonian




MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES
DECAY OF CORRELATIONS

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

UM SPIN SY

Modified Logarithmic Sobolev Inequalit

Kastoryano-Temme, ‘13

. D(Ty(p)llo) < D(pllo) e=2O*
Rapid mixin Relative entropy: D(p||o) := tr[p(logp — logo)]
Rapid mixing

sup | Te(p) — o1 < poly(|A])e " * Kastoryano-Temme, ‘13
PES(Ha)
Mixing time: 7(€) = O(polylog(|Al)) Poincaré Inequality

. Var,(Ti(p)) < Var,(p) =20t

. Variance: Vars (p) := tr[(p"/?0)] - tr[p

‘Slower” mixin:

IT:(p) — oll1 < ex;

sup
PES(HA)

o-an  Gibbs state

of alocal,
trfe#7] commuting
Hamiltonian

Mixing time: 7(¢) = O(v/[A]) =

Notation: A CC Z Iattice Mixing time of the semigroup {7} }1>0

{Tt}tzu Quantum Markov semigroup

(&) =mindt>0: sup |Ti(p) —olh <e
PES(Ha)

""" L Inf. generator (Lindbladian)




FUNCTIONAL INEQUALITI

UM SPIN S

Thermalization

Rapid mixing
sup ||Ti(p) —ofls < poly(|Af)e™™
PES(HA)

Mixing time: 7(¢) = O(polylog(|A[))

“Slower” mixing
sup [|Ti(p) — ol < exp(v/|A[)e™
PES(Ha)

Mixing time: 7(€) = O(v/|A[)

MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

AND CORRELATIONS

TEMS

- D(T(p)llo) < D(pllo) =2

Rel. entropy: D(pl|o) := tr[p(logp — logo)]

caré Inequal
Var, (Ty(p)) < Vary (p) e 220t

Variance: Var,(p) := tr[(0"/%0)?] — tr[po]?

Decay of correlation

tr[e=PH] commuting
Hamiltonian

Mixing time of {7} },>0

(e) = min{t >0 s T(e) — ol < 5}
peStiia

Covy(A: B) =

L(A:

B) = Doaslloa ® o5)

sup  |tr[(04p — 04 ® 05)04 ® O5|
loallll0sl<1

S




M G AND MODIFIED LOGAR

NCTIONAL INEQUALITIES AND CORRELATIONS
DECAY OF CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.

ion of spin i mm. Hamiltonian;



) MODIFIED LOGAR

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
ORRELATIONS

Y OF CORRELATIONS ON GIBBS STAT

Describe the correlation properties of Gibbs states of local Hamiltonians.

@ Hamiltonian: Hy = H4 + Hp + H(AUB)C + Hpa + Hyp,
@ Gibbs state: o5 (3) = e #HA / Tr[e=PHA] .

PEES RS IS D I I D - D RS DS IS I e
CRESEES IS D I I B S B N F DS R R ) RS )
SRS S S e I S S A s ) | 9
"I IS S I I e QG IV 9 9 I 9
QI D J9 99 9999V IVVY
JJ.)A.)J_)JJJJJJJJJJ
SRS ¢ % ¢ ESRESEES S S S I I B S e )




M G TIME AND MODIFIED LOGARITHMIC

NCTIONAL INEQUALITIES AND CORRELATIONS
DECAY OF CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.

@ Hamiltonian: Hy = H4 + Hp + H(AUB)C + Hpa + Hyp,
@ Gibbs state: o5 (3) = e #HA / Tr[e=PHA] .

9000000000000 00 I
S e R R S I ) Questions:

F NSRS RS RS B D I I I Rl B D R R N S ) —_—

SIS IS DN D I I D IS s R B D] 9

5000000000 ,,B, 35 & For non-commuting Hamiltonians:

IS RS I D I I - DIV 9 9 99 9

JJJJJJJE Fo 00000 e BHAUB xx ¢~ PHA ¢—FHEB 7
900002 #T 0000000090

QI Y 9 99 IVIIIIV9

JJ.)A.)JJJJJJJJJJJJ

o ofllo 0000000000 trAc[UA](X)tch[aA]::(g—A)A(@(o‘A)Bz
3 0101010/0 00000000000

trausyeloal == (oa) 45 ?
£ := dist(A, B)

Rapid ther i ion of spin i mm. Hamiltonian



) MODIFIED LOGARITHMIC SOBOLEV

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
RRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

Covg(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
Ioal=l0Bll=1

Rapid th ization of spin i . Hamiltoni



) MODIFIED LOGARITHMIC SOB(
CORRELATIONS

NCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Covg(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
Ioal=l0Bll=1

A\,

MUTUAL INFORMATION

I;(A: B):=D(ocaBl|lca ® oB)
for D(pl|o) = Tr[p(logp — logo)]

.

N

in comm. Hamiltoni



DECAY OF CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Covg(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
Ioal=l0Bll=1

v,
MUTUAL INFORMATION

I;(A: B):=D(ocaBl|lca ® oB)
for D(pl|o) = Tr[p(logp — logo)]

v
MIXING CONDITION

Ih(@4B)loo = [[03"? ® 05 2045052 ® 05 /?

Relation:

1
> Covy(A: B)2 <I,(A:B)

< H021/2®a§1/2m30 1/2 ®oy 1/2 _ﬂABHOO

Angela Capel ) : thermalization of spin chain comm. Hamiltonia



) MODIFIED LOGAR
CORRELATIONS

NCTIONAL

QUANTUM SPIN SY

Thermalization MLSI Decay of correlations

- D(Ti(p)ll0) < D(pllo) >

Rel. entropy: D(p|| r[p(logp — loga)]
Rapid mixing
sup |[Ty(p) ~ ol < poly(JA)e™" Cubitt et al."13
PES(HA)

Mixing time: 7(:

. Var,(Ty(p)) < Var,(p) e 220t
Variance: Var, (p) : Lr[(ﬂllza)2] — trfpo]?

“Slower” mixing

sup ||Ty(p) — o] Covariance
PES(HA)

. Covy(A: B) < Ke74(45)

Mixing time of {T}}¢>0 Notions: 7,(A: B) := D(gaplloa ® o) o G s
- = f a local,
Covo(A: B) = tz[(oAB — 04 ® 05)0A ® O] of alocal

i . _ , &
o= mm{t o I7i(e) = olh < } [0l I0slI<1




) MODIFIED LOGAR
CORRELATIONS

QUANTUM SPIN SY

S MLSI Decay of correlations
Thermalization . D) < Do) e
Rel. entropy: D(p||o) := tr[p(logp — logo)]
Rapid mixing
sup [ Ti(p) — ofls < poly(|A])e~ ™
PES(HA)
Mixing time: 7(€) = O(polylog(|A])) *
Cetal'13

Mutual information

Poincaré Inequal

“Slower” mixing - Var, (T3(p)) < Varg (p) e~ "
sup [|Ti(p) — ol < exp(v/[Al)e™?* Variance: Var,(p) := tr[(p"/20)?] — tr[po]?
€S(HA)

Mixing time: 7(¢) = O(V/|Al)

Mixing time of {7} };>0 Notions: 1,(A : B) i= D(ca5llo4 ® 05) pn Gbbsstate
- of a local,

[tr((oaB — 04 ® 08)0A ® O

7(5)=min{t>(]: s yHTg(p)faH\Ss} Covy(A: B) = ot
pes(ia 0l




) MODIFIED LOGAR
CORRELATIONS

QUANTUM SPIN SY

el Decay of correla S

- D(Ty(p)llo) < D(plo) e=>**

Thermalization

This project
Rel. entropy: D(p||o) := tr[p(logp — logo)]
Rapid mixing Mixing condition
sup |Ti(p) — ollx < poly(|Al)e™ loapoy! ® o5 — 1] < K ¢~ 74AB)
PES(HA) -

Mixing time: 7(g) = O(polylog(|A[))
Cetal’13
Mutual information
. I,(A:B) < Ke 1448
“Slower” mixing . Var, (Ti(p)) < Var,(p) e=2e0)t *

sup || Tu(p) — ollx < exp(v/[A])e % Variance: Var,(p) := tr[(p"/20)?] — tr[po]?
)

p
PES(Ha,

Mixing time: =O0(VIA])

Covariance

. Covo(A: B) < Ke

Mixing time of {7} };>0 Notions: I,(A: B) := D(caglloa ® o)

7(5):min{t>0: sup nn(/.)ﬂ,u,gg} Cov,(A: B):
PES(HA)

_sm  Gibbs state|
d of alocal
rfo—PH] o

[trl(cas — 04 ®95)04 ® O]

= sup
04l12:105 l2<1




TIME AND MODIFIED LOGAR

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS .
DECAY OF CORRELATIONS

MATHEMATICAL CHALLENGE IN QUANTUM PHYSICS

Given:
e~ PHA

e Hj local (commuting) Hamiltonian +—  op := Sle=PHA] Gibbs state .

@ L4 local Lindbladian with unique stationary state oa (La(oa) = 0).

Rapid thermalization of spin chain comm. Hamiltoniar



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS .
DECAY OF CORRELATIONS

MATHEMATICAL CHALLENGE IN QUANTUM PHYSICS

Given:

o Hj local (commuting) Hamiltonian +— o = % Gibbs state .

@ L4 local Lindbladian with unique stationary state oa (La(oa) = 0).

Questions:
e Does L have a positive, constant (or poly log) MLSI?

e How do correlations decay in oa between spatially separated regions?

Angela Capel (Univ ) Rapid thermalization of spin chain comm. Hamiltonians



AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
RRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) = f
)= R 2D(pallon)

Rapid th ization of spin i . Hamiltoni



) MODIFIED LOGARITHMIC SOB(

CORRELATIONS

.o —tr[La(pa)(log pa —logon)]
LA) = f
olln) = Tof, 2D(palon)

‘What do we want to prove?

llAH;{%I;lf a(;CA) > \Il(|AD >0 (Or =0 very 77510‘7\71}7”7 like m)
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TIME AND MODIFIED LOGAR

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
OF CORRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) = f
)= o 2D(pallon)

‘What do we want to prove?

liAH;éElf a(La) > U(JA]) >0 (or = 0 very ”slowly”, like Wg(m‘))

A

Can we prove something like
a(Lna) > V(|A]) a(La)>07

Rapid thermalization of spin chain comm. Hamiltoniar



G TIME AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
AY OF CORRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) = f
)= o 2D(pallon)

‘What do we want to prove?

liAH;éElf a(La) > U(JA]) >0 (or = 0 very ”slowly”, like Wg(m‘))

A

Can we prove something like
a(Lna) > V(|A]) a(La)>07

No, but we can prove




AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
)F CORRELATIONS

CONDITIONAL MLSI CONSTANT

The MLSI constant of Lo = > L is defined by
kEA

.o —tr[La(pa)(log pa —logon)]
L) = f
et = 2D(pallon)
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) N ) LOGARITHMIC SOBOLEV IN
MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

CONDITIONAL MLSI CONSTANT

The MLSI constant of Lo = > L is defined by
kEA

.« —tr[La(pa)(log pa —logon)]
Lp) = f
et = 2D(pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £4 on A C A is defined by

—tr[La(pa)(log pa —logon)]
PAESA 2D a(palloa)

Rapid thermalization of spin chain comm. Hamiltonians



MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS

STRATEG

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

Quasi-factorization
of the
relative Definition
entropy conditional
Log-Sobolev
constant

Geometric
recursive
argument

Positive conditional
log-Sobolev cons

on the Gibbs state

. Hamilt



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV QUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS .
DECAY OF CORRELATIONS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

BC
A B C
%/—/

AB

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pa,on € S(Hapc), where £(capc) depends only on oapc and measures how far
oac is from o4 ® oc.

Angela Capel (Ur ) Rapid thermalization of spin in comm. Hamiltonians



AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
)F CORRELATIONS

How DOES THE STRATEGY WORK?

We want to prove:

(e = jaf =HEAGIBE iosen) ‘a(ﬁA) > U(|A]) an(La) > O‘ anlln) = g =SHEaGRlonpn —logon)]
After choosing and , we prove the following:
D(palloa) = Da(palloa) ¥(lA]) >0 an(La) >0

Angela Capel (Uni i ) Rapid thermalization of spi i mm. Hamiltoniar



PRODUCT FIXED POINT
X § )R DAVIES GENERATORS IN 1D
ExampLEs OF MLSI

ExXAMPLE: TENSOR PRODUCT FIXED POINT
Lalpa) = Z (02 ® pze — pa)  heat-bath

(C.-Lucia-Pérez Garcia ’18)

(Beigi-Datta-Rouzé ’18) z€EA
Dz(pAHUA) = D(pAHU/\) = D(pICHUIC)
OAN = ® Oz, @
TEA
D(palloa) <
o\
E T
zEA
- (oa)log s — log ) 10 = IOg O'A)}
O R o < Z pA g P
zEA 20&/\([, )
1
S oo 2 e 1 —1
~ 2inf aa(Ls) Z r[ (pa)(log pa OgUA)]
TEA TEA
C
‘1\7"/:7 —t ﬁ 1 _1
2inf an(Ls) (= tr[La(pa)(log pa — logoa)])
TzEA
ﬁi\ﬂ

< (— tr[La(pa)(log pa — logaa)]) -

Rapid thermalization of spin chain comm. Hamiltonians
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PRODUCT FIXED POINT

N VILSI FOR DAVIES GENERATOF
ExampLEs OF MLSI

DyNAMICS

—BH
Let op = tifﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
rfe

miltoniar



The heat-bath generator is defined as:

1/2 —1/2 —1
£l(pa) =30 (oa 207 Ppacors
xEA

0307~ )

Angela Capel (Uni
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Hamiltoni




TENSOR PRODUCT FIXED POINT
MLST FOR DAVIES GENERATOF

ExampLEs OF MLSI

DyNAMICS

—BH
Let op = 7&(“&}

be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucari 2okl — o)
xEA

DAVIES GENERATOR

The Davies generator is given by:
L07(X) = ilHa, X] + Y L2 (X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

ngela Capel (Uni i ) izz in chain c . Hamiltoniar




ExampLEs OF MLSI

DyNAMICS

—BH
Let op = % be the Gibbs state of finite-range, commuting Hamiltonian.
trfe ™/

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucari 2okl — o)
xEA

DAVIES GENERATOR

The Davies generator is given by:
L07(X) = ilHa, X] + Y L2 (X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

e =3 (B0 -X),

TEA

where the conditional expectations do not depend on system-bath couplings.
Angela Capel (Uni i

) Rapid thermalization in comm. Hamiltoniar




R PRODUCT FIXED POINT

SI FOR DAVIES GENERATORS I

ExampLEs OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,
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R PRODUCT FIXED POINT

XAMPLES OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

Using the spectral gap A(La):

e~ oally < v/Tomin e AEDL,
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PRODUCT FIXED POINT

ExampLEs OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

Using the spectral gap A(La):

e~ oally < v/Tomin e AEDL,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let C/}\I’D be the heat-bath or Davies generator in 1D. Then, Ef’D has a positive
spectral gap that is independent of the system size, for every temperature.
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OR PRODUCT FIXED POINT

EXAMPLES OF MLSI AN

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

ot — oally < v/Z108(1 o) €N,

Using the spectral gap A(La):

ot = aally < v/Tomm e >ERE,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let £f’D be the heat-bath or Davies generator in 1D. Then, L'f’D has a positive
spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,
Beigi-Datta-Rouzé '18)

Let £ be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.

Angela Capel (Univ i Rapid thermalization of spin chain comm. Hamiltonians



R PRODUCT FIXED POINT
OR DAVIES GENE

Results of Quasi-Factorization Results of Modified Logarithmic

or Approximate Tensorization Sobolev Inequality

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC A

D(palloa) < c[Dap(palloa) + Dec(palloa)]l +d A ©

Classical quasi-factorization Effr:gzz Strong subadditivity

Ent(f) < cpu[Ent(f|F1) + Ent(f|F2)] S(pasc) +S(ps) < S(pas) + S(psc)

LR73

NNy N
BS-entropy MCNMNN,

D(p|lo) = Tr[plog General superadditivity By, 0 By, = B}
B(A) < c[Dap(d)+ D Dm < D1+ Dy

"~ CLP18'

) == D(palloa) = D(paclloac) D = D(p| EM(p))

BCR20,
L20
Pinching onto
P different bases
L£(X) i= By (X)
CRS20 +Ep(X) - 2X

ssumptions,

D < ¢[Dy + Dy
CRS20

BDR20 Local commuting Hamiltonian, high T, Schmidt:
Generalized depolarizing 1D Heat-bath generator, :f]:lassleel
i« 5
A(pA) = 04 @ pae — pa 2 assumptions - Nearest neighbour

Rapid ther i i of spi i Hamiltonian



T FIXED POINT

ExampLEs OF MLSI

QUASI—FACTORIZATION OF THE REL

Da(palloa) == D(palloa) = D(paclloac)

- |
v Y

tum quasi-factorization

D5 (pallon) = D(pall Ex(pa)) Y

Pinching onto
[Das(A) + Dpc(A)] .

- ; ‘ » different bases
: Y L(X) = Ey(X)
A i 7 ¢
< ]

+E5(X) —2X

<!

I
Generalized depolarizing
L3 (pa) = 0z ® pae — pa

Local commuting Hamiltonian, high T, Schmidt:
- Classical
1D Heat-bath generator, D

2 assumptions

- Nearest neighbour

1D Davies generator,
every temperature

Davies generator

Ds<kay, D;
i€EA

miltoniar



[ENSOR PRODUCT FIXED POINT

ST F /1S GENBRATORS
EXAMPLES OF MLSI MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).
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EXAMPLES OF MLSI MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Angela Capel (Univ inge Rapid thermalization of spin chain comm. Hamiltonians



[ENSOR PRODUCT FIXED POINT

EXAMPLES OF MLSI MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

sup ||pt — oall, < poly(|A)e™".
PAESA
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EXAMPLES OF MLSI MLST FOR DAVIES GENERATORS IN 1D

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

—o

sup ||pr — oall; < poly(JA])e
PAESA

For a(L£x) a MLSI constant:

ot — oall, < v/210g(1/min) e 540t

Angela Capel (Univ ingen) Rapid thermalization of spin chain comm. Hamiltonians
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MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let L% be a Davies generator with unique fixed point o given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSIT a((LE) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

—o

sup |[lpt —oall; < poly(|A])e
PAESA

For a(L£x) a MLSI constant:

ot — oall, < v/210g(1/min) e 540t

RAPID MIXING

In the setting above, £ has rapid mixing.

Angela Capel (Univ i Rapid thermalization of spin chain comm. Hamiltonians



PRODUCT FIXED POINT
ZENERATORS IN 1D

SKETCH OF THE

) —tr[Lp(pp)(logpp — logop)] ) EPA (pp)
a(Ly) = inf = inf — 287
PAESA 2D (pAllon) PAESA 2D (ppllop)
[errrrrr)
ap = 22l = I;/\EP,(;)) EEP (P) > z min_E2=(0) > 0
" a0le) | | e | fc(logmw)zn(pump» i | s ER DG |

QUASI-FAC‘TOR IZATION

Let AUB = A CZ and ppr,oa € Sx. The following holds
D(palloa) < &(oacpe) [Da(palloa) + Delpalloa)],

where §(o‘Ach):(1—2” 1/2®a /aAch0;§/2®al;é/2—]lAch

W)

b) D4, (pllo) Da,(pllo)

— 4) GEEEEEEEEEEEEERER

9900@3999)0 0 0F0D) 3 D (pllEz(p)
~~— ~~—

)

90000000000000000 r"
D(pllo)

C) 90000000000000000
SSA-A-A
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PRODUCT FIXED POINT
ZENERATORS IN 1D

SKETCH OF THE

) —tr[Lp(pp)(logpp — logop)] ) EPA (pp)
a(Ly) = inf = inf — 287
PAESA 2D (pAllon) PAESA 2D (ppllop)
[errrrrr)
ap = 22l = I;/\EP,(;)) EEP (P) > z min_E2=(0) > 0
" a0le) | | e | fc(logmw)zn(pump» i | s ER DG |

QUASI-FAC‘TOR IZATION

Let AUB = A CZ and ppr,oa € Sx. The following holds
D(palloa) < &(oacpe) [Da(palloa) + Delpalloa)],

where §(o‘Ach):(1—2” 1/2®a /aAch0;§/2®al;é/2—]lAch

W)

b) D4, (pllo) Da,(pllo)

— 4) GEEEEEEEEEEEEERER

9900@3999)0 0 0F0D) 3 D (pllEz(p)
~~— ~~—

)

90000000000000000 r"
D(pllo)

C) 90000000000000000
SSA-A-A

Last step: Spectral gap <l%n) MLSI.
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EXAMPLES OF MLSI RATORS IN 1D

CONSEQUENCES

Consequences of this result:
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

e Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).
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PLES OF MLSI DAVIES GENERATORS IN 1D

CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

e Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

e Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ® X ® Z (and p.b.c.).
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

e Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ® X ® Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.

Angela Capel (Un - Tii S Rapid thermalization of spin chain comm. Hamiltonians
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In this talk:
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XAMPLES OF MLSI

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.
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XAMPLES OF MLSI

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

o We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.
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XAMPLES OF MLSI

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

o We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

o We have shown that some results of quasi-factorization and decay of correlations
imply positivity of MLSI constants.

Angela Capel (Uni ) id ther izati f spi in comm. Hamiltoni
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Open problems:
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OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:

o In the last result, can the MLSI be independent of the system size?
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EXAMPLES OF MLSI NERATORS IN 1D

OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
o In the last result, can the MLSI be independent of the system size?
e Extension to more dimensions.

e 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).
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EXAMPLES OF MLSI MLSI For Dav ENERATORS IN 1D

OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
o In the last result, can the MLSI be independent of the system size?
o Extension to more dimensions.
e 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez

Garcia-Perez Hernandez, '21) ).

e Improve results of quasi-factorization for the relative entropy: More systems?
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[ENSOR PRODUCT FIXED POINT

EXAMPLES OF MLSI MLSI FOR DAVIES GENERATORS IN 1D

OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
o In the last result, can the MLSI be independent of the system size?

o Extension to more dimensions.

e 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

e Improve results of quasi-factorization for the relative entropy: More systems?

o New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Dgs(pllo) = tr [plog(p1/20_1p1/2)] :

Angela Capel (Univ ) Rapid thermalization of spin chain comm. Hamiltonians



:s OF MLSI

Thank you for your attention!

Do you have any questions?

David Pérez-Garcia .
U. Complutense Angelo Lucia
Madrid u. Complll.ltense Cambyse Rouzé
Madrid T. U. Munich

Ivan Bardet
Inria Paris

Andreas Bluhm .
i L
Daniel Stilck Franca Antonio U. Grenoble i Gao
pé A U. Houston
ENS Lyon érez-Hernandez
UNED Madrid
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ExampLEs OF MLSI

PROOF: CONDITIONAL RELATIVE ENTROPIES + QUASI-FACTORIZATION

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,

DX (palloa) :== D(pallEa(pa)) -

Heat-bath cond. expectation: E4(-) := lim (01/2023/2 tral-] a;i/zaiﬂ)n .
n— 0o

D(pasclloasc) Das(pasclloasc) Dpc(pasclloasc)

OABC

ABlc <&(id) |falBlc + 4Bl c
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['ENSOR PRODUCT ED POINT

EXAMPLES OF MLSI MLST For Davii RATORS IN 1D

PROOF: CONDITIONAL RELATIVE ENTROPIES + QUASI-FACTORIZATION

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,

DX (palloa) :== D(pallEa(pa)) -
1/2 _—1/2

Heat-bath cond. expectation: E4(-) := lim (UA 04 tral- ]0'71/2 1/2)
n— 00

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and paBc,oasc € Sapc. The following holds

D(papclloasc) < €&(oac) [Das(pasclloapc) + Dec(papc|loasc)],

where
¢(oac) = 12 1/2 : 12
1—2H ®oq O’ACO'A ®0 —]lAcH
oo
D(papclloasc) Dap(pasclloasc) Dpc(pasclloasc)

OABC

ABlc <&(id) |falBlc + 4Bl c
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ExampLEs OF MLSI

PROOF: QUASI-FACTORIZATION

B B,
— —— A
900909000000 0000000
N N = . ~
A Ay

is the Gibbs state of a k-local, commuting Hamiltonian H}y .

Let AUB = A CZ and pp,op € Sp. The following holds
D(pnlloa) < &(cacpe) [Dalpalloa) + Delpalloa)l,

where 1

&(oacpe) =
Z1/2 —1/2 —1/2 —1/2
1—2H0’Ac/ ®UBC/ TAcBe O'Ac/ ®UBC/ — T gcpe

4
Aipr
_ P
oA J?J”Aiwai)} ® T(9a;) R (4;U04;)° 00000101010 000000000
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OR DAV RATORS IN 1D

ExampLEs OF MLSI

PROOF: QUASI-FACTORIZATION

B B,
— —— A
900909000000 0000000
N N = . ~
A Ay

e~ BHA

oA = (PR is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI—FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds
D(pnlloa) < &(cacpe) [Dalpalloa) + Delpalloa)l,

where 1
&(oacpe) =

—1/2 —1/2 —-1/2 =
1—2H0’Ac/ ®UBC/ o‘AchaAc/ ®oBi/2—IlAch

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)

Since op is a QMC between A; <> 9(A;) <> (A; UDA;)¢, then:

Da(palloa) < D Da,(palloa).
i

v
Aipr
_ P
oA J?J”Aiwai)} ® T(9a;) R (4;U04;)° 00000101010 000000000

in chain comm. Hamiltonians
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ExampLEs OF MLSI

DECAY OF CORRELATIONS

B By
~ - ~ ~ - ~
90000000000000000
< 7 N . 2
i 1

Let AUB = A CZ and pp,op € Sp. The following holds

D(pallon) < &(oacpe) > [Da,(palloa) + D, (palloa)] ,

i

where 1
&(oacpe) =
—1/2 —1/2 —1/2 —1/2
1—2H0'Ac/ ®‘7BC/ TAcBe a'AC/ ®0BC/ — 1 pcpe
00000000000000000 0000000000000 00

— A AN - ~———
C E D. Cy E D, X
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ExampLEs OF MLSI

PROOF: DECAY OF CORRELATIONS

B By
P — A
90000000000000000
41 12

Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oacpe) Z [Da; (palloa) + Dg, (palloa)]

where

1
&(oacBe) =
—1/2 —1/2 —1/2 —1/2
1—2H0Ac/ ®oBc/ UACBCGAC/ ®0Bc/ — L 4cpe
0000002020000000000 0000002909020 000000

— A AN - ~——
C E D. Cy E D, X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

Ha;(l ®oyloxg — ﬂXZHoo < s(Y)).

Angela Capel (Univ ) apid thermalization of spin chain comm. Hamiltonians



ExampLEs OF MLSI

PROOF: DECAY OF CORRELATIONS

B By
P — A
90000000000000000
41 12

Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oacpe) Z [Da; (palloa) + Dg, (palloa)]

where

1
&(oacBe) =
—1/2 —1/2 —1/2 —1/2
1—2H0Ac/ ®oBc/ UACBCGAC/ ®0Bc/ — L 4cpe
0000002020000000000 0000002909020 000000

— A AN - ~——
C E D. Cy E D, X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

Ha;(l ®oyloxg — ﬂXZHoo < s(Y)).

As a consequence, (o gcpe) is uniformly bounded as long as # segments = O(|A|/1n |A]).
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[ENSOR PRODUCT

EXAMPLES OF MLSI e

PROOF: GEOMETRIC RECURSIVE ARGUMENT

By By

~ ~ ~ ~ A
999000000000000000
S —

i 1y

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) := D(pallEa(pa)) -

COMPARISON CONDITIONAL REL. ENT. (Bardet-C.-Rouzé, 20)

Da(palloa) < DX(palloa)

® &
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[ENSOR PRODUCT

EXAMPLES OF MLSI e

PROOF: GEOMETRIC RECURSIVE ARGUMENT

By By

~ ~ ~ ~ A
999000000000000000
S —

i 1y

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) := D(pallEa(pa)) -

COMPARISON CONDITIONAL REL. ENT. (Bardet-C.-Rouzé, 20)

Da(palloa) < DXE(palloa)

Therefore, by this and + @ , we have:

D(palloa) < &(0acne) Y [Dfi (palloa) + DE, (PA”UA)} ;

)

and thus

a(ﬁf) > mmin {aAi(ﬂfLaBi (Lf)} ,
for ocAi(Ef\{) _ 7tr[£ili(PA)(lnpA 71nUA)]

ey DipallBg, (o)
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ExampLEs OF MLSI

Proor: Positive CMLSI

D(pallEa;(pn)) < 4ka, Y D(pall E;(pa))
JEA;
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['ENSOR PRODUCT FIXED POINT
MLST FOR DAVIES GENERATORS IN 1D

ExampLEs OF MLSI

Proor: Positive CMLSI

ION OF COND. RE E ENTROPIES (Gao-Rouzé, '21)

D(pallEa;(pn)) < 4ka, Y D(pall E;(pa))
JEA;

REDUCTION FROM CMLSI TO GAP

1
In\’

where \ < 1 is a constant related to the spectral gap by the detectability lemma.

ka,;
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ExampLEs OF MLSI

Proor: Positive CMLSI

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallEa;(pn)) < 4ka, Y D(pall E;(pa))

JEA;

REDUCTION FROM CMLSI TO GAP

1

kAiocm,

where \ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), ka, = O(In|A|) for 4; = O(In|A]).
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ExampLEs OF MLSI

Proor: Positive CMLSI

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallEa;(pn)) < 4ka, Y D(pall E;(pa))
JEA;

REDUCTION FROM CMLSI TO GAP

o« L
AT A

k

where \ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), ka, = O(In|A|) for 4; = O(In|A]).

CMLSI (Gao-Rouzé, ’21)

The CMLSTI of the local generators is positive:

(L7 == grelga(ﬁjD ®Idg) > 0.

Rapid thermalization of spin chain comm. Hamiltonians



LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[.]g;j/Qg}x/Z) .

n—o0o

Davies cond. expectation: Ef,’(«) = tlim etﬁfj(_) .
— 00
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ExampLEs OF MLSI

LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[-]a;LI./QU}X/Z) .

n—o0o

Davies cond. expectation: Ef;)(«) = tlim ew/D%(-) .
— 00

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.
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LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[-]U;i/Qallx/Q) .
n— oo

Davies cond. expectation: EE(«) = tlim ewg(-) .
— 00

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

For £, there is a positive MLSI constant a(£Y) = Q(In |A|~1).
Therefore, £X has rapid mixing.
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LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[-]U;i/Qallx/Q) .
n— oo

Davies cond. expectation: EE(«) = tlim ewg(-) .
— 00

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

For £, there is a positive MLSI constant a(£Y) = Q(In |A|~1).
Therefore, £X has rapid mixing.

in comm. Hamilton




	Introduction and motivation
	Mixing time, functional inequalities and correlations
	Mixing time and modified logarithmic Sobolev inequalities
	Decay of correlations

	Examples of MLSI
	Tensor product fixed point
	MLSI for Davies generators in 1D


