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Motivation: Open quantum many-body systems

Open quantum many-body system.

No experiment can be executed at zero temperature or be completely
shielded from noise.

Finite lattice Λ ⊂⊂ Zd.

Hilbert space associated to Λ is
HΛ =

⊗
x∈Λ Hx.

Density matrices: SΛ := S(HΛ) =
{ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Quantum Markov semigroup / Dissipative quantum evolution

Quantum Markov semigroup

A quantum Markov semigroup is a 1-parameter continuous semigroup {Tt}t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

Semigroup:

Tt ◦ Ts = Tt+s.

T0 = 1.

d

dt
Tt = Tt ◦ LΛ = LΛ ◦ Tt.

QMS generator

The infinitesimal generator LΛ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

Tt = etLΛ ⇔ LΛ =
d

dt
Tt |t=0.

For ρΛ ∈ SΛ, LΛ(ρΛ) = −i[HΛ, ρΛ] +
∑
k∈Λ

L̃k(ρΛ) GKLS equation.
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Mixing of dissipative quantum systems

Mixing ⇔ Convergence

Primitive QMS

We assume that {Tt}t≥0 has a unique full-rank invariant state which we denote by σΛ.

Detailed balance condition

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition:

⟨f,L∗
Λ(g)⟩σ = ⟨L∗

Λ(f), g⟩σ,

for every f, g ∈ BΛ and Hermitian, where

⟨f, g⟩σ = tr
[
f σ1/2 g σ1/2

]
.

Notation: ρt := Tt(ρ).

ρΛ
t−→ ρt := Tt(ρΛ) = etLΛ(ρΛ)

t→∞−→ σΛ
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Mixing time

Under the previous conditions, there is always convergence to σΛ.
How fast does convergence happen?

Note T∞(ρ) := σΛ for every ρ.

Mixing time

We define the mixing time of {Tt} by

tmix(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

∥Tt(ρ)− T∞(ρ)∥1 ≤ ε

}
.
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Rapid mixing

Mixing time

We define the mixing time of {Tt} by

tmix(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

∥ρt − σΛ∥1 ≤ ε

}
.

Recall: ρt := Tt(ρ) , σΛ := T∞(ρ).

Rapid mixing

We say that LΛ satisfies rapid mixing if

sup
ρΛ∈SΛ

∥ρt − σΛ∥1 ≤ poly(|Λ|)e−γt.

tmix(ε) ∼ poly log(|Λ|).
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Applications to quantum information/quantum computing

What are the implications
of rapid mixing?

“Negative” point of view:

Quantum properties that hold in the ground state but not in the Gibbs state are
suppressed too fast for them to be of any reasonable use.

“Positive” point of view:

Thermal states with short mixing time can be constructed efficiently with a
quantum device that simulates the effect of the thermal bath.

This has important implications as a self-studying open problem as well as in
optimization problems via simulated annealing type algorithms.

Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Applications to quantum information/quantum computing

If rapid mixing, no error correction:

Main applications or consequences:

Robust and efficient preparation of topologically ordered phases of matter via
dissipation.

Design of more efficient quantum error-correcting codes optimized for correlated
Markovian noise models.
Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-Garćıa ‘15)

Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-Garćıa ’15)

Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca ’20)

Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca ’20)

Quantum annealers: Output an energy closed to that of the fixed point after short
time (C., Rouzé, Stilck Franca ’20)

Preparation Gibbs states: Existence of local quantum circuits with logarithmic
depth to prepare the Gibbs state (C., Rouzé, Stilck Franca ’20)

Establish the absence of dissipative phase transitions (Bardet, C., Gao, Lucia,
Pérez-Garćıa, Rouzé ’21)

Examples of interacting SPT phases with decoherence time growing logarithmically
with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-Garćıa, Rouzé ’21)

And many more. . .
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Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca ’20)
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Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Modified logarithmic Sobolev inequality (MLSI)

Recall: ρt := Tt(ρ).

Master equation:
∂tρt = LΛ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[LΛ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of
itself:

2αD(ρt||σΛ) ≤ − tr[LΛ(ρt)(log ρt − log σΛ)].

Modified logarithmic Sobolev inequality
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Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of LΛ is defined as:

α(LΛ) := inf
ρΛ∈SΛ

− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(LΛ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e
−2α(LΛ) t,

and Pinsker’s inequality

(
1

2
∥ρ− σ∥21 ≤ D(ρ∥σ) for ∥A∥1 := tr[|A|]

)
∥ρt − σΛ∥1 ≤

√
2D(ρΛ||σΛ) e

−α(LΛ) t ≤
√

2 log(1/σmin) e
−α(LΛ) t.

For thermal states σΛ = e−βH / tr[e−βH ],
σmin ∼ 1/exp(|Λ|).

Rapid mixing

∥ρt−σΛ∥1≤poly(|Λ|)e−γt

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

∥ρt − σΛ∥1 ≤
√

1/σmin e
−λ(L∗

Λ) t.

Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of LΛ is defined as:

α(LΛ) := inf
ρΛ∈SΛ

− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(LΛ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e
−2α(LΛ) t,

and Pinsker’s inequality

(
1

2
∥ρ− σ∥21 ≤ D(ρ∥σ) for ∥A∥1 := tr[|A|]

)
∥ρt − σΛ∥1 ≤

√
2D(ρΛ||σΛ) e

−α(LΛ) t ≤
√

2 log(1/σmin) e
−α(LΛ) t.

For thermal states σΛ = e−βH / tr[e−βH ],
σmin ∼ 1/exp(|Λ|).

Rapid mixing

∥ρt−σΛ∥1≤poly(|Λ|)e−γt

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

∥ρt − σΛ∥1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of LΛ is defined as:

α(LΛ) := inf
ρΛ∈SΛ

− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(LΛ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e
−2α(LΛ) t,

and Pinsker’s inequality

(
1

2
∥ρ− σ∥21 ≤ D(ρ∥σ) for ∥A∥1 := tr[|A|]

)
∥ρt − σΛ∥1 ≤

√
2D(ρΛ||σΛ) e

−α(LΛ) t ≤
√

2 log(1/σmin) e
−α(LΛ) t.

For thermal states σΛ = e−βH / tr[e−βH ],
σmin ∼ 1/exp(|Λ|).

Rapid mixing

∥ρt−σΛ∥1≤poly(|Λ|)e−γt

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

∥ρt − σΛ∥1 ≤
√

1/σmin e
−λ(L∗

Λ) t.

Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of LΛ is defined as:

α(LΛ) := inf
ρΛ∈SΛ

− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(LΛ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e
−2α(LΛ) t,

and Pinsker’s inequality

(
1

2
∥ρ− σ∥21 ≤ D(ρ∥σ) for ∥A∥1 := tr[|A|]

)
∥ρt − σΛ∥1 ≤

√
2D(ρΛ||σΛ) e

−α(LΛ) t ≤
√

2 log(1/σmin) e
−α(LΛ) t.

For thermal states σΛ = e−βH / tr[e−βH ],
σmin ∼ 1/exp(|Λ|).

Rapid mixing

∥ρt−σΛ∥1≤poly(|Λ|)e−γt

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

∥ρt − σΛ∥1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Decay of correlations on Gibbs state

Motivation

Describe the correlation properties of Gibbs states of local Hamiltonians.

Hamiltonian: HΛ = HA +HB +H(A∪B)c +H∂A +H∂B ,

Gibbs state: σΛ(β) = e−βHΛ /Tr[e−βHΛ ] .

ℓ := dist(A,B)

Questions:

For non-commuting Hamiltonians:

e−βHA∪B ≈ e−βHA e−βHB ?

trAc [σΛ]⊗ trBc [σΛ] :=
(
σΛ

)
A
⊗

(
σΛ

)
B

≈

tr(A∪B)c [σΛ] :=
(
σΛ

)
A∪B

?
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Decay of correlations on Gibbs state

3 different forms of decay of correlations.

Operator correlation

Covσ(A : B) := sup
∥OA∥=∥OB∥=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]|

Mutual information

Iσ(A : B) := D(σAB ||σA ⊗ σB)

for D(ρ∥σ) = Tr[ρ(logρ− logσ)]

Mixing condition

∥h(σAB)∥∞ =
∥∥∥σ−1/2

A ⊗ σ
−1/2
B σABσ

−1/2
A ⊗ σ

−1/2
B − 1AB

∥∥∥
∞

Relation:

1

2
Covσ(A : B)2 ≤ Iσ(A : B)

≤
∥∥∥σ−1/2

A ⊗ σ
−1/2
B σABσ

−1/2
A ⊗ σ

−1/2
B − 1AB

∥∥∥
∞
.
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Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Mathematical Challenge in Quantum Physics

Given:

HΛ local (commuting) Hamiltonian 7→ σΛ := e−βHΛ

tr[e−βHΛ ]
Gibbs state .

LΛ local Lindbladian with unique stationary state σΛ (LΛ(σΛ) = 0).

Questions:

Does LΛ have a positive, constant (or poly log) MLSI?

How do correlations decay in σΛ between spatially separated regions?
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Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Mixing time and modified logarithmic Sobolev inequalities
Decay of correlations

Objective

MLSI constant

α(LΛ) := inf
ρΛ∈SΛ

− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

What do we want to prove?

lim inf
Λ↗Zd

α(LΛ) ≥ Ψ(|Λ|) > 0 (or = 0 very ”slowly”, like 1
poly log(|Λ|) )

Can we prove something like

α(LΛ) ≥ Ψ(|A|) α(LA) > 0 ?

No, but we can prove

α(LΛ) ≥ Ψ(|A|) αΛ(LA) > 0 .
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Mixing time and modified logarithmic Sobolev inequalities
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Conditional MLSI constant

MLSI constant

The MLSI constant of LΛ =
∑
k∈Λ

Lk is defined by

α(LΛ) := inf
ρΛ∈SΛ

− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of LΛ on A ⊂ Λ is defined by

αΛ(LA) := inf
ρΛ∈SΛ

− tr[LA(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ∥σΛ) ≤ ξ(σABC) [DAB(ρΛ∥σΛ) +DBC(ρΛ∥σΛ)] ,

for ρΛ, σΛ ∈ S(HABC), where ξ(σABC) depends only on σABC and measures how far
σAC is from σA ⊗ σC .
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How does the strategy work?

We want to prove:

α(LΛ) ≥ Ψ(|A|) αΛ(LA) > 0

After choosing and , we prove the following:

D(ρΛ∥σΛ) → DA(ρΛ∥σΛ) Ψ(|A|) > 0 αΛ(LA) > 0
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Example: Tensor product fixed point

(C.-Lucia-Pérez Garćıa ’18)

(Beigi-Datta-Rouzé ’18)

LΛ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ) heat-bath

Dx(ρΛ∥σΛ) := D(ρΛ∥σΛ)−D(ρxc∥σxc)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[Lx(ρΛ)(log ρΛ − log σΛ)]

2αΛ(Lx)

≤ 1

2 inf
x∈Λ

αΛ(Lx)

∑
x∈Λ

− tr[Lx(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(Lx)
(− tr[LΛ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[LΛ(ρΛ)(log ρΛ − log σΛ)]) .
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Tensor product fixed point
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Dynamics

Let σΛ = e−βHΛ

tr
[
e−βHΛ

] be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The heat-bath generator is defined as:

LH
Λ (ρΛ) :=

∑
x∈Λ

(
σ
1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)

Davies generator

The Davies generator is given by:

LD;∗
Λ (X) := i[HΛ, X] +

∑
x∈Λ

L̃D
x (X) ,

where the LD
x are defined in terms of the Fourier coefficients of the correlation functions in

the bath and the ones of the system couplings.

Schmidt generator

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

LS;∗
Λ (X) =

∑
x∈Λ

(
ES;∗

x (X)−X
)
,

where the conditional expectations do not depend on system-bath couplings.
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Previous results

Let us recall: For α(LΛ) a MLSI constant,

∥ρt − σΛ∥1 ≤
√

2 log(1/σmin) e
−α(LΛ) t.

Using the spectral gap λ(LΛ):

∥ρt − σΛ∥1 ≤
√

1/σmin e
−λ(LΛ) t.

Spectral gap for Davies and heat-bath (Kastoryano-Brandao, ’16)

Let LH,D
Λ be the heat-bath or Davies generator in 1D. Then, LH,D

Λ has a positive
spectral gap that is independent of the system size, for every temperature.

MLSI for heat-bath with tensor product fixed point (C.-Lucia-Pérez Garćıa,
Beigi-Datta-Rouzé ’18)

Let LH
Λ be the heat-bath generator with tensor product fixed point. Then, it has a

positive MLSI constant.
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Beigi-Datta-Rouzé ’18)
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Spectral gap for Davies and heat-bath (Kastoryano-Brandao, ’16)

Let LH,D
Λ be the heat-bath or Davies generator in 1D. Then, LH,D
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spectral gap that is independent of the system size, for every temperature.

MLSI for heat-bath with tensor product fixed point (C.-Lucia-Pérez Garćıa,
Beigi-Datta-Rouzé ’18)
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Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Tensor product fixed point
MLSI for Davies generators in 1D

MLSI for Davies generators in 1D

MLSI for 1D Davies generators, (Bardet-C.-Gao-Lucia-Pérez Garćıa-Rouzé, ’22)

Let LD
Λ be a Davies generator with unique fixed point σΛ given by the Gibbs state of

a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LD

Λ satisfies a positive MLSI α(LD
Λ ) = Ω(ln(|Λ|)−1).

(Kastoryano-Brandao, ’16) LD
Λ has a positive spectral gap that is independent of

the system size, for every temperature.

Rapid mixing:

sup
ρΛ∈SΛ

∥ρt − σΛ∥1 ≤ poly(|Λ|)e−γt.

For α(LΛ) a MLSI constant:

∥ρt − σΛ∥1 ≤
√

2 log(1/σmin) e
−α(LΛ) t.

Rapid mixing

In the setting above, LD
Λ has rapid mixing.
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Sketch of the proof: Quasi-factorization

α(LΛ) := inf
ρΛ∈SΛ

− tr
[
LΛ(ρΛ)(log ρΛ − log σΛ)

]
2D(ρΛ||σΛ)

= inf
ρΛ∈SΛ

EPΛ(ρΛ)

2D(ρΛ||σΛ)

Quasi-factorization

Let A ∪ B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) + DB(ρΛ||σΛ)] ,

where ξ(σAcBc ) =
(
1 − 2

∥∥∥σ−1/2
Ac ⊗ σ

−1/2
Bc σAcBc σ

−1/2
Ac ⊗ σ

−1/2
Bc − 1AcBc

∥∥∥
∞

)−1
.

Last step: Spectral gap
O(logn)7→ MLSI.
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Consequences

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every β > 0.

Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |Λ|).

Corollary for SPT phases

For every β > 0, 1D SPT phases thermalize in time logarithmic in |Λ|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ⊗X ⊗ Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.

Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Tensor product fixed point
MLSI for Davies generators in 1D

Consequences

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every β > 0.

Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |Λ|).

Corollary for SPT phases

For every β > 0, 1D SPT phases thermalize in time logarithmic in |Λ|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ⊗X ⊗ Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.
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Conclusions

In this talk:

We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

We have shown that some results of quasi-factorization and decay of correlations
imply positivity of MLSI constants.
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Ángela Capel (Universität Tübingen) Rapid thermalization of spin chain comm. Hamiltonians



Introduction and motivation
Mixing time, functional inequalities and correlations

Examples of MLSI

Tensor product fixed point
MLSI for Davies generators in 1D

Conclusions

In this talk:

We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

We have shown that some results of quasi-factorization and decay of correlations
imply positivity of MLSI constants.
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Open problems and lines of research

Open problems:

In the last result, can the MLSI be independent of the system size?

Extension to more dimensions.
2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, ’21) ).

Improve results of quasi-factorization for the relative entropy: More systems?

New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

DBS(ρ∥σ) = tr
[
ρ log

(
ρ1/2σ−1ρ1/2

)]
.
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Thank you for your attention!

Do you have any questions?

David Pérez-Garćıa
U. Complutense

Madrid

Daniel Stilck Franca
ENS Lyon

Angelo Lucia
U. Complutense

Madrid

Antonio
Pérez-Hernández
UNED Madrid

Cambyse Rouzé
T. U. Munich

Andreas Bluhm
U. Grenoble

Ivan Bardet
Inria Paris

Li Gao
U. Houston
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Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: DA(ρΛ∥σΛ) := D(ρΛ∥σΛ) − D(ρAc∥σAc ) ,

DE
A(ρΛ∥σΛ) := D(ρΛ∥EA(ρΛ)) .

Heat-bath cond. expectation: EA(·) := lim
n→∞

(
σ
1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n
.

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ
−1/2
C σAC σ

−1/2
A ⊗ σ

−1/2
C − 1AC

∥∥∥
∞

.
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Proof: Quasi-factorization

σΛ = e−βHΛ

tr(e−βHΛ )
is the Gibbs state of a k-local, commuting Hamiltonian HΛ.

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2

Ac ⊗ σ
−1/2
Bc σAcBc σ

−1/2
Ac ⊗ σ

−1/2
Bc − 1AcBc

∥∥∥
∞

.

Quasi-factorization for quantum Markov chains (Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Since σΛ is a QMC between Ai ↔ ∂(Ai) ↔ (Ai ∪ ∂Ai)
c, then:

DA(ρΛ||σΛ) ≤
∑
i

DAi
(ρΛ||σΛ).

σΛ =
⊕
j∈J

σAi(∂ai)
L
j
⊗ σ(∂ai)

R
j (Ai∪∂Ai)c
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Quasi-factorization for quantum Markov chains (Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Since σΛ is a QMC between Ai ↔ ∂(Ai) ↔ (Ai ∪ ∂Ai)
c, then:

DA(ρΛ||σΛ) ≤
∑
i

DAi
(ρΛ||σΛ).

σΛ =
⊕
j∈J

σAi(∂ai)
L
j
⊗ σ(∂ai)

R
j (Ai∪∂Ai)c
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Decay of correlations, (Bluhm-C.-Pérez Hernández, ’21)

Let σXY Z be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
ℓ 7→ δ(ℓ) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞

≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as # segments = O(|Λ|/ ln |Λ|).
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Proof: Geometric recursive argument

Let us recall: DA(ρΛ∥σΛ) := D(ρΛ∥σΛ)−D(ρAc∥σAc) ,
DE

A(ρΛ∥σΛ) := D(ρΛ∥EA(ρΛ)) .

Comparison conditional rel. ent. (Bardet-C.-Rouzé, ’20)

DA(ρΛ∥σΛ) ≤ DE
A(ρΛ∥σΛ)

Therefore, by this and + , we have:

D(ρΛ||σΛ) ≤ ξ(σAcBc)
∑
i

[
DE

Ai
(ρΛ∥σΛ) +DE

Bi
(ρΛ∥σΛ)

]
,

and thus
α(LH

Λ ) ≥ K

ξ(σAcBc)
min

{
αAi(L

H
Λ ), αBi(L

H
Λ )

}
,

for
αAi(L

H
Λ ) = inf

ρΛ∈SΛ

− tr
[
LH

Ai
(ρΛ)(ln ρΛ − lnσΛ)

]
D(ρΛ∥E∗

Ai
(ρΛ))

.
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Tensor product fixed point
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Proof: Positive CMLSI

Reduction of cond. relative entropies (Gao-Rouzé, ’21)

D(ρΛ∥EAi(ρΛ)) ≤ 4kAi

∑
j∈Ai

D(ρΛ∥Ej(ρΛ))

Reduction from CMLSI to Gap

kAi ∝
1

lnλ
,

where λ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), kAi = O(ln |Λ|) for Ai = O(ln |Λ|).

CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:

αc(LD
j ) := inf

k∈N
α(LD

j ⊗ Idk) > 0 .
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D(ρΛ∥EAi(ρΛ)) ≤ 4kAi

∑
j∈Ai

D(ρΛ∥Ej(ρΛ))

Reduction from CMLSI to Gap

kAi ∝
1

lnλ
,

where λ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), kAi = O(ln |Λ|) for Ai = O(ln |Λ|).

CMLSI (Gao-Rouzé, ’21)
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Last step

Heat-bath cond. expectation: EH
A (·) := lim

n→∞

(
σ
1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n

.

Davies cond. expectation: ED
A (·) := lim

t→∞
etL

D
A (·) .

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For LD
Λ , there is a positive MLSI constant α(LD

Λ ) = Ω(ln |Λ|−1).
Therefore, LD

Λ has rapid mixing.
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