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MAIN TOPIC OF THIS THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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associated to it, which is known as the state space of the system.
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which is a unitary vector in the state space.
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INTRODUCTION AND MOTIVATION

POSTULATES OF QUANTUM MECHANICS

Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector,
which is a unitary vector in the state space.

Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space.
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NOTATION

Figure: A quantum spin lattice system.

Finite lattice A CcC Z.

To every site © € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = @, cp Ha-
The set of bounded linear endomorphisms on H, is denoted by
Ba = B(Ha).

o The set of density matrices is denoted by

Sa :=8(Ha) ={pa € Ba : pa >0 and tr[pa] = 1}.
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Physical evolution: p — UpU* ~~ Reversible
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o States to states = Linear, positive and trace preserving.
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p — UpU* ~~ Reversible
Dissipative quantum system (non-reversible evolution)
T:p—=T(p)
o States to states = Linear, positive and trace preserving
pRo€S(H®H), o with trivial evolution
. / / N
T: SA(’H®7-[) — S(HoH) T To1
Tpeo) = T oo

o Completely positive.
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LOGARITHMIC

EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p — UpU* ~~ Reversible

Dissipative quantum system (non-reversible evolution)

T:p—=T(p)

o States to states = Linear, positive and trace preserving.
pRceSH®H), o with trivial evolution

T: SHoH) — SHOH) M Tel

Tpoo) = T oo

o Completely positive.
7 quantum channel (CPTP map)
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Figure: Environment + System form a closed system.
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Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: [¢) (Y|,

P p@ ) (Plp = U(p@ ) (W) U = trulU (p @ [Y) (1) U =5

S(H)

4)
o s ) quantum channel
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MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present. J

Markovian approximation
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A dissipative quantum system is a 1-parameter continuous semigroup
{Ti"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.
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DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{Ti"},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T 0T = Tt
o Ty =1.

d * * * * *
g'ﬁ =T oLa=LyoT;.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

or Quantum Many-Bod
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denote by o. -

Sobolev Inequalities for Quantum Many-Bod,



INTRODUCTION AND MOTIVATION
QUANTUM DIS!
LOGARITHMIC

DISSIPATIVE QUANTUM SYSTEMS

PrRIMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o. -

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

(£, L(9)), = (L(f),9),
for every f,g € A, in the Heisenberg picture.
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DISSIPATIVE QUANTUM SYSTEMS

PrRIMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o. -

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

(£, £(9)), = (L(f), 9),

for every f,g € A, in the Heisenberg picture.

Notation: p; := T, (p).
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main objective:

One problem: Appearance of noise.
Some kinds of noise can be modelled using quantum dissipative
evolutions.

olev Inequalities for Quantum Many-Bod
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:
e Computational power
o Conditions against noise

e Time to obtain certain states

(ICMAT) e for Quantum Many-Bod,
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We define the mixing time of {7;"} by

T(e) = min{t >0: sup |77 (p) — To(p)|l; < 5}.
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We say that L} satisfies rapid mixing if

sup |lpe — oall; < poly(|A])e™”
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RAPID MIXING

RAPID MIXING

We say that L} satisfies rapid mixing if

sup [|ps — oall; < poly(|A])e™ "
PAESA

PA
\,p,

poly(|A)e™"

TA

PROBLEM

Find examples of rapid mixing!
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Log-Soholev constant

Spectral gap

Exponential

decay of correlations

Rapid mixing
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Wo,c<D, AcD~2

G=K> o
Ric (£)> & —— HWI () MLSI(a) Z=25 TCy(es) —— PI(\) — Exp.

Wy, <D, axD™2, c1=dczﬂ

(At)tzﬂ unital

TCi(¢1) == Gauss.
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Liouville’s equation:
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Relative entropy of p; and oy:
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Recall: p; := T (p).

Liouville’s equation:
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LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).

Liouville’s equation:

Opr = LA (pr).
Relative entropy of p; and oy:
D(pt||loa) = tr[pi(log p; —logon)].
Differentiating:
D(pil|oa) = tr[L3(pe)(log pr — log op)]. (1)

Lower bound for the derivative of D(p¢||oa) in terms of itself:

20D(pelloa) < —trlLi(pr)(log pr —logon)].  (2)

Angela Capel Cuevas (ICMAT) og-Sobolev Inequalities for Quantum Many-Body Syst.
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LOG-SOBOLEV CONSTANT

The log-Sobolev constant of £} is defined as:

x .« —tr[LA(pa)(log pa —logon)]
L)) = f
al£a) = Inf 2D(pallon)

If o(L3) > 0:
D(plloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < \/210g(1/0min) e~ * DL,

Log-Sobolev constant = Rapid mixing. )

PROBLEM
Find positive log-Sobolev constants!
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Q TUM DISSIPATIVE SYSTEMS
LOGARITHMIC SOBOLEV INEQUALITIES

FIRST MAIN OBJECTIVE OF THIS TALK

Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS TALK

Apply that strategy to certain dissipative dynamics.
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(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J
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(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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(3) Decay of correlations on the Gibbs measure. J
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J
+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
4

Positive log-Sobolev constant. J

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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What do we want to prove?

lim inf a(L}) > ¥(|A]) > 0.
A 7.4

Can we prove something like

a(LR) =2 V([A]) a(£h) > 07
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STRATEGY TO FIND LOG-SOBOLEV CONSTANTS

Can we prove something like

a(Ly) = U(JA]) a(£a) > 07

No, but we can prove

a(LR) = Y([A]) aa(Lh) > 0.

Sobolev Inequalities for Quantum Many-Bod,
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LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
L)) = f
al£) = fuf 2D(pallon)
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CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

.o —tr[LA(pa)(log pa —logon)]
inf
PAESA 2D(palloa)

a(L}) =

CONDITIONAL LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state o, A C A. We define the conditional log-Sobolev constant of L}
on A by

. o —tr[Lh(pa)(log pa —logoa )]
L) = f
an(£a) = inf 2Da(pallon)

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

3 QUASI—FACTORIZATION OF THE RELATIVE ENTROPY J
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

STATEMENT OF THE PROBLEM

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocasc € Sapc. Can we prove
something like

D(pasclloasc) < €&(oapc) [Dar(pasc|loaBc) + Dec(pasc|loasc)] ?

obolev Inequali for Quantum Many-Bo



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

STATEMENT OF THE PROBLEM

PROBLEM

Let Hapc = Ha ® He ® He and papc,0aBc € Sapc. Can we prove
something like

D(pasclloasc) < €&(oapc) [Dar(pasc|loaBc) + Dec(pasc|loasc)] ?

QUANTUM RELATIVE ENTROPY

D(pl|o) = tr [p(log p — log 7)]

Capel Cue C bbolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

obolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,.(f)

plEnt,(f | F1) + Entu(f | F2),

<
1—4llh -1,

where h = d—/_L
d

Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f) p[Enty,(f | F1) + Ent.(f | F2)],

<
1—4llh -1,

where h = d—/_L
dpt

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Ent,(f) = p(flog f) — u(f) log u(f).

Conditional entropy:

Ent,(f|G) =p(flog f|G) — p(f|G)logu(f|G).

Angela Capel Cue ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

IVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr [pa(log pa — logoa)] .

for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logona)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pas — D(pag||ocar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(ps||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagsl|lcas) > D(T (pag)||T (cag)) for every
quantum channel 7.

Angela Capel Cue ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,0on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logona)].

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pas — D(pag||ocar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(ps||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagsl|lcas) > D(T (pag)||T (cag)) for every
quantum channel 7.

CHARACTERIZATION OF THE RE, Wilming et al. ’17, Matsumoto ’10

If f:SaB X Sap — ]RBL satisfies 1 — 4, then f is the relative entropy.

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION VE ENTROPY

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY, (Q-Fact)

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as
a function

DA(H) :SaB X Sap — Rar
verifying the following properties for every pap,ocap € Sap:

@ Continuity: The map pap — Da(par||cag) is continuous.
@ Non-negativity: Da(par|locar) > 0 and

(2.1) Da(paglloas)=0 if, and only if, pap = 0114/;01;1/2p}30;1/20'2/§.
@ Semi-superadditivity: Da(pag|loa ® o) > D(palloa) and

(3.1) Semi-additivity: if pap = pa Q pB,

Da(pa ® pBlloa ® o) = D(palloa).

@ Semi-motonicity: For every quantum channel T,

Da(T (paB)lT(0aB)) + Dp((tra oT)(pas)||(tra oT)(car))
< Da(paslloas) + Dp(tra(pas)||tra(ocas)).

Angela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

REMARK

Consider for every pap,oas € SaB
D} p(paslloar) = Da(paslloar) + De(paslloas).

Then, DX, p verifies the following properties:
QO Continuity: pap — D‘A!"B(pABHUAB) is continuous.
@ Additivity: DZ,B(/}A ® pBlloa ® o) = D(pal|loa) + D(psllos).

@ Superadditivity: D} g(pas|loa ® o) > D(palloa) + D(psllos).
However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE, (Q-Fact)

The only possible conditional relative entropy is given by:
Da(paglloas) = D(paglloas) — D(psllos)

for every pap,0aB € SaB.

(ICMAT) Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

BC

%/—/

AB
Figure: Choice of indices in Hapc = Ha Q Hp @ Hc-

Result of quasi-factorization of the relative entropy, for every
PABC,TABC € SaBC:

D(pasclloasc) < &(oasc) [Dap(papcl|loasc) + Dec(pasc|loasc)],

where £(0capc) depends only on oapc and measures how far cac is from
oA ®oc.

Sobolev Inequalities for Quantum Many-Bod,



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CRE, (Q-Fact)

Let Hapc = Ha @ Hp ® Heo and papc,ocasc € Sapc. Then, the following
inequality holds

D(paBclloasc) <

1
m [DAB(pABCHUABC) aF DBC(pABCHU'ABC’)] 5

where
H(oac) = 021/2 ® 051/2 oAC 021/2 ® 051/2 —1ac.

Note that H(cac) =0 if cac is a tensor product between A and C.

(ICMAT) Sobolev Inequal or Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

=

(1 +2||H(cac)llo)D(pasclloasc) > D(palloa) + D(pclloc).

Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[|H(oac)llo)P(paBclloasc) <
Dag(pasclloasc) + Dec(pasclloasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

<
(1+2[|H(ca0)ll)P(pasclloasc) 2 D(palloa) + D(pclloc).
=4

(1+2||H(cac)lloo)D(paclloac) = D(palloa) + D(pclloc).

Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to (Super):

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

(ICMAT) og-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to (Super):

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag|loa ® o) > D(palloa) + D(psllos).

Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to (Super):

(1+2[|H(0aB)ll)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag|loa ® o) > D(palloa) + D(psllos).

Due to:

e Monotonicity. D(pag|loas) > D(T(pap)||T(caB)) for every
quantum channel 7.

we have

2D(paslloas) = D(palloa) + D(psllos).

Log-Sobolev Inequalities for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION FOR THE CRE (Q-Fact)

Let Hapc and paBc,oasc € Sapc. The following holds

D(pasclloase) < &(oac) [Das(pasclloasc) + Dec(pasclloasc)],

where
g(JAC) = —1/2 —1/2 : —1/2 —-1/2
1—2HO'A Qog 'Toaco, T ®og —]lAcH
* V.
D(papclloasc) Dap(pasclloaso) Dgc(pasclloasc)

TABC

ANl c | <&(B0) |Falel o + | 4 BBl e

for Quantum Many-Body



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

RELATION WITH THE CLASSICAL CASE

STATES OBSERVABLES

QUANTUM D(paglloas) fas = Ta.5 (Pas) tr[oap faslogfasl

< »

SMILIC D(p,sll0.s) — Dipsllop)  fa =T (on) teftry (045 faslogfas] — opfslogfs]
Pap =V trlog -] = u()
=l try[]1 = u(- |6)

CLASSICAL Hv.m == R u(f logf)
<+
SETTING Hy(v.i0) u(u(f logf1g) — u(f 1) log u(f 15)

Figure: Identification between classical and quantum quantities when the states
considered are classical.

sbolev Inequalities for Quantum Many-Body
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4 LOG-SOBOLEV CONSTANTS J

Decay of correlations

Quasi-factorization Geometric
of the recursive
relative Definition argument
entropy conditional
Log-Sobolev
constant

Positive conditional
log-Sobolev consta

on the Gibbs state




VITH TENSOR PRODUCT FIXED PO

EXAMPLES OF LOG-SOBOLEV CONSTANTS

QUA TUM SPIN LATTICES

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.

PROBLEM

For a certain £}, can we prove a(L£}) > 0 using the result of
quasi-factorization of the relative entropy?




HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

ExXAMPLE 1 (Q-Fact)

HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT

bolev Inequalities for Quantum Many-Bod



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (Q-Fact)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

(ICMAT) 0 obolev Inequali for Quantum Many-Bo:



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

THEOREM (Q-Fact)

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Ly =FE, -1, Lyi=) L;
zEA
Since

E;(pa) = 0y 20,0 preoo)/? = 00 @ poe

for every pp € Sa, we have

Li(pr) =Y (00 @ pac — pa).

zEA

es for Quantum Many-Body
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IPLES OF LOG-SOBOLEV CON
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Decay of correlations
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of the
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relative Definition argument
entropy conditional
Log-Sobolev
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HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

XAMPLES OF LO

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

ASSUMPTION

TEA

Decay of correlations




HEAT-BATH DYNAMI/ TH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNA 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

CONDITIONAL LOG-SOBOLEV CONSTANT
For x € A, we define the conditional log-Sobolev constant of £} in z by

" o —tr[L5(pa)(log pa —log UA)]
L) = f
onlle) = R, 2D, (pallon)

where o, is the fixed point of the evolution, and D4 (palloa) is the
conditional relative entropy.

Capel Cue AT) Log-Sobolev Inequalities for Quantum Many-Body



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT
Let Ha = @ H. and pa,on € Sa such that op = ®az. The following

TEA zEA

D(palloa) <> Da(pallon).
TEA

inequality holds:

D(palloa) Dy, ;(palloa)

(ICMAT) b equa or Quantum Many-Body



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

LEMMA (Positivity of the conditional log-Sobolev constant)

for Quantum Many-Bo



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D
S OF LOG-SOBOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

D(palloa) <D Da(palloa)

TEA
—tr[L3 (pa)(log pa — logan)]
<> !
zEA 2a/\(£z)
1 *
- mz —tr[£%(pa)(log pa — log oa)]
zEA TEA
1 *
" 2inf an (L) (—tr[LA(pa)(log pa — log o))
z€

< (— (L3 (pa)(log pa — logan)]).

Angela Capel Cuevas (ICMAT) Log-Sobolev Inequalities for Quantum Many-Body Syst.



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT

Hr TH D 11 IN 1D

ED POINT

POSITIVE LOG-SOBOLEV CONSTANT

a(Ly) >

N —

Decay of correlations

on the Gibbs state

ntum Man,



HEAT-BATH DY 1cs TH TENSOR PRODUCT FIXED PO
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

EXAMPLE 2, (Heat-bath)

HEAT-BATH DYNAMICS IN 1D

ev Inequalities for Quantum M
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AMICS IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

obolev Ine



HEAT-BATH D' S TH TENSOR PRODUCT FIXED POINT
cs IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Sobolev Inequalities for Quantum Many-Bod,



HEAT-BATH DYNA S W NSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ||®(j)|| < K for some constant K < co. The potential ® is said to
be commuting if for any i,j € A, [®(¢), ®(j)] = 0.

es for Quantum Many-Body



HEAT-BATH DYNA S W NSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ||®(j)|| < K for some constant K < co. The potential ® is said to
be commuting if for any i,j € A, [®(¢), ®(j)] = 0.

Hamiltonian on a subregion A C A:

Ha:=7)  &(j). (3)

jEA

es for Quantum Many-Body



HEAT-BATH DYNA S W NSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

oa is the Gibbs state of a k-local, commuting Hamiltonian.

®: A — Aj be a k-local potential: For j € A, ®(j) self-adjoint and
supported on a ball of radius k around site j.

Assume: ||®(j)|| < K for some constant K < co. The potential ® is said to
be commuting if for any i,j € A, [®(¢), ®(j)] = 0.

Hamiltonian on a subregion A C A:

Ha:=7)  &(j). (3)

jEA

Gibbs state corresponding to the region A at inverse temperature 3:

e BHA




HEAT-BATH N H TENSOR PRODUCT FIXED POINT
HEAT-BATH 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

CONDITIONAL LOG-SOBOLEV CONSTANT

For A C A, we define the conditional log-Sobolev constant of £} in A
by

. .o —tr[L%(pa)(log pa —log oa)]
,c = f )
ar(La) = inf 2Da(pallon)

where o, is the fixed point of the evolution, and

Da(palloa) = D(palloa) — D(pac|loac).

(ICMAT) Log-Sobolev Inequal or Quantum Many-Body



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

QUASI-FACTORIZATION FOR THE CRE (Q-Fact)

Let Hapc and paBc,oasc € Sapc. The following holds

D(pasclloase) < &(oac) [Das(pasclloasc) + Dec(pasclloasc)],

where
§(oac) = “12 - _—1/2 : “12 - _—1/2
1—2HO'A Qog 'Toaco, T ®og —]lAcH
> y
D(papclloasc) Dap(pasclloaso) Dgc(pasclloasc)

TABC

ANl c | <&(B0) |Falel o + | 4 BBl e

for Quantum Many-Body
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HEAT-BATH DYNAMICS

EXAMPLES OF LOG-SOBOLEV CONSTANTS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

STEP 1 J
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HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

STEP 1 J

A= OAl and B = LTJB]'
i=1 j=1

1

D < D D
(palloa) < 7— 2hoa s )l [Dalpalloa) + De(pallon)],
—1/2 —1/2 —1/2 —1/2
h(oacpe) :=0,4:"" @ 0ge “0acpeo ' @oge’ ™ — Lacpe.

(ICMAT) og-Sobolev Inequalities for Quantum Many-Body



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

QUASI-FACTORIZATION FOR QMC (Heat-bath)

Let Hapecp = Ha @ He ® He @ Hp, where system C' shields A from BD
and paBcp,0caBcD € SABCD, such that capcp is a quantum Markov
chain between A <> C' <> BD. Then, the following holds

Dag(paBcplloasep) < [Da(pasep||loasep) + De(pascep||loasep)] -

Dap(pasenlloascn) Dalpascolloascp) Dg(pascplloascp)

BE < B+ F

(ICMAT) 0 obolev Inequali for Quantum Many-Bo:
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AMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

CH OF THE PROOF

TE

PRODUCT FIXED POINT

STEP 2

Da(palloa) <> Da,(palloa)

i=1

obolev Ine




HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

SKETCH OF THE PROOF

STEP 2 J

Da(palloa) <> Da,(palloa)

i=1

oa is a QMC between A; <> 0A1 <> A\ (A1 UJA))

o= _@"maanf ® O(9ay)RA\(4,U04:)

(ICMAT) 0 obolev Inequali for Quantum Many-Bo.
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HEAT-BATH DYNAM N 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ _ _ 1
[h(oan) = HO.AI/Z 205 20 apo Y2 @ opl/? - ILABH <K<l

oo

In particular, Gibbs states at high enough temperature satisfy this.

for Quantum Many-Bod



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POINT
HEAT-BATH DYNAMICS IN 1D

EXAMPLES OF LOG-SOBOLEV CONSTANTS

HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ _ _ _ 1
[h(oan) = HO.AI/Z 205 20 apo Y2 @ opl/? - ILABH <K<l

oo

In particular, Gibbs states at high enough temperature satisfy this.

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

Dg(palloa) < f(osa) (Da, (palloa) + De,(palloa)) -

In particular, tensor products satisfy this (with f =1).

A\

es for Quantum Many-Body



NSOR PRODUCT FIXED POINT

EXAMPLES OF LOG-SOBOLEV CONSTANTS

TH DYNAMICS IN 1D

STEP 3

Assumption 1 = o(L3) > K gln {aa(Lh,), an(LE;)}

Using locality of the Lindbladian
CZ + ﬂ*B = ﬁ*AuB + ETAmB-

for Quantum Many-Bo
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STEP 4

NSOR

PRODUCT FIXED POINT

Assumption 2 = aa(L}y,) > g(oa,a) > 0.
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HEAT-BATH DYNAMICS IN 1D

THEOREM (Heat-bath)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

(ICMAT) 0 obolev Inequali for Quantum Many-Bo:



HEAT-BATH DYNAMICS WITH TENSOR PRODUCT FIXED POIN
HEAT-BATH DYNAMICS IN 1D
EXAMPLES OF LOG-SOBOLEV CONSTANTS

REFERENCES

@ A. Capel, A. Lucia, D. Pérez-Garcia.
Superadditivity of quantum relative entropy for general states
[EEE Trans. Inf. Theory, 64 (7), 4758-4765, 2018.

@ A. Capel, A. Lucia, D. Pérez-Garcia.
Quantum conditional relative entropy and quasi-factorization of the
relative entropy
J. Phys. A: Math. Theor., 51, 484001, 2018.

@ I. Bardet, A. Capel, A. Lucia, D. Pérez-Garcia, C. Rouzé.
On the modified logarithmic Sobolev inequality for the heat-bath
dynamics for 1D systems
Preprint, 2009, arXiv:1908.09004.

@ P. Dai Pra, A.M. Paganoni, G. Posta.
Entropy inequalities for unbounded spin systems
Ann. Probab. 30, 1959-1976, 2002.

@ M. Kastoryano, F. Brandao.
Quantum Gibbs Samplers: The commuting case
Commun. Math. Phys., 344 (3), 915-957, 2016.

(ICMAT) bbolev Inequalities for Quantum Many-Body



EXAMPLES OF LO

HEAT-BATH DYNAMICS IN 1D
i-SOBOLEV CONSTANTS

CI'IaCI/I60IaalElawlava
= - liilos aﬂkm_

lesekkm edenm

mahalo

enkosi

=" glun dankon Gi0

|- dZI kU'B Imule]mhmmuchmakkerar
MCIpht ﬂumkalﬂulluun ﬂp Wﬂh kr as;;uayju[] [al mal a a
0brig d g5 ST

T2 sl BUDES et |[9718 a”[.]ﬂtﬂ = dak[]]ﬂm tngier

E mshhimita = fahmet 3 dileh f Ohenyavadagaly m WW’ E MepCVI

(S N = 7FA}ERL T} XIE):IED me[cl

ngiyabonga P ITRR
. 130keHE: ok A

((((( 5 hlaundmam ﬂ E m‘““matnnﬂﬂ =
= XBana
[a E | aS_H N'ﬂ’ Iﬂﬂilﬂ d

km




	Introduction and motivation
	Quantum dissipative systems
	Logarithmic Sobolev inequalities

	Strategy to find log-Sobolev constants
	Quasi-factorization of the relative entropy
	Examples of log-Sobolev constants
	Heat-bath dynamics with tensor product fixed point
	Heat-bath dynamics in 1D


