A generic quantum Wielandt's inequality

Length of a matrix algebra and applications to injectivity of MPS and Kraus rank of quantum channels

Ángela Capel Cuevas

(Universität Tübingen)

Celebrating the Choi-Jamiołkowski Isomorphism, 2 March 2023

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g ABBAB...
- We consider all words on A and B of length at most ℓ, for a certain $\ell \in \mathbb{N}$: $S^{\leq \ell}:=\{A, B, A A, A B, B A, B B, \ldots, \underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}$

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length at most ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{\leq \ell}:=\{A, B, A A, A B, B A, B B, \ldots, \underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Qubstion 1

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C})
$$

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length at most ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{\leq \ell}:=\{A, B, A A, A B, B A, B B, \ldots, \underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Question 1

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S \leq \ell=M_{n}(\mathbb{C}) .
$$

For any generating pair S, the conjecture is $O(n)$.

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length at most ℓ, for a certain $\ell \in \mathbb{N}$: $S^{\leq \ell}:=\{A, B, A A, A B, B A, B B, \ldots, \underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}$

Question 1

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S \leq \ell=M_{n}(\mathbb{C})
$$

Paz's Conjecture, '87

For any generating pair S, the conjecture is $O(n)$.

- For any generating pair S, the best bound to date is $O(n \log n)$ (Shitov, '19).

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length at most ℓ, for a certain $\ell \in \mathbb{N}$: $S^{\leq \ell}:=\{A, B, A A, A B, B A, B B, \ldots, \underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}$

Question 1

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S \leq \ell=M_{n}(\mathbb{C})
$$

Paz's conjecture, '87

For any generating pair S, the conjecture is $O(n)$.

Best Bounds

- For any generating pair S, the best bound to date is $O(n \log n)$ (Shitov, '19).
\rightarrow The bound $2 n-2$ is proven until dimension 6 (Lambrou, Longstaff, '09), with distinct eigenvalues (Papacena, '97), with a rank-one matrix (Longstaff, Rosenthal '11), with a non-derogatory matrix (Guterman et al., '18), etc.

Ángela Capel Cuevas (Universität Tübingen)

Length of a matrix algebra. Paz's conjecture

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length at most ℓ, for a certain $\ell \in \mathbb{N}$: $S^{\leq \ell}:=\{A, B, A A, A B, B A, B B, \ldots, \underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}$

Question 1

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S \leq \ell=M_{n}(\mathbb{C})
$$

Paz's conjecture, '87

For any generating pair S, the conjecture is $O(n)$.

Best Bounds

- For any generating pair S, the best bound to date is $O(n \log n)$ (Shitov, '19).
- The bound $2 n-2$ is proven until dimension 6 (Lambrou, Longstaff, '09), with distinct eigenvalues (Papacena, '97), with a rank-one matrix (Longstaff, Rosenthal '11), with a non-derogatory matrix (Guterman et al., '18), etc.

WIE-LENGTH OF A MATRIX ALGEBRA. WIELANDT'S INEQUALITY

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$. $A B B A B$

Wie-Length of A matrix algebra. Wielandt's inequality

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length exactly ℓ, for a certain $\ell \in \mathbb{N}$:

WIE-LENGTH OF A MATRIX ALGEBRA. WIELANDT'S INEQUALITY

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length exactly ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{=\ell}:=\{\underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Question 2
What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

WIE-LENGTH OF A MATRIX ALGEBRA. WIELANDT'S INEQUALITY

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length exactly ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{=\ell}:=\{\underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Question 2

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

For any generating pair S, the conjecture is $O\left(n^{2}\right)$.

Wie-Length of a matrix algebra. Wielandt's inequality

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length exactly ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{=\ell}:=\{\underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Question 2

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

Quantum Wielandt's inequality (Sanz et al. '10)
For any generating pair S, the conjecture is $O\left(n^{2}\right)$.

Best bounds
$>$ For any generating pair S, the best bound to date is $O\left(n^{2} \log n\right)$ (Michałek, Shitov, '19)

Wie-Length of a matrix algebra. Wielandt's inequality

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length exactly ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{=\ell}:=\{\underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Question 2

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

Quantum Wielandt's inequality (Sanz et al. '10)
For any generating pair S, the conjecture is $O\left(n^{2}\right)$.

Best bounds

- For any generating pair S, the best bound to date is $O\left(n^{2} \log n\right)$ (Michałek, Shitov, '19). - There are some examples with $O\left(n^{2}\right)$ (Sanz et al., '10).

Wie-Length of a matrix algebra. Wielandt's inequality

- Consider any two n-dimensional complex matrices $A, B \in M_{n}(\mathbb{C}), S:=\{A, B\}$.
- We want to generate the whole matrix algebra $M_{n}(\mathbb{C})$ by spanning words on A, B, e.g $A B B A B \ldots$
- We consider all words on A and B of length exactly ℓ, for a certain $\ell \in \mathbb{N}$:

$$
S^{=\ell}:=\{\underbrace{A \ldots A}_{\ell \text { elements }}, \underbrace{A A B \ldots B A}_{\ell \text { elements }}, \ldots, \underbrace{B B A \ldots A B}_{\ell \text { elements }}, \ldots, \underbrace{B \ldots B}_{\ell \text { elements }}\}
$$

Question 2

What is the minimum length $\ell \in \mathbb{N}$ such that all words on A and B of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C}) .
$$

Quantum Wielandt's inequality (Sanz et al. '10)
For any generating pair S, the conjecture is $O\left(n^{2}\right)$.

Best bounds

- For any generating pair S, the best bound to date is $O\left(n^{2} \log n\right)$ (Michałek, Shitov, '19).
- There are some examples with $O\left(n^{2}\right)$ (Sanz et al., '10).

Question

Paz's CONJECTURE, '87

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C})
$$

is $\ell=O(n)$.

Quantum Witlandi's inequality, Sanz et al. '10
For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

is $\ell=O\left(n^{2}\right)$.

Question

Paz's CONJECTURE, '87

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C})
$$

is $\ell=O(n)$.

Quantum Wielandt's inequality, Sanz et al. '10

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

is $\ell=O\left(n^{2}\right)$.

Question 3

What happens in both cases with probability 1 ?

Question

Paz's CONJECTURE, '87

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C})
$$

is $\ell=O(n)$.

Quantum Wielandt's inequality, Sanz et al. '10

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

is $\ell=O\left(n^{2}\right)$.

Question 3

What happens in both cases with probability $1 ?$

Generic quantum Wielandt's inequality (C.-Jia '22)
With probability 1 , both lengths can be taken to be $\ell=O(\log n)$.

Question

Paz's conjecture, '87

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C})
$$

is $\ell=O(n)$.

Quantum Wielandt's inequality, Sanz et al. '10

For any generating pair S, the conjectured minimum length $\ell \in \mathbb{N}$ such that

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

is $\ell=O\left(n^{2}\right)$.

Question 3

What happens in both cases with probability 1 ?

Generic quantum Wielandt's inequality (C.-Jia '22)

With probability 1 , both lengths can be taken to be $\ell=O(\log n)$.

A generic quantum Wielandt's inequality

Wie-Generating system and Wie-Length

- Consider $S \subset M_{n}(\mathbb{C})$.
- Assume that there is a large enough L such that

$$
M_{n}(\mathbb{C})=\operatorname{span}\left\{A_{1} \ldots A_{L} \mid A_{i} \in S \text { for all } i \in[L]\right\}
$$

Then, S is a (Wie-)generating system and its Wie-length is:

$$
\operatorname{Wie} \ell(S):=\min \left\{L \mid M_{n}(\mathbb{C})=\operatorname{span}\left\{A_{1} \ldots A_{L}, A_{i} \in S\right\}\right\} .
$$

Theorem (C.-Jia '22)

Wiel(S) $=\Theta(\log n)$ for almost all (Wie-) generating systems $S \subset M_{n}(\mathbb{C})$.

A generic quantum Wielandt's inequality

Wie-generating system and Wie-Length

- Consider $S \subset M_{n}(\mathbb{C})$.
- Assume that there is a large enough L such that

$$
M_{n}(\mathbb{C})=\operatorname{span}\left\{A_{1} \ldots A_{L} \mid A_{i} \in S \text { for all } i \in[L]\right\}
$$

Then, S is a (Wie-)generating system and its Wie-length is:

$$
\operatorname{Wie} \ell(S):=\min \left\{L \mid M_{n}(\mathbb{C})=\operatorname{span}\left\{A_{1} \ldots A_{L}, A_{i} \in S\right\}\right\} .
$$

Theorem (C.-Jia '22)

Wie $\ell(S)=\Theta(\log n)$ for almost all (Wie-)generating systems $S \subset M_{n}(\mathbb{C})$.

Proof

Consider for simplicity $S=\{A, B\}$.

$$
\begin{aligned}
& \text { Step } 1 \\
& A B B A \mapsto(0,1,1,0) \mapsto 6 \mapsto X^{6}:=\left(\begin{array}{ccc}
x_{11}^{6} & \ldots & x_{1 n}^{6} \\
\vdots & & \vdots \\
x_{n 1}^{6} & \ldots & x_{n n}^{6}
\end{array}\right) \\
& \text { Step 3 } \\
& \quad \text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \mapsto\left(\begin{array}{ccccc}
\ldots & x_{11}^{i} & \ldots & x_{11}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{1 n}^{i} & \ldots & x_{1 n}^{j} & \ldots \\
\ldots & x_{21}^{i} & \ldots & x_{21}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{n n}^{i} & \ldots & x_{n n}^{j} & \ldots
\end{array}\right)=: W
\end{aligned}
$$

Step 3 (more detail)

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1}} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right) \\
& \text { with } f(p, q, r, s)=0 \text { or } 1
\end{aligned}
$$

Proof. Step 0

- First, consider n^{2} words of length ℓ in A and B, namely products of the form

$$
\underbrace{A B B A B \ldots B A}_{\ell \text { elements }} .
$$

- By some counting argument, it is clear that $\ell=\Omega(\log n)$.

Proof. Step 0

- First, consider n^{2} words of length ℓ in A and B, namely products of the form $\underbrace{A B B A B \ldots B A}_{\ell \text { elements }}$.
- By some counting argument, it is clear that $\ell=\Omega(\log n)$.
- Indeed, note that, with length ℓ, we can generate at most 2^{ℓ} words.

Proof. Step 0

- First, consider n^{2} words of length ℓ in A and B, namely products of the form

$$
\underbrace{A B B A B \ldots B A}_{\ell \text { elements }} .
$$

- By some counting argument, it is clear that $\ell=\Omega(\log n)$.
- Indeed, note that, with length ℓ, we can generate at most 2^{ℓ} words.
- Since we need at least n^{2} words to generate $M_{n}(\mathbb{C})$, we have
$2^{\ell} \geq n^{2}$

Proof. Step 0

- First, consider n^{2} words of length ℓ in A and B, namely products of the form

$$
\underbrace{A B B A B \ldots B A}_{\ell \text { elements }} .
$$

- By some counting argument, it is clear that $\ell=\Omega(\log n)$.
- Indeed, note that, with length ℓ, we can generate at most 2^{ℓ} words.
- Since we need at least n^{2} words to generate $M_{n}(\mathbb{C})$, we have

$$
2^{\ell} \geq n^{2}
$$

- Therefore,

or more generally
$\ell=\Omega(\log n)$

Proof. Step 0

- First, consider n^{2} words of length ℓ in A and B, namely products of the form

$$
\underbrace{A B B A B \ldots B A}_{\ell \text { elements }} .
$$

- By some counting argument, it is clear that $\ell=\Omega(\log n)$.
- Indeed, note that, with length ℓ, we can generate at most 2^{ℓ} words.
- Since we need at least n^{2} words to generate $M_{n}(\mathbb{C})$, we have

$$
2^{\ell} \geq n^{2}
$$

- Therefore,

$$
\ell \geq 2 \frac{\log n}{\log 2}
$$

or more generally

$$
\ell=\Omega(\log n) .
$$

Proof. Step 1: Change notation of each word

Step 3 (more detail)

$A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right), B=\left(\begin{array}{ccc}c_{11} & \ldots & b_{1 n} \\ \vdots & & \vdots \\ b_{n 1} & \ldots & b_{n n}\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right)}^{\text {with } f(p, q, r, s)=0 \text { or } 1}$
If $\operatorname{det}(W) \neq 0$ then $P \not \equiv 0 \Rightarrow\left\{a_{i j}, b_{k l}: P\left(a_{i j}, b_{k l}\right)=0\right\}$ has measure 0 $\Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C})$ almost surely

- Since we only consider two generators, we can rewrite each word in binary notation and identify each binary number with its decimal expression.
- In this way, we identify each word with a specific matrix and establish an order among them.

Proof. Step 1: Change notation of each word

Step 3 (more detail)

$A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right), B=\left(\begin{array}{ccc}c_{11} & \ldots & b_{1 n} \\ \vdots & & \vdots \\ b_{n 1} & \ldots & b_{n n}\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right)}^{\text {with } f(p, q, r, s)=0 \text { or } 1}$
If $\operatorname{det}(W) \neq 0$ then $P \neq 0 \Rightarrow\left\{a_{i j}, b_{k l}: P\left(a_{i j}, b_{k l}\right)=0\right\}$ has measure 0 $\Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C})$ almost surely

- Since we only consider two generators, we can rewrite each word in binary notation and identify each binary number with its decimal expression.
- In this way, we identify each word with a specific matrix and establish an order among them.

$$
\begin{aligned}
& \text { Step } 1 \\
& \text { Step 2 } \\
& \text { Step } 3 \\
& \text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \text { are l.i. } \\
& \text { Step } 3 \text { (more detail) } \\
& A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right)}^{\text {with } f(p, q, r, s)=0 \text { or } 1} \text { (W) } \neq 0 \text { then } P \neq 0 \Rightarrow\left\{a_{i j}, b_{k l}: P\left(a_{i j}, b_{k l}\right)=0\right\} \text { has measure } 0 \\
& \Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C}) \text { almost surely }
\end{aligned}
$$

Proof. Step 2: Vectorize words and join them in a matrix.

- Each of the matrices in the previous step are of dimension $n \times n$. Thus, we can write the coordinates of each of them in a vector of $n^{2} \times 1$ entries.

We then write the n^{2} vectors associated to the n^{2} words in the columns of a matrix W of dimension $n^{2} \times n^{2}$ according to the order

Proof. Step 2: Vectorize words and join them in a matrix.

Step 1

$\left(\begin{array}{ccc}x_{11}^{6} & \ldots & x_{1 n}^{6} \\ \vdots & & \vdots\end{array}\right) \quad$ Step 2

Step 3

$$
\text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \text { are l.i. }
$$

$$
\left(\begin{array}{cc}
\ldots & x_{11}^{i} \tag{i}\\
& \vdots \\
\ldots & x_{1 n}^{i} \\
\ldots & x_{21}^{i} \\
& \vdots \\
\ldots & x_{n n}^{i}
\end{array}\right.
$$

Step 3 (more detail)

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right) & \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right)}^{\text {with } f(p, q, r, s)=0 \text { or } 1} \\
& \Rightarrow \operatorname{det}(W) \neq 0 \text { then } P \not \equiv 0 \Rightarrow\left\{a_{i j}, b_{k l}: P\left(a_{i j}, b_{k l}\right)=0\right\} \text { has measure } 0 \\
& \left.\Rightarrow \ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C}) \text { almost surely }
\end{aligned}
$$

- Each of the matrices in the previous step are of dimension $n \times n$. Thus, we can write the coordinates of each of them in a vector of $n^{2} \times 1$ entries.
- We then write the n^{2} vectors associated to the n^{2} words in the columns of a matrix W of dimension $n^{2} \times n^{2}$ according to the order.

Proof. Step 3: Compute the determinant of that matrix.

$$
\begin{aligned}
& \begin{array}{l}
\text { Step 1 } \\
A B B A \mapsto(0,1,1,0) \mapsto 6 \mapsto X^{6}:=\left(\begin{array}{ccc}
x_{11}^{6} & \ldots & x_{1 n}^{6} \\
\vdots & & \vdots \\
x_{n 1}^{6} & \ldots & x_{n n}^{6}
\end{array}\right)
\end{array} \\
& \left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \mapsto\left(\begin{array}{ccccc}
& \vdots & & \vdots \\
\ldots & x_{1 n}^{i} & \ldots & x_{1 n}^{j} & \ldots \\
\ldots & x_{21}^{i} & \ldots & x_{21}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{n n}^{i} & \ldots & x_{n n}^{j} & \ldots
\end{array}\right)=: W \\
& \text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \text { are l.i. } \\
& \left\{\begin{array}{l}
\text { Step } 2 \\
i
\end{array} X^{j} \ldots\right\} \mapsto\left(\begin{array}{ccccc}
\ldots & x_{11}^{i} & \ldots & x_{11}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{1 n}^{i} & \ldots & x_{1 n}^{j} & \ldots \\
\ldots & x_{21}^{i} & \ldots & x_{21}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{n n}^{i} & \ldots & x_{n n}^{j} & \ldots
\end{array}\right)=: W \\
& \text { Step } 3 \text { (more detail) } \\
& \begin{array}{c}
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \cdots & b_{n n}
\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1}} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right) \\
\text { with } \operatorname{det}(W, q, r, s)=0 \text { or } 1
\end{array} \\
& \Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C}) \text { almost surely }
\end{aligned}
$$

- We now compute the determinant of W.
- Note that, if $\operatorname{det}(W) \neq 0$, then all the words are linearly independent

Proof. Step 3: Compute the determinant of that matrix.

$$
\begin{aligned}
& \begin{array}{l}
\text { Step } 1 \\
A B B A \mapsto(0,1,1,0) \mapsto 6 \mapsto X^{6}:=\left(\begin{array}{ccc}
x_{11}^{6} & \ldots & x_{1 n}^{6} \\
\vdots & & \vdots \\
x_{n 1}^{6} & \ldots & x_{n n}^{6}
\end{array}\right)
\end{array} \\
& \left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \mapsto\left(\begin{array}{ccccc}
& \vdots & & \vdots \\
\ldots & x_{1 n}^{i} & \ldots & x_{1 n}^{j} & \ldots \\
\ldots & x_{21}^{i} & \ldots & x_{21}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{n n}^{i} & \ldots & x_{n n}^{j} & \ldots
\end{array}\right)=: W \\
& \text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \text { are l.i. } \\
& \text { Step } 3 \text { (more detail) } \\
& \begin{array}{c}
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \cdots & b_{n n}
\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1}} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right) \\
\text { with } \operatorname{det}(W, q, r, s)=0 \text { or } 1
\end{array} \\
& \Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C}) \text { almost surely }
\end{aligned}
$$

- We now compute the determinant of W.
- Note that, if $\operatorname{det}(W) \neq 0$, then all the words are linearly independent.

Proof. Step 3: Compute the determinant of that matrix.

> Step 1
> $A B B A \mapsto(0,1,1,0) \mapsto 6 \mapsto X^{6}:=\left(\begin{array}{ccc}x_{11}^{6} & \ldots & x_{1 n}^{6} \\ \vdots & & \vdots \\ x_{n 1}^{6} & \ldots & x_{n n}^{6}\end{array}\right)$
> Step 3
> If $\operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}$ are l.i.
> Step 3 (more aetail)
> $\begin{aligned} & A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right), B=\left(\begin{array}{ccc}b_{11} & \ldots & b_{1 n} \\ \vdots & & \vdots \\ b_{n 1} & \ldots & b_{n n}\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} \begin{array}{l}a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1}} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right) \\ \text { with } f(p, q, r, s)=0 \text { or } 1\end{array} \\ & \text { If } \operatorname{det}(W) \neq 0 \text { then } P \not \equiv 0 \Rightarrow\left\{a_{i j}, b_{k l}: P\left(a_{i j}, b_{k l}\right)=0\right\} \text { has measure } 0\end{aligned}$ $\Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C})$ almost surely

- More specifically, $\operatorname{det}(W)$ is actually a polynomial of $2 n^{2}$ variables, namely $\left\{a_{i j}\right\}_{i, j=1}^{n}$ and $\left\{b_{k l}\right\}_{k, l=1}^{n}$, the coefficients of A and B respectively.
- Therefore, if $P:=\operatorname{det}(W) \neq 0$, then P is not the identically-zero polynomial, and thus its zeroes have null Lebesgue measure.

Proof. Step 3: Compute the determinant of that matrix.

- More specifically, $\operatorname{det}(W)$ is actually a polynomial of $2 n^{2}$ variables, namely $\left\{a_{i j}\right\}_{i, j=1}^{n}$ and $\left\{b_{k l}\right\}_{k, l=1}^{n}$, the coefficients of A and B respectively.
- Therefore, if $P:=\operatorname{det}(W) \neq 0$, then P is not the identically-zero polynomial, and thus its zeroes have null Lebesgue measure.

Proof. Step 3: Compute the determinant of that matrix.

- More specifically, $\operatorname{det}(W)$ is actually a polynomial of $2 n^{2}$ variables, namely $\left\{a_{i j}\right\}_{i, j=1}^{n}$ and $\left\{b_{k l}\right\}_{k, l=1}^{n}$, the coefficients of A and B respectively.
- Therefore, if $P:=\operatorname{det}(W) \neq 0$, then P is not the identically-zero polynomial, and thus its zeroes have null Lebesgue measure.
- In other words, the set of words considered in Step 0 spans $M_{n}(\mathbb{C})$ almost surely.

Proof. Step 4: Existence of the words of Step 0.

Step 3 (more detail)

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \cdots & b_{n n}
\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1}} \cdots b_{k_{r} l_{s}}=: P\left(a_{i j}, b_{k l}\right)
$$

$$
\Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C}) \text { almost surely }
$$

$$
\begin{aligned}
& \text { Step } 1 \\
& A B B A \mapsto(0,1,1,0) \mapsto 6 \mapsto X^{6}:=\left(\begin{array}{c}
x_{11}^{6} \\
\vdots \\
x_{n 1}^{6}
\end{array}\right. \\
& \text { Step } 3 \\
& \text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \text { are 1.i. } \\
& \begin{array}{l}
\text { Step } 2 \\
\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \mapsto\left(\begin{array}{ccccc}
\ldots & x_{11}^{i} & \ldots & x_{11}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{1 n}^{i} & \ldots & x_{1 n}^{j} & \ldots \\
\ldots & x_{21}^{i} & \ldots & x_{21}^{j} & \ldots \\
& \vdots & & \vdots & \\
\ldots & x_{n n}^{i} & \ldots & x_{n n}^{j} & \ldots
\end{array}\right)=: W
\end{array}
\end{aligned}
$$

- The remaining part to conclude is to justify the existence of the words of Step 0 .

Proof. Step 4: Existence of the words of Step 0.

$$
\begin{aligned}
& \begin{array}{ll}
\text { Step 1 } \\
A B B A \mapsto(0,1,1,0) \mapsto 6 \mapsto X^{6} & =\left(\begin{array}{ccc}
x_{11}^{6} & \ldots & x_{1 n}^{6} \\
\vdots & & \vdots \\
x_{n 1}^{6} & \ldots & x_{n n}^{6}
\end{array}\right) \\
\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \mapsto
\end{array} \\
& \text { Step } 3 \\
& \text { If } \operatorname{det}(W) \neq 0 \Rightarrow\left\{\ldots X^{i} \ldots X^{j} \ldots\right\} \text { are 1.i. } \\
& \text { Step } 3 \text { (more detail) } \\
& A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right) \Rightarrow \operatorname{det}(W)=\sum_{p, q, r, s}(-1)^{f(p, q, r, s)} a_{i_{1} j_{1}} \cdots a_{i_{p} j_{q}} b_{k_{1} l_{1}} \cdots b_{k_{r} l_{s}}=P\left(a_{i j}, b_{k l}\right) \\
& \Rightarrow \operatorname{span}\left\{\ldots X^{i} \ldots X^{j} \ldots\right\}=M_{n}(\mathbb{C}) \text { almost surely }
\end{aligned}
$$

- The remaining part to conclude is to justify the existence of the words of Step 0 .

Theorem (Klep-Špenko '16)

There are n^{2} words of length $2\left\lceil\log _{g} n\right\rceil$ such that P is not the identically-zero polynomial.

Application: Kraus Rank of quantum channels

Consider a quantum channel \mathcal{E}, i.e. a completely positive trace-preserving linear map,

$$
\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K}) \text { СРТР }
$$

Primitive quantum channel and index of primitivity

\Rightarrow The channel is primitive if there is an integer $\ell \in \mathbb{N}$ such that, for any positive semi-definite matrix ρ, the ℓ-fold application of the channel to ρ is positive definite, namely if

$$
\mathcal{E}^{\ell}(\rho)>0 \text { for every } \rho \geq 0
$$

\rightarrow The minimum ℓ for which this condition is fulfilled is called index of primitivity and is denoted by $q(\mathcal{E})$.

Application: Kraus Rank of quantum channels

Consider a quantum channel \mathcal{E}, i.e. a completely positive trace-preserving linear map,

$$
\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K}) \text { CPTP. }
$$

PRIMITIVE QUANTUM CHANNEL AND INDEX OF PRIMITIVITY

- The channel is primitive if there is an integer $\ell \in \mathbb{N}$ such that, for any positive semi-definite matrix ρ, the ℓ-fold application of the channel to ρ is positive definite, namely if

$$
\mathcal{E}^{\ell}(\rho)>0 \text { for every } \rho \geq 0
$$

- The minimum ℓ for which this condition is fulfilled is called index of primitivity and is denoted by $q(\mathcal{E})$.

Kraus rank

- Using the Choi-Jamiołkowski Isomorphism, we construct the matrix $\omega(\mathcal{E})=($ id $\otimes \mathcal{E})(\Omega)$ with $\Omega=\sum_{i, j=1}^{n}|i i\rangle\langle j j|$
\rightarrow Then, the rank of $\omega(\mathcal{E})$ is the Kraus rank of the channel.

Application: Kraus Rank of quantum CHANNELS

Consider a quantum channel \mathcal{E}, i.e. a completely positive trace-preserving linear map,

$$
\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K}) \text { CPTP. }
$$

PRIMITIVE QUANTUM CHANNEL AND INDEX OF PRIMITIVITY

- The channel is primitive if there is an integer $\ell \in \mathbb{N}$ such that, for any positive semi-definite matrix ρ, the ℓ-fold application of the channel to ρ is positive definite, namely if

$$
\mathcal{E}^{\ell}(\rho)>0 \text { for every } \rho \geq 0
$$

- The minimum ℓ for which this condition is fulfilled is called index of primitivity and is denoted by $q(\mathcal{E})$.

Kraus rank

- Using the Choi-Jamiołkowski Isomorphism, we construct the matrix $\omega(\mathcal{E})=(\operatorname{id} \otimes \mathcal{E})(\Omega)$ with $\Omega=\sum_{i, j=1}^{n}|i i\rangle\langle j j|$.
- Then, the rank of $\omega(\mathcal{E})$ is the Kraus rank of the channel.

Application: Kraus Rank of quantum CHANNELS

Consider a quantum channel \mathcal{E}, i.e. a completely positive trace-preserving linear map,

$$
\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K}) \text { СРТР }
$$

PRIMITIVE QUANTUM CHANNEL AND INDEX OF PRIMITIVITY

- The channel is primitive if there is an integer $\ell \in \mathbb{N}$ such that, for any positive semi-definite matrix ρ, the ℓ-fold application of the channel to ρ is positive definite, namely if

$$
\mathcal{E}^{\ell}(\rho)>0 \text { for every } \rho \geq 0
$$

- The minimum ℓ for which this condition is fulfilled is called index of primitivity and is denoted by $q(\mathcal{E})$.

Kraus rank

- Using the Choi-Jamiołkowski Isomorphism, we construct the matrix $\omega(\mathcal{E})=(\operatorname{id} \otimes \mathcal{E})(\Omega)$ with $\Omega=\sum_{i, j=1}^{n}|i i\rangle\langle j j|$.
- Then, the rank of $\omega(\mathcal{E})$ is the Kraus rank of the channel.

Theorem (Sanz et al. '10)

Primitivity \Leftrightarrow Having eventually full Kraus rank.
Moreover, the Kraus rank is lower bounded by $q(\mathcal{E})$.

[^0]A generic quantum Wielandt's inequality

Application: Kraus rank of quantum channels

- The notion of full Kraus rank for a quantum channel is equivalent to that of Wie-generating system for its Kraus operators.
- If \mathcal{E} has Kraus operators $\left\{A_{i}\right\}_{i=1}^{g}$, i.e.

$$
\mathcal{E}(X)=\sum_{i=1}^{g} A_{i} X A_{i}^{\dagger}
$$

then having full Kraus rank is equivalent to

$$
\operatorname{span}\left\{X_{1} \ldots X_{m} \mid X_{i}=A_{j} \text { for } i \in[m], j \in[g]\right\}=M_{n}(\mathbb{C})
$$

for a minimal $\ell \in \mathbb{N}$, or, equivalently, Wie $\ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right)=\ell$.

Application: Kraus rank of quantum channels

- The notion of full Kraus rank for a quantum channel is equivalent to that of Wie-generating system for its Kraus operators.
- If \mathcal{E} has Kraus operators $\left\{A_{i}\right\}_{i=1}^{g}$, i.e.

$$
\mathcal{E}(X)=\sum_{i=1}^{g} A_{i} X A_{i}^{\dagger}
$$

then having full Kraus rank is equivalent to

$$
\operatorname{span}\left\{X_{1} \ldots X_{m} \mid X_{i}=A_{j} \text { for } i \in[m], j \in[g]\right\}=M_{n}(\mathbb{C})
$$

for a minimal $\ell \in \mathbb{N}$, or, equivalently, Wie $\ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right)=\ell$.

$$
\begin{aligned}
& \text { Qoroluary (C.-JIA } 22 \text {) } \\
& \text { Given a generic quantum channel } \mathcal{E}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C}) \text { with Kraus operators }\left\{A_{1}, \ldots, A_{g}\right\} \text {, } \\
& \text { its Kraus rank (and thus its index of primitivity } q(\mathcal{E}) \text {) is of order } \Theta(\log n) \text {. }
\end{aligned}
$$

Application: Kraus rank of quantum channels

- The notion of full Kraus rank for a quantum channel is equivalent to that of Wie-generating system for its Kraus operators.
- If \mathcal{E} has Kraus operators $\left\{A_{i}\right\}_{i=1}^{g}$, i.e.

$$
\mathcal{E}(X)=\sum_{i=1}^{g} A_{i} X A_{i}^{\dagger}
$$

then having full Kraus rank is equivalent to

$$
\operatorname{span}\left\{X_{1} \ldots X_{m} \mid X_{i}=A_{j} \text { for } i \in[m], j \in[g]\right\}=M_{n}(\mathbb{C})
$$

for a minimal $\ell \in \mathbb{N}$, or, equivalently, Wie $\ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right)=\ell$.

Corollary (C.-Jia '22)

Given a generic quantum channel $\mathcal{E}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ with Kraus operators $\left\{A_{1}, \ldots, A_{g}\right\}$, its Kraus rank (and thus its index of primitivity $q(\mathcal{E})$) is of order $\Theta(\log n)$.

Application: Matrix Product States

Matrix Product State

Consider a pure quantum state $|\psi\rangle \in \mathbb{C}^{\otimes g^{L}}$ modelling a system of L sites, each of which corresponds to a g-dimensional Hilbert space. If a translation-invariant pure state $|\psi\rangle$ can be written in the form

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

we say that $|\psi\rangle$ is a Matrix Product State (MPS) with periodic boundary conditions.
For any $L \in \mathbb{N}$, let us consider the map $\Gamma_{L}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{\otimes g^{L}}$ given by

Application: Matrix Product States

Matrix Product State

Consider a pure quantum state $|\psi\rangle \in \mathbb{C}^{\otimes g^{L}}$ modelling a system of L sites, each of which corresponds to a g-dimensional Hilbert space. If a translation-invariant pure state $|\psi\rangle$ can be written in the form

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

we say that $|\psi\rangle$ is a Matrix Product State (MPS) with periodic boundary conditions.
For any $L \in \mathbb{N}$, let us consider the map $\Gamma_{L}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{\otimes g^{L}}$ given by

$$
\Gamma_{L}: X \mapsto \sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[X A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

Theorem (Ṕ́rez-García et al. '06)
Γ_{L} is injective if, and only if,
span $\left\{A_{i_{1}} \ldots A_{i_{L}}: 1 \leq i_{1}, \ldots, i_{L} \leq g\right\}=M_{n}(\mathbb{C}), \quad$ or, equiv. Wie $\ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right) \leq L$.

Ángela Capel Cuevas (Universität Tübingen)
A generic quantum Wielandt's inequality

Application: Matrix Product States

Matrix Product State

Consider a pure quantum state $|\psi\rangle \in \mathbb{C}^{\otimes g^{L}}$ modelling a system of L sites, each of which corresponds to a g-dimensional Hilbert space. If a translation-invariant pure state $|\psi\rangle$ can be written in the form

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

we say that $|\psi\rangle$ is a Matrix Product State (MPS) with periodic boundary conditions.
For any $L \in \mathbb{N}$, let us consider the map $\Gamma_{L}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{\otimes g}{ }^{L}$ given by

$$
\Gamma_{L}: X \mapsto \sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[X A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

Theorem (Pérez-García et al. '06)

Γ_{L} is injective if, and only if,

$$
\operatorname{span}\left\{A_{i_{1}} \ldots A_{i_{L}}: 1 \leq i_{1}, \ldots, i_{L} \leq g\right\}=M_{n}(\mathbb{C}), \quad \text { or, equiv. Wie } \ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right) \leq L
$$

Application: Matrix Product States

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

For any $L \in \mathbb{N}$, let us consider the map $\Gamma_{L}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{\otimes g^{L}}$ given by

$$
\Gamma_{L}: X \mapsto \sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[X A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

Theorem (Pérez-García et al. '06)

Γ_{L} is injective if, and only if,

$$
\operatorname{span}\left\{A_{i_{1}} \ldots A_{i_{L}}: 1 \leq i_{1}, \ldots, i_{L} \leq g\right\}=M_{n}(\mathbb{C}), \quad \text { or, equiv. Wie } \ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right) \leq L
$$

- Given $L \in \mathbb{N}$ such that

$$
L \geq 2\left\lceil\log _{g} n\right\rceil
$$

the map Γ_{L} is injective with probability 1.

- Given a translation-invariant $|\psi\rangle$ with periodic boundary conditions, for $L \geq 2\left\lceil\log _{g} n\right\rceil$, $|\psi\rangle$ is the unique ground state of a local Hamiltonian with probability 1.

Application: Matrix Product States

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

For any $L \in \mathbb{N}$, let us consider the map $\Gamma_{L}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}^{\otimes g^{L}}$ given by

$$
\Gamma_{L}: X \mapsto \sum_{i_{1}, \ldots, i_{L}=1}^{g} \operatorname{tr}\left[X A_{i_{1}} \ldots A_{i_{L}}\right]\left|i_{1} \ldots i_{L}\right\rangle
$$

Theorem (Pérez-García et al. '06)

Γ_{L} is injective if, and only if, $\operatorname{span}\left\{A_{i_{1}} \ldots A_{i_{L}}: 1 \leq i_{1}, \ldots, i_{L} \leq g\right\}=M_{n}(\mathbb{C})$, or, equiv. Wie $\ell\left(\left\{A_{1}, \ldots, A_{g}\right\}\right) \leq L$.

Corollary (C.-Jia '22)

- Given $L \in \mathbb{N}$ such that

$$
L \geq 2\left\lceil\log _{g} n\right\rceil,
$$

the map Γ_{L} is injective with probability 1.

- Given a translation-invariant $|\psi\rangle$ with periodic boundary conditions, for $L \geq 2\left\lceil\log _{g} n\right\rceil$, $|\psi\rangle$ is the unique ground state of a local Hamiltonian with probability 1.

LIE ALGEBRA

LIE-GENERATING SYSTEM AND LIE-LENGTH

Consider a Lie algebra $(\mathcal{A},[\cdot, \cdot])$ and a generating system $U \subset \mathcal{A}$. We define the Lie-length of a Lie-generating system U as:
$\operatorname{Lie} \ell(U)=\min \left\{\ell \mid \mathcal{A}=\operatorname{span}\left\{U_{n}, n \leq \ell\right\}\right\}, \quad$ with $\quad U_{1}=\operatorname{span}\{U\} ; U_{n}=\operatorname{span}\left[U_{n-1}, U\right], n \geq 2$.

As $\left\{U_{n}\right\}$ is a grading of the Lie algebra and basis elements can thus be restricted to right-nested brackets, we could search for a basis with minimal length through a tree structure algorithm.

Life-Tree algorithm

- At each step, the length increases by one and we compute a new set of right-nested commutators.
- We consider one of them, evaluate it as a matrix and discard it if it is linearly dependent of the previous matrices.
- We repeat this with all the new right-nested

The algorithm stops when there are enough basis elements or the length reaches the dimension.

LiE ALGEBRA

LiE-GENERATING SYSTEM AND LIE-LENGTH

Consider a Lie algebra $(\mathcal{A},[\cdot, \cdot])$ and a generating system $U \subset \mathcal{A}$. We define the Lie-length of a Lie-generating system U as:
$\operatorname{Lie} \ell(U)=\min \left\{\ell \mid \mathcal{A}=\operatorname{span}\left\{U_{n}, n \leq \ell\right\}\right\}, \quad$ with $\quad U_{1}=\operatorname{span}\{U\} ; U_{n}=\operatorname{span}\left[U_{n-1}, U\right], n \geq 2$.
As $\left\{U_{n}\right\}$ is a grading of the Lie algebra and basis elements can thus be restricted to right-nested brackets, we could search for a basis with minimal length through a tree structure algorithm.

Lie-Tree algorithm

- At each step, the length increases by one and we compute a new set of right-nested commutators.
- We consider one of them, evaluate it as a matrix and discard it if it is linearly dependent of the previous matrices.
- We repeat this with all the new right-nested commutators.

The algorithm stops when there are enough basis elements or the length reaches the dimension.

Lie algebra

LIE-GENERATING SYSTEM AND LIE-LENGTH

Testing the "Lie-Tree" algorithm for random pairs in $\mathfrak{s u}(n)$ for $n \leq 20$, we observe that the Lie-length scales as $\Theta(\log n)$ and it does not change when we randomly choose another initial pair. Similar numerical results with the same asymptotic behaviour hold for $\operatorname{gl}(n, \mathbb{R})$, $g l(n, \mathbb{C}), \mathfrak{o}(n), \mathfrak{u}(n), \mathfrak{s o}(n)$.

Conjecture (C.-Jia '22)

Let S be a random Lie-generating set of $\mathfrak{s u}(n)$, then

```
Lie\ell(S)=\Theta(log}n)\mathrm{ almost surely.
```


Lie algebra

LIE-GENERATING SYSTEM AND LIE-LENGTH

Testing the "Lie-Tree" algorithm for random pairs in $\mathfrak{s u}(n)$ for $n \leq 20$, we observe that the Lie-length scales as $\Theta(\log n)$ and it does not change when we randomly choose another initial pair. Similar numerical results with the same asymptotic behaviour hold for $\operatorname{gl}(n, \mathbb{R})$, $g l(n, \mathbb{C}), \mathfrak{o}(n), \mathfrak{u}(n), \mathfrak{s o}(n)$.

Conjecture (C.-JiA '22)

Let S be a random Lie-generating set of $\mathfrak{s u}(n)$, then

$$
\operatorname{Lie} \ell(S)=\Theta(\log n) \text { almost surely. }
$$

Conclusion

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O(n)$, but the best bound is $O(n \log n)$.

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C})
$$

For any generating system S, the conjecture is $O\left(n^{2}\right)$, but the best boundis $O\left(n^{2} \log n\right)$

Conclusion

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O(n)$, but the best bound is $O(n \log n)$.

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O\left(n^{2}\right)$, but the best boundis $O\left(n^{2} \log n\right)$.

With probability 1 , both lengths can be taken to be \square

Conclusion

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O(n)$, but the best bound is $O(n \log n)$.

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O\left(n^{2}\right)$, but the best boundis $O\left(n^{2} \log n\right)$.

With probability 1 , both lengths can be taken to be $\ell=O(\log n)$.

This has applications in the contexts of primitive quantum channels and Matrix Product States.

Conclusion

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O(n)$, but the best bound is $O(n \log n)$.

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O\left(n^{2}\right)$, but the best boundis $O\left(n^{2} \log n\right)$.

With probability 1 , both lengths can be taken to be $\ell=O(\log n)$.

This has applications in the contexts of primitive quantum channels and Matrix Product States.
Thank you for your attention!

Conclusion

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length at most ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{\leq \ell}=M_{n}(\mathbb{C})
$$

For any generating system S, the conjecture is $O(n)$, but the best bound is $O(n \log n)$.

What is the minimum $\ell \in \mathbb{N}$ such that all words on S of length exactly ℓ span $M_{n}(\mathbb{C})$?

$$
\operatorname{span} S^{=\ell}=M_{n}(\mathbb{C}) .
$$

For any generating system S, the conjecture is $O\left(n^{2}\right)$, but the best boundis $O\left(n^{2} \log n\right)$.

With probability 1 , both lengths can be taken to be $\ell=O(\log n)$.

This has applications in the contexts of primitive quantum channels and Matrix Product States.

Thank you for your attention!

[^0]: Ángela Capel Cuevas (Universität Tübingen)

