

MÁSTER EN MATEMÁTICAS Y APLICACIONES

Norm-attaining operators

Ángela Capel Cuevas

ADVISORS:

MIGUEL MARTÍN JOSÉ PEDRO MORENO (Universidad de Granada) (Universidad Autónoma de Madrid)

September 11th, 2015

Table of Contents

- Presentation of the problem
 - NORM-ATTAINING FUNCTIONALS
 - NORM-ATTAINING OPERATORS
- **OBJECTIVES**
- RESULTS ON NORM-ATTAINING OPERATORS
 - Properties A and B
 - Properties α and β
 - Relation with the Radon-Nikodym property
 - Counterexamples
 - Open problems
- BIBLIOGRAPHY

$$\mathbb{B}_X := \{x \in X \, : \, \|x\| \le 1\} \qquad \quad \mathbb{S}_X := \{x \in X \, : \, \|x\| = 1\}$$

$$||x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

X (real or complex) Banach space

$$\mathbb{B}_X := \{x \in X \, : \, \|x\| \le 1\} \qquad \quad \mathbb{S}_X := \{x \in X \, : \, \|x\| = 1\}$$

$$X^*$$
 dual of X , $x^* \in X^*$

$$|x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

X (real or complex) Banach space

$$\mathbb{B}_X := \{ x \in X \, : \, \|x\| \le 1 \} \qquad \mathbb{S}_X := \{ x \in X \, : \, \|x\| = 1 \}$$

$$X^*$$
 dual of X , $x^* \in X^*$

$$|x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

X (real or complex) Banach space

$$\mathbb{B}_X := \{x \in X \, : \, \|x\| \le 1\} \qquad \quad \mathbb{S}_X := \{x \in X \, : \, \|x\| = 1\}$$

 X^* dual of X, $x^* \in X^*$

$$|x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

X (real or complex) Banach space

$$\mathbb{B}_X := \{ x \in X \, : \, \|x\| \le 1 \} \qquad \mathbb{S}_X := \{ x \in X \, : \, \|x\| = 1 \}$$

$$X^*$$
 dual of X , $x^* \in X^*$

$$||x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

X (real or complex) Banach space

$$\mathbb{B}_X := \{ x \in X \, : \, \|x\| \le 1 \} \qquad \mathbb{S}_X := \{ x \in X \, : \, \|x\| = 1 \}$$

$$X^*$$
 dual of X , $x^* \in X^*$

$$||x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

 x^* attains its norm when this supremum is a maximum, i.e.,

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

X (real or complex) Banach space

$$\mathbb{B}_X := \{ x \in X \, : \, \|x\| \le 1 \} \qquad \mathbb{S}_X := \{ x \in X \, : \, \|x\| = 1 \}$$

$$X^*$$
 dual of X , $x^* \in X^*$

$$||x^*|| := \sup\{|x^*(x)| : x \in \mathbb{B}_X\}$$

 x^* attains its norm when this supremum is a maximum, i.e.,

$$\exists x_0 \in \mathbb{S}_X : |x^*(x_0)| = ||x^*||$$

BISHOP-PHELPS THEOREM, Bull. AMS 1961

The set of norm-attaining functionals is dense in X^* (for the norm topology).

X Banach space, X^{**} its bidual space

$$x \in X, \qquad J(x): X^* \to \mathbb{K}$$

$$J(x)(f) = f(x) \qquad f \in X^*$$

A Banach space is **reflexive** when J is surjective.

JAMES THEOREM

A Banach space X is reflexive if, and only if, every continuous linear functional on X attains its maximum on \mathbb{R}_{X}

X Banach space, X^{**} its bidual space

$$x \in X, \qquad J(x): X^* \to \mathbb{K}$$

$$J(x)(f) = f(x) \qquad f \in X^*$$

X Banach space, X^{**} its bidual space

$$x \in X, \qquad J(x): X^* \to \mathbb{K}$$

$$J(x)(f) = f(x) \qquad f \in X^*$$

A Banach space is **reflexive** when J is surjective.

X Banach space, X^{**} its bidual space

$$x \in X, \qquad J(x): X^* \to \mathbb{K}$$

$$J(x)(f) = f(x) \qquad f \in X^*$$

A Banach space is **reflexive** when J is surjective.

James Theorem

A Banach space X is reflexive if, and only if, every continuous linear functional on X attains its maximum on \mathbb{B}_X .

$$\|T\|:=\sup\left\{\|Tx\|_Y\,:\,x\in\mathbb{B}_X\right\}\qquad (T\in L(X,Y))$$

$$\exists \, x_0 \in \mathbb{S}_X \, : \, \|Tx_0\|_Y = \|T\|$$

$$ilde{NA(X,Y)} = L(X,Y) = I(X,Y)$$

$$NA(X,Y) = L(X,Y)$$
?

X,Y Banach spaces, L(X,Y) set of bounded linear operators

$$\|T\|:=\sup\left\{\|Tx\|_Y\,:\,x\in\mathbb{B}_X\right\}\qquad (T\in L(X,Y))$$

$$\exists x_0 \in \mathbb{S}_X : ||Tx_0||_Y = ||T||$$

$$i \overline{NA(X,Y)} = L(X,Y) ?$$

$$i NA(X,Y) = L(X,Y)$$
?

X,Y Banach spaces, L(X,Y) set of bounded linear operators

$$\|T\|:=\sup\left\{\|Tx\|_Y\,:\,x\in\mathbb{B}_X\right\}\qquad (T\in L(X,Y))$$

$$\exists x_0 \in \mathbb{S}_X : ||Tx_0||_Y = ||T||$$

$$i \overline{NA(X,Y)} = L(X,Y) ?$$

$$i NA(X,Y) = L(X,Y)$$
?

X,Y Banach spaces, L(X,Y) set of bounded linear operators

$$\|T\|:=\sup\left\{\|Tx\|_Y\,:\,x\in\mathbb{B}_X\right\}\qquad (T\in L(X,Y))$$

T attains its norm when this supremum is a maximum, i.e.,

$$\exists \, x_0 \in \mathbb{S}_X \, : \, \|Tx_0\|_Y = \|T\|$$

Problem (BISHOP-PHELPS)

$$\overline{NA(X,Y)} = L(X,Y)$$
?

Problem

$$NA(X,Y) = L(X,Y)$$

X,Y Banach spaces, L(X,Y) set of bounded linear operators

$$||T|| := \sup \{||Tx||_Y : x \in \mathbb{B}_X\} \qquad (T \in L(X, Y))$$

T attains its norm when this supremum is a maximum, i.e.,

$$\exists x_0 \in \mathbb{S}_X : ||Tx_0||_Y = ||T||$$

Problem (BISHOP-PHELPS)

$$i \overline{NA(X,Y)} = L(X,Y) ?$$

$$NA(X,Y) = L(X,Y)$$
?

X,Y Banach spaces, L(X,Y) set of bounded linear operators

$$||T|| := \sup \{||Tx||_Y : x \in \mathbb{B}_X\} \qquad (T \in L(X, Y))$$

T attains its norm when this supremum is a maximum, i.e.,

$$\exists x_0 \in \mathbb{S}_X : ||Tx_0||_Y = ||T||$$

Problem (BISHOP-PHELPS)

$$i \overline{NA(X,Y)} = L(X,Y)$$
?

Problem

$$NA(X,Y) = L(X,Y)$$
?

- Recopilation of results on norm-attaining operators

- Recopilation of results on norm-attaining operators
- Study of endomorphisms

- Recopilation of results on norm-attaining operators
- Study of endomorphisms
- Section In the section of a monograph

Problem NA(X,Y) = L(X,Y)

Problem

$$\lambda NA(X,Y) = L(X,Y) ?$$

Proposition

A Banach space X is reflexive if, and only if, for every finite dimensional Y, every $T \in L(X,Y)$ attains its norm.

X	Y	RESULT	COMMENTARIES
Reflexive	K (ℝ or ℂ)	James th.	
Reflexive	Finite dim.	Prop. 2.2.6	This result is a characterization of reflexivity: if it holds for every finite dim.Y, X is reflexive
Finite dim.	All	Prop. 2.2.8	Direct consequence of the compactness of the ball
Reflexive	?	Prop. 2.2.10	Necessary condition for X

X	Y
$L^p(\mu)$, μ atomic and 1	$L^r(v)$, v atomic and $1 < r < \infty$
$L^p(\mu),$ 1	$L^r(v)$, v atomic and $1 < r < 2$
$L^p(\mu)$, μ atomic and 2	$L^r(v),$ $1 < r < \infty$
$L^p(\mu),$ 1	$L^r(v)$, v atomic and $r = 1$
$L^p(\mu)$, μ atomic and 2	$L^{r}(v),$ $r=1$

COMMENTARIES			
This result is a characterization: If X and Y			
are of the type $C(S)$ or $L^p(\mu)$ and verify			

 $(\sharp XY)$, they belong to one of these five cases

X	RESULT	COMMENTARIES
K (ℝ or ℂ)	James theorem	
Finite dimensional	Proposition 2.2.6	Among the classical Banach spaces, these are the only spaces verifying $(\sharp X)$

RESULT

Th. 2.2.17

PROBLEM NA(X,Y) = L(X,Y)

Problem

$$i \overline{NA(X,Y)} = L(X,Y)$$
 ?

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $NA(c_0,Y) \neq L(c_0,Y)$

$$\overline{NA(X)} = L(X)$$
?

If Y is strictly convex and isomorphic to c_0 , $X = c_0 \oplus_{\infty} Y$ $NA(X) \neq L(X)$

Problem

$$\overline{NA(X,Y)} = L(X,Y) ?$$

The answer, in general, is negative.

Lindenstrauss' counterexample

 $X=c_0, Y$ strictly convex

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $\overline{NA(c_0,Y)} \neq L(c_0,Y)$

Problem

$$\overline{NA(X)} = L(X)$$
?

Problem

$$\overline{NA(X,Y)} = L(X,Y) ?$$

The answer, in general, is negative.

LINDENSTRAUSS' COUNTEREXAMPLE

$$X = c_0, Y$$
 strictly convex

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $\overline{NA(c_0,Y)} \neq L(c_0,Y)$

Problem

$$\overline{NA(X)} = L(X)$$
?

Problem

$$i \overline{NA(X,Y)} = L(X,Y)$$
 ?

The answer, in general, is negative.

LINDENSTRAUSS' COUNTEREXAMPLE

$$X = c_0, Y$$
 strictly convex

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $\overline{NA(c_0,Y)} \neq L(c_0,Y)$

Problem

$$\overline{NA(X)} = L(X)$$
?

Problem

$$\overline{NA(X,Y)} = L(X,Y) ?$$

The answer, in general, is negative.

LINDENSTRAUSS' COUNTEREXAMPLE

 $X = c_0, Y$ strictly convex

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $\overline{NA(c_0,Y)} \neq L(c_0,Y)$

Problem

$$\overline{NA(X)} = L(X)$$
?

Problem

$$\overline{NA(X,Y)} = L(X,Y) ?$$

The answer, in general, is negative.

LINDENSTRAUSS' COUNTEREXAMPLE

 $X = c_0, Y$ strictly convex

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $\overline{NA(c_0,Y)} \neq L(c_0,Y)$

Problem

$$\overline{NA(X)} = L(X)$$
 ?

Problem

$$\overline{NA(X,Y)} = L(X,Y) ?$$

The answer, in general, is negative.

LINDENSTRAUSS' COUNTEREXAMPLE

 $X = c_0, Y$ strictly convex

$$T \in NA(c_0, Y) \Rightarrow T \in F(c_0, Y)$$

If there exists a non-compact operator from c_0 to Y, then $\overline{NA(c_0,Y)} \neq L(c_0,Y)$

Problem

$$\overline{NA(X)} = L(X)$$
 ?

Properties A and B

PROPERTIES A AND B

Zizler: $\{T \in L(X,Y) : T^* \in NA(Y^*,X^*)\} = L(X,Y)$ $\forall X, Y$

 \Rightarrow Every reflexive Banach space has property A.

Properties A and B

Presentation of the problem

Properties A and B

$$X$$
 has property A if $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y$

Lind.:
$$\overline{\{T \in L(X,Y) : T^{**} \in NA(X^{**},Y^{**})\}} = L(X,Y) \quad \forall X,Y \in L(X,Y)$$

$$\mathsf{Zizler:} \ \overline{\{T \in L(X,Y) \ : \ T^* \in NA(Y^*,X^*)\}} = L(X,Y) \qquad \forall X,Y$$

 \Rightarrow Every reflexive Banach space has property A.

Presentation of the problem

Properties A and B

$$X$$
 has property A if $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y$

000000

Results on norm-attaining operators

Y has property B if $\overline{NA(X,Y)} = L(X,Y)$ $\forall X$

Lind.:
$$\overline{\{T \in L(X,Y) : T^{**} \in NA(X^{**},Y^{**})\}} = L(X,Y) \quad \forall X,Y \in L(X,Y)$$

$$\mathsf{Zizler:} \ \overline{\{T \in L(X,Y) \ : \ T^* \in NA(Y^*,X^*)\}} = L(X,Y) \qquad \forall X,Y$$

 \Rightarrow Every reflexive Banach space has property A.

Properties A and B

Properties A and B

$$X$$
 has property A if $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y$

$$Y$$
 has **property** B if $\overline{NA(X,Y)} = L(X,Y) \quad \forall X$

LINDENSTRAUSS-ZIZLER THEOREM

$$\mathsf{Lind.:}\ \overline{\{T\in L(X,Y)\,:\, T^{**}\in NA(X^{**},Y^{**})\}} = L(X,Y) \quad \forall X,Y \in L(X,Y)$$

Properties A and B

Properties A and B

$$X$$
 has **property** A if $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y$

$$Y$$
 has **property** B if $\overline{NA(X,Y)} = L(X,Y) \quad \forall X$

LINDENSTRAUSS-ZIZLER THEOREM

$$\mathsf{Lind.:}\ \overline{\{T\in L(X,Y)\,:\, T^{**}\in NA(X^{**},Y^{**})\}} = L(X,Y) \quad \forall X,Y$$

PROPERTIES A AND B

Properties A and B

$$X$$
 has property A if $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y$

$$Y$$
 has **property** B if $\overline{NA(X,Y)} = L(X,Y) \quad \forall X$

Lindenstrauss-Zizler Theorem

$$\mathsf{Lind.:}\ \overline{\{T\in L(X,Y)\,:\, T^{**}\in NA(X^{**},Y^{**})\}} = L(X,Y) \quad \forall X,Y$$

 \Rightarrow Every reflexive Banach space has property A.

Properties α and β

Properties α and β

$$\{(x_{\lambda}, x_{\lambda}^*) : \lambda \in \Lambda\} \subset \mathbb{S}_X \times \mathbb{S}_{X^*}, 0 \le \rho < 1$$

- (1) $x_{\lambda}^*(x_{\lambda}) = 1 \quad \forall \lambda \in \Lambda$
- (2) $\lambda, \mu \in \Lambda, \lambda \neq \mu \Rightarrow |x_{\lambda}^*(x_{\mu})| \leq \rho$
- $(3\alpha) \|x^*\| = \sup\{|x^*(x_\lambda)| : \lambda \in \Lambda\} \quad \forall x^* \in X^* \quad (ej: \ell_1)$
- $(3\beta) ||x|| = \sup\{|x_{\lambda}^*(x)| : \lambda \in \Lambda\} \quad \forall x \in X \quad \text{(ej: } c_0, \ell_{\infty})$

$$\alpha \Rightarrow A$$

$$\beta \Rightarrow B$$

Properties α and β

Properties α and β

$$\{(x_{\lambda}, x_{\lambda}^*) : \lambda \in \Lambda\} \subset \mathbb{S}_X \times \mathbb{S}_{X^*}, 0 \le \rho < 1$$

- $(1) \ x_{\lambda}^*(x_{\lambda}) = 1 \quad \forall \lambda \in \Lambda$
- (2) $\lambda, \mu \in \Lambda, \lambda \neq \mu \Rightarrow |x_{\lambda}^*(x_{\mu})| \leq \rho$
- $(3\alpha) \|x^*\| = \sup\{|x^*(x_\lambda)| : \lambda \in \Lambda\} \qquad \forall x^* \in X^* \qquad \text{(ej: } \ell_1\text{)}$
- $(3\beta) ||x|| = \sup\{|x_{\lambda}^*(x)| : \lambda \in \Lambda\} \quad \forall x \in X \quad \text{(ej: } c_0, \ell_{\infty})$

L<u>indenst</u>rauss

$$\alpha \Rightarrow A$$

$$\beta \Rightarrow B$$

Properties α and β

Properties α and β

$$\{(x_{\lambda}, x_{\lambda}^*) : \lambda \in \Lambda\} \subset \mathbb{S}_X \times \mathbb{S}_{X^*}, 0 \le \rho < 1$$

- (1) $x_{\lambda}^*(x_{\lambda}) = 1 \quad \forall \lambda \in \Lambda$
- (2) $\lambda, \mu \in \Lambda, \lambda \neq \mu \Rightarrow |x_{\lambda}^*(x_{\mu})| \leq \rho$
- $(3\alpha) \|x^*\| = \sup\{|x^*(x_\lambda)| : \lambda \in \Lambda\} \quad \forall x^* \in X^* \quad (ej: \ell_1)$
- $(3\beta) ||x|| = \sup\{|x_{\lambda}^*(x)| : \lambda \in \Lambda\} \quad \forall x \in X \quad (ej: c_0, \ell_{\infty})$

LINDENSTRAUSS

$$\alpha \Rightarrow A$$

$$\beta \Rightarrow B$$

Partington Theorem

Every Banach space can be renormed with β .

SCHACHERMAYER THEOREM

Every WCG Banach space can be renormed with α .

Partington Theorem

Every Banach space can be renormed with β .

SCHACHERMAYER THEOREM

Every WCG Banach space can be renormed with α .

Dentability

X Banach space, C subset of X,

C is **dentable** if, for every $\varepsilon > 0$, we can find $x \in C$ such that $x \notin \overline{\mathsf{co}}(C \setminus (x + \varepsilon \mathbb{B}_X)).$

DENTABILITY

X Banach space, C subset of X,

C is **dentable** if, for every $\varepsilon > 0$, we can find $x \in C$ such that $x \notin \overline{\mathsf{co}}(C \setminus (x + \varepsilon \mathbb{B}_X)).$

RADON-NIKODYM PROPERTY

A Banach space X has the RNP if, and only if, every bounded subset of X is dentable.

DENTABILITY

X Banach space, C subset of X,

C is **dentable** if, for every $\varepsilon > 0$, we can find $x \in C$ such that $x \notin \overline{\mathsf{co}}(C \setminus (x + \varepsilon \mathbb{B}_X)).$

RADON-NIKODYM PROPERTY

A Banach space X has the RNP if, and only if, every bounded subset of X is dentable.

Bourgain Theorem

 $RNP \Rightarrow A$ (for every equivalent norm)

Dentability

X Banach space, C subset of X,

C is **dentable** if, for every $\varepsilon > 0$, we can find $x \in C$ such that $x \notin \overline{\mathsf{co}}(C \setminus (x + \varepsilon \mathbb{B}_X)).$

RADON-NIKODYM PROPERTY

A Banach space X has the RNP if, and only if, every bounded subset of X is dentable.

Bourgain Theorem

 $RNP \Rightarrow A$ (for every equivalent norm)

Huff Theorem

 $X \text{ no } RNP \Rightarrow \exists X_1 \sim X \sim X_2 : \overline{NA(X_1, X_2)} \neq L(X_1, X_2)$

Bourgain-Stegall

 $RNP \Leftarrow A$ (for every equivalent norm)

Conjecture

 $\not\in \mathsf{RNP} \Leftrightarrow \overline{NA(X)} = L(X)$ for every equivalent norm ?

Proposition

Y Banach space, $X \cong Y \oplus Y$

$$X \cong Y \oplus_1 Y \implies ||x||_X = ||y_1||_Y + ||y_2||_Y \quad \forall x = (y_1, y_2)$$

$$X \cong Y \oplus_{\infty} Y \ \Rightarrow \ \|x\|_X = \max\left\{\|y_1\|_Y\,, \|y_2\|_Y\right\} \ \forall x = (y_1, y_2)$$

X verifies $\overline{NA(X)}=L(X)$ for every equivalent norm, if, and only if, X has the RNP.

 $RNP \Leftarrow A$ (for every equivalent norm)

Conjecture

 $\lambda \operatorname{RNP} \Leftrightarrow \overline{NA(X)} = L(X)$ for every equivalent norm ?

Proposition

Y Banach space, $X \cong Y \oplus Y$

$$X \cong Y \oplus_1 Y \implies ||x||_X = ||y_1||_Y + ||y_2||_Y \quad \forall x = (y_1, y_2)$$

$$X \cong Y \oplus_{\infty} Y \ \Rightarrow \ \|x\|_X = \max\left\{\|y_1\|_Y, \|y_2\|_Y\right\} \ \forall x = (y_1, y_2)$$

X verifies $\overline{NA}(X) = L(X)$ for every equivalent norm, if, and only if, X has the RNP.

Non-linear optimization principle of Bourgain-Stegall

 $RNP \Leftarrow A$ (for every equivalent norm)

Conjecture

 $\not \in \mathsf{RNP} \Leftrightarrow \overline{NA(X)} = L(X)$ for every equivalent norm ?

Proposition

Y Banach space, $X \cong Y \oplus Y$

$$X \cong Y \oplus_1 Y \implies ||x||_X = ||y_1||_Y + ||y_2||_Y \quad \forall x = (y_1, y_2)$$

$$X \cong Y \oplus_{\infty} Y \ \Rightarrow \ \left\|x\right\|_{X} = \max\left\{\left\|y_{1}\right\|_{Y}, \left\|y_{2}\right\|_{Y}\right\} \ \forall x = (y_{1}, y_{2})$$

X verifies $\overline{NA(X)}=L(X)$ for every equivalent norm, if, and only if, X has the RNP.

Non-linear optimization principle of Bourgain-Stegall

 $RNP \Leftarrow A$ (for every equivalent norm)

Conjecture

Proposition

Y Banach space, $X\cong Y\oplus Y$

$$X \cong Y \oplus_1 Y \implies ||x||_X = ||y_1||_Y + ||y_2||_Y \quad \forall x = (y_1, y_2)$$

$$X \cong Y \oplus_{\infty} Y \ \Rightarrow \ \|x\|_X = \max\left\{\|y_1\|_Y, \|y_2\|_Y\right\} \ \forall x = (y_1, y_2)$$

X verifies $\overline{NA(X)}=L(X)$ for every equivalent norm, if, and only if, X has the RNP.

Non-linear optimization principle of Bourgain-Stegall

 $RNP \Leftarrow A$ (for every equivalent norm)

Conjecture

 $\lambda \operatorname{RNP} \Leftrightarrow \overline{NA(X)} = L(X)$ for every equivalent norm ?

Proposition

Y Banach space, $X\cong Y\oplus Y$

$$X \cong Y \oplus_1 Y \implies ||x||_X = ||y_1||_Y + ||y_2||_Y \quad \forall x = (y_1, y_2)$$

$$X \cong Y \oplus_{\infty} Y \ \Rightarrow \ \|x\|_X = \max\left\{\|y_1\|_Y, \|y_2\|_Y\right\} \ \forall x = (y_1, y_2)$$

X verifies $\overline{NA(X)} = L(X)$ for every equivalent norm, if, and only if, X has the RNP.

GOWERS' COUNTEREXAMPLE

No infinite dimensional Hilbert space has property ${\cal B}$

For $1 , <math>\ell_p$ and L_p do not have property B.

ACOSTA'S COUNTEREXAMPLE

No infinite dimensional strictly convex Banach space has property B.

In another result, ℓ_1 and L_1 do not have property B.

GOWERS' COUNTEREXAMPLE

No infinite dimensional Hilbert space has property B.

For $1 , <math>\ell_p$ and L_p do not have property B.

Counterexamples

Gowers' Counterexample

No infinite dimensional Hilbert space has property B.

For $1 , <math>\ell_p$ and L_p do not have property B.

ACOSTA'S COUNTEREXAMPLE

No infinite dimensional strictly convex Banach space has property B.

In another result, ℓ_1 and L_1 do not have property B.

OPEN PROBLEMS

- ▶ Do finite dimensional spaces have property B? In particular, does \mathbb{R}^2 , with the euclidean norm, have property B?
- ightharpoonup Characterize the compacts K such that C(K) has property B.

BIBLIOGRAPHY

- J. Bourgain On dentability and the Bishop-Phelps property.
- P. Bishop and R. Phelps
 A proof that every Banach space is subreflexive.
- J. Lindenstrauss
 On operators which attain their norm.
- J. Partington

 Norm attaining operators.
- W. Schachermayer
 Norm attaining operators and renormings of Banach spaces.
- C. Stegall
 Optimization of functions on certain subsets of Banach spaces.
- J. Diestel and J. Uhl Vector Measures.

