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X (real or complex) Banach space

Bx :={zeX :|z| <1} Sx i ={re X : |z|]| =1}
X* dual of X, z* € X*
Jlo*|| == sup {la*(2)]| : @ € Bx}
z* attains its norm when this supremum is a maximum, i.e.,

dzo € Sx : |27 (wo)| = [|2¥]|

BisHor-PHELPS THEOREM, Bull. AMS 1961

The set of norm-attaining functionals is dense in X* (for the norm
topology).
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REFLEXIVE SPACE

X Banach space, X™** its bidual space
z € X, J(x): X* =K
J(@)(f) = flz) feX~

A Banach space is reflexive when J is surjective.

JAMES THEOREM

A Banach space X is reflexive if, and only if, every continuous
linear functional on X attains its maximum on Bx.
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© Recopilation of results on norm-attaining operators
@ Study of endomorphisms

@ Elaboration of a monograph




RESULTS ON NORM-ATT. OPERATORS

PROBLEM NA(X,Y) = L(X,Y)

Problem
i NAX,)Y)=L(X,Y)?

A Banach space X is reflexive if, and only if, for every finite
dimensional Y, every T' € L(X,Y") attains its norm.

X ¥ RESULT COMMENTARIES
Reflexive K®orC) James th.
Reflexive Fisiite itz Prop. 2.2.6 This result is a characterization of reflexivity :

if it holds for every finite dim.¥, X is reflexive

Finite dim. All Prop. 2.2.8 | Direct consequence of the compactness of the ball

Reflexive ? Prop. 2.2.10 Necessary condition for X




RESULTS ON NORM-ATTA OPERATORS

X Y RESULT COMMENTARIES
LP(u), p atomic L"(v), v atomic
andl < p<e and 1 <r <o
P11} T(v). va ic . ’ e
gl _I“ LAY,y atomm This result is a characterization: If X and ¥
l<p<e and 1 <r<2
LP(u), p atomic LT{v), 5 e R s
it A S i Th. 2.2.17 are of the type C(5) or L” (i) and verify
Pl Fiu) v g ic ;
i : ;'j”fl' 2 ‘:nd‘r imlm] (#XY). they belong to one of these five cases
LP(p), p atomic LT(v),
and2 < p < oo r=:1
X RESULT COMMENTARIES
K(RorC) James theorem

Among the classical Banach spaces,

Finite dimensional | Proposition 2.2.6 e =
’ P these are the only spaces verifying (X))
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PROBLEM NA(X,Y) = L(X,Y)

i NAX,)Y)=L(X,Y)?
The answer, in general, is negative.

X = cp, Y strictly convex
T e NA(C(),Y) =1Te F(Co,Y)
If there exists a non-compact operator from ¢y to Y, then
NA(C(), Y) 75 L(Co, Y)

i NAX)=L(X)?
If Y is strictly convex and isomorphic to ¢y, X = cg Peo ¥
NA(X) # L(X)
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X has property A if NA(X,Y)=L(X,Y) VY

Y has property B if NA(X,Y)=L(X,Y) VX

LINDENSTRAUSS-Z1ZLER THEOREM

Lind: {T € L(X,Y) : T € NA(X™,Y*)} = L(X,Y) VX,Y

Zizler: {T € L(X,Y) : T* € NA(Y*,X*)} = L(X,Y) VX,Y

= Every reflexive Banach space has property A.
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LINDENSTRAUSS

a= A

68=B
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Every Banach space can be renormed with 5.

SCHACHERMAYER THEOREM

Every WCG Banach space can be renormed with a.
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DENTABILITY

X Banach space, C subset of X,

C' is dentable if, for every ¢ > 0, we can find z € C such that
z ¢ (0 \ (x +Bx)).

RADON-NIKODYM PROPERTY

A Banach space X has the RNP if, and only if, every bounded
subset of X is dentable.

BOURGAIN THEOREM

RNP = A (for every equivalent norm)

Hurr THEOREM
Xno RNP=3X1 ~X ~ X5 : NA(Xl,XQ) 75 L(Xl,XQ)
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NON-LINEAR OPTIMIZATION PRINCIPLE OF
BOURGAIN-STEGALL

RNP < A (for every equivalent norm)

i RNP < NA(X) = L(X) for every equivalent norm 7

Proposition
Y Banach space, X Y @Y

X=Y0Y = lzlx = llully + lvally Vo= (y1,42)

X2Y 0 Y = |zfx =max{llyilly lg2lly} Vo = (y1,92)

X verifies NA(X) = L(X) for every equivalent norm, if, and only
if, X has the RNP.
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COUNTEREXAMPLES

GOWERS’ COUNTEREXAMPLE

No infinite dimensional Hilbert space has property B.

For 1 <p < o0, £, and L, do not have property B.

ACOSTA’S COUNTEREXAMPLE

No infinite dimensional strictly convex Banach space has property
B.

In another result, #; and L; do not have property B.
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OPEN PROBLEMS

» Do finite dimensional spaces have property B?
In particular, does R?, with the euclidean norm, have property
B?

» Characterize the compacts K such that C(K) has property B.
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