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Norm-attaining functional

X (real or complex) Banach space

BX := {x ∈ X : ‖x‖ ≤ 1} SX := {x ∈ X : ‖x‖ = 1}

X∗ dual of X, x∗ ∈ X∗

‖x∗‖ := sup {|x∗(x)| : x ∈ BX}

x∗ attains its norm when this supremum is a maximum, i.e.,

∃x0 ∈ SX : |x∗(x0)| = ‖x∗‖

Bishop-Phelps Theorem, Bull. AMS 1961

The set of norm-attaining functionals is dense in X∗ (for the norm
topology).
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Reflexive space

X Banach space, X∗∗ its bidual space

x ∈ X, J(x) : X∗ → K

J(x)(f) = f(x) f ∈ X∗

A Banach space is reflexive when J is surjective.

James Theorem

A Banach space X is reflexive if, and only if, every continuous
linear functional on X attains its maximum on BX .
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Norm-attaining operator

X,Y Banach spaces, L(X,Y ) set of bounded linear operators

‖T‖ := sup {‖Tx‖Y : x ∈ BX} (T ∈ L(X,Y ))

T attains its norm when this supremum is a maximum, i.e.,

∃x0 ∈ SX : ‖Tx0‖Y = ‖T‖

Problem (Bishop-Phelps)

¿ NA(X,Y ) = L(X,Y ) ?

Problem

¿ NA(X,Y ) = L(X,Y ) ?
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Objectives

1 Recopilation of results on norm-attaining operators

2 Study of endomorphisms

3 Elaboration of a monograph
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Problem NA(X, Y ) = L(X, Y )

Problem

¿ NA(X,Y ) = L(X,Y ) ?

Proposition

A Banach space X is reflexive if, and only if, for every finite
dimensional Y , every T ∈ L(X,Y ) attains its norm.
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Problem NA(X, Y ) = L(X, Y )

Problem

¿ NA(X,Y ) = L(X,Y ) ?
The answer, in general, is negative.

Lindenstrauss’ counterexample

X = c0, Y strictly convex
T ∈ NA(c0, Y )⇒ T ∈ F (c0, Y )

If there exists a non-compact operator from c0 to Y , then
NA(c0, Y ) 6= L(c0, Y )

Problem

¿ NA(X) = L(X) ?
If Y is strictly convex and isomorphic to c0, X = c0 ⊕∞ Y

NA(X) 6= L(X)
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Properties A and B

Properties A and B

X has property A if NA(X,Y ) = L(X,Y ) ∀Y

Y has property B if NA(X,Y ) = L(X,Y ) ∀X

Lindenstrauss-Zizler Theorem

Lind.: {T ∈ L(X,Y ) : T ∗∗ ∈ NA(X∗∗, Y ∗∗)} = L(X,Y ) ∀X,Y

Zizler: {T ∈ L(X,Y ) : T ∗ ∈ NA(Y ∗, X∗)} = L(X,Y ) ∀X,Y

⇒ Every reflexive Banach space has property A.
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Properties α and β

Properties α and β

{(xλ, x∗λ) : λ ∈ Λ} ⊂ SX × SX∗ , 0 ≤ ρ < 1

(1) x∗λ(xλ) = 1 ∀λ ∈ Λ

(2) λ, µ ∈ Λ, λ 6= µ⇒ |x∗λ(xµ)| ≤ ρ
(3α) ‖x∗‖ = sup {|x∗(xλ)| : λ ∈ Λ} ∀x∗ ∈ X∗ (ej: `1)

(3β) ‖x‖ = sup {|x∗λ(x)| : λ ∈ Λ} ∀x ∈ X (ej: c0, `∞)

Lindenstrauss

α⇒ A

β ⇒ B
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Partington Theorem

Every Banach space can be renormed with β.

Schachermayer Theorem

Every WCG Banach space can be renormed with α.
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Relation with the Radon-Nikodym property

Dentability

X Banach space, C subset of X,
C is dentable if, for every ε > 0, we can find x ∈ C such that
x /∈ co(C \ (x+ εBX)).

Radon-Nikodym property

A Banach space X has the RNP if, and only if, every bounded
subset of X is dentable.

Bourgain Theorem

RNP ⇒ A (for every equivalent norm)

Huff Theorem

X no RNP ⇒ ∃X1 ∼ X ∼ X2 : NA(X1, X2) 6= L(X1, X2)
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Non-linear optimization principle of
Bourgain-Stegall

RNP ⇐ A (for every equivalent norm)

Conjecture

¿ RNP⇔ NA(X) = L(X) for every equivalent norm ?

Proposition

Y Banach space, X ∼= Y ⊕ Y

X ∼= Y ⊕1 Y ⇒ ‖x‖X = ‖y1‖Y + ‖y2‖Y ∀x = (y1, y2)

X ∼= Y ⊕∞ Y ⇒ ‖x‖X = max {‖y1‖Y , ‖y2‖Y } ∀x = (y1, y2)

X verifies NA(X) = L(X) for every equivalent norm, if, and only
if, X has the RNP.
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X ∼= Y ⊕∞ Y ⇒ ‖x‖X = max {‖y1‖Y , ‖y2‖Y } ∀x = (y1, y2)

X verifies NA(X) = L(X) for every equivalent norm, if, and only
if, X has the RNP.
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Counterexamples

Gowers’ counterexample

No infinite dimensional Hilbert space has property B.

For 1 < p <∞, `p and Lp do not have property B.

Acosta’s counterexample

No infinite dimensional strictly convex Banach space has property
B.

In another result, `1 and L1 do not have property B.
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Open problems

I Do finite dimensional spaces have property B?
In particular, does R2, with the euclidean norm, have property
B?

I Characterize the compacts K such that C(K) has property B.
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