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» Finite lattice A CC Z9.
Hilbert space associated to A is
HA = ®.7:EA Ho.
» Density matrices: Sp := S(Ha) =
1 {pa € Br : pa > 0 and tr[pa] = 1}.
E

» Dynamics of S is dissipative!

» The continuous-time evolution of a state on S is given by a q.
Markov semigroup (Markovian approximation).
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Semigroup:
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> T =1.

d * * * * *
aﬁ :7; O,CA:EAO7;.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.
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T = eth & Lh = —
¢ A= o
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semigroup {7;"},-, of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in Sa.
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QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

a

dt

For px € Sa, Li(pa) = —i[Ha,pa]l + > Li(pa)
keA

* tLA * *
7; =e A@LA: 7; |t:0~

INTRODUCTION AND

MOTIVATION
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reversible, i.e., satisfies the detailed balance condition:

(f, £a(9)), = (La(f), 9)o

for every f,g € Ba and Hermitian, where
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Mixing < Convergence

PrIMITIVE QMS

We assume that {7;"},s, has a unique full-rank invariant state which ronienon A
> NTRODUCTION AND
we denote by oa. MOTIVATION

REVERSIBILITY

We also assume that the quantum Markov process studied is
reversible, i.e., satisfies the detailed balance condition:

(f, £a(9)), = (La(f), 9)o

for every f,g € Ba and Hermitian, where

(f,9), = tr[f 01/2901/2} :

Notation: p; := 7 (p).

t—oo

pa =55 pe =T (pa) = €73 (pa) =5 oa




MIXING TIME
» Under the previous conditions, there is always convergence to ox.
» How fast does convergence happen?

Note 75 (p) := oa for every p.

MIXING TIME
INTRODUCTION AND

We define the mixing time of {7;"} by MOTIVATION

tmix(€) = min{t >0: sup |77 (p) — Tu(p)|l; < e}.

PAESA

PA
sz

/

TA




WHEN DOES A QUANTUM DISSIPATIVE EVOLUTION MIX When does a

quantum
5

RAPIDLY? ation mix

rapidly?

When does a quantum dissipative evolution mix
rapidly?

PA
\’pz

o "

poly(|A

TA




RAPID MIXING

MIXING TIME

We define the mixing time of {7;"} by

i) = min{t >0: sup ||p:—oall; < s}.
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RAPID MIXING

MIXING TIME
We define the mixing time of {7;"} by

i) = min{t >0: sup ||p:—oall; < s}.
PAESA

INTRODUCTION AND

Remember: p: := T;"(p), oa := Tox(p). MOTIVATION

RAPID MIXING
We say that L} satisfies rapid mixing if

sup |[lpe — oall, < poly(JA])e™ "
PAESA

tmix(€) ~ log(|JA]).

p.
A‘—\.p

© poly(jA])e

gA
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

If rapid mixing, no error correction:

Easy tmix ~ log(n) tmix ~ poly(n) tmix ~ exp(n) Hard
> INTRODUCTION AND
MOTIVATION
Error correction Self-correction Ao
Efficient prediction Topological order Quantum memories

Speed-up for SDP solvers

Further applications:

» Robust and efficient preparation of topologically ordered
phases of matter via dissipation.

» Classification of dissipative phases of matter.

» Design of more efficient quantum error-correcting codes
optimized for correlated Markovian noise models.
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Quantum logarithmic Sobolev inequalities via
quasi-factorization of the relative entropy.

Decay of correlations,

on the Gibbs state.
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(in this talk, we simply call it log-Sobolev inequality)

Recall: p; := T, (p).
Master equation:
Oepr = LE(pr)-
Relative entropy of p; and oa:
D(ptlloa) = tr[pt(log pr — log oa)].
Differentiating:

9eD(pt|loa) = tr[LA(pe)(log pe — log on)]-

Lower bound for the derivative of D(p:||oa) in
terms of itself:

20D (pel|on) < — tr[L3 (pe) (log pr — log on)].
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MLSI = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

ot — oally < V/1/Omin e MERE,




WHEN DOES A QUANTUM DISSIPATIVE EVOLUTION MIX When does a

quantum
5

RAPIDLY? ation mix

rapidly?

When does a quantum dissipative evolution mix
rapidly?

ANSWER: When our quantum dissipative evolution has
a positive MLSI, it mixes rapidly.

Remark: And when it only has a positive spectral gap, in general it
does not mix rapidly.




QUANTUM SPIN SYSTEMS e o ®
1 e

Kastoryano-Temme, '13 This
project

Kastoryano-Temme, '13

Cubitt et al, ’13

eBHA
Cubitt et al, 1/ \’3":31(.:m et al, ’15 Hy:=Y0() oa= T ()
s

Stability Area law

R (pa) '2F o

Exp. decay of correlations:

sup [tr[Oa ® O(caB — 04 ® oB)]| gKe_Wd(A’B)
l0all=ll0OglI=1
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Hamiltonian: Hy = Ha + Hp + Haup)c + Hoa + Hop ,
Gibbs state: g5 (8) = e #HA /Tr[e=AHA] .
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DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

> Hamiltonian: Hy = Ha + Hp + Haup)c + Hoa + Hop ,
Gibbs state: g5 (8) = e #HA /Tr[e=AHA] .

5000000000000 00 30
Q2922929292929 929209292929929 QuestionS:

SIS D I S I I R A R D R —_—

SRS ]| 9

20000000000 ,B Blo o For non-commuting Hamiltonians:
SIS R S I R R A R D I

JJJJJJJﬂJ Fo 00 00 0 e PHAUB rx e~ PHA ¢—FHB 7
900002 #T50000000090

QIO DY 999 VIIIYVIVY

JJJAJJJJJJJJJJJJJ

o o[RS0 o 0000000000 trAc[o'A]®tch[crA]::(o’A)A@(oA)B%
) 9500000000000

tr(AuB)C[UA] = (OA)AUB ?
¢ := dist(A, B)




DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Corry (A : B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
I0all=lI0OgB =1
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OPERATOR CORRELATION

Corry(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
I0all=lOBl=1

MUTUAL INFORMATION

Is(A: B) = D(pagllpa ® pB)
for D(pl|o) = Tr[p(logp — logo)]
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OPERATOR CORRELATION

Corry (A : B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
lOoal=l0gll=1

MUTUAL INFORMATION

Is(A: B) = D(pagllpa ® pB)
for D(pl|o) = Tr[p(logp — logo)]

MIXING CONDITION

Ih(@aB)l = 03" @05 oanox* @ 05" * — 1an|_

Relation:

Corry(A: B)2 < I,(A: B)

1/2

1
2
< ®on? -1 H

= B AB -

—1/2 —-1/2 -
Ha’A Rop OABO 4
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Thermalization Decay of
correlations

D(p,1165) < Dipyl|op)e 2R N Mixing condition y e

MLSI (log-Sobolev)

=1 =1 —;
” 0, ®ogous—Lup ” - < Ke-7d(A.B)
Rapid Mixing
Mutual information

sup || pr—0n | < poly(|A])e " . —rd(a,
s ool A58 < Kerrans)

Operator correlation
Spectralgap
2 oA Corr,(A : B) < Ke~rd(4.B)

Var(p,,6,) < Var(p, ,6,)e” *ZR*
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OBJECTIVE

MLSI CONSTANT

« o —tr[LA(pa)(log pa —logon)]
Ly) = f
o(£a) = il 2D(pallon)

What do we want to prove?
lim inf a(L}) > ¥(|A]) > 0.
A zd

A

Can we prove something like

a(Lh) = Y(JA]) a(L2) > 07
No, but we can prove

a(Lh) =2 V(JA]) aa(£a) > 0.
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MLSI CONSTANT

The MLSI constant of £} = > £, is defined by
kEA

* .o —tr[Lh(pa)(log pa —logon)]
Ly) = f
al£a) = inf 2D(pallon)
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CONDITIONAL MLSI CONSTANT

[

MLSI CONSTANT

The MLSI constant of £} = > £, is defined by
kEA

* .o —tr[Lh(pa)(log pa —logon)]
Ly) = f
al£a) = inf 2D(pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

. o —tr[Lh(pa)(log pa —logoa)]
L) = f
ar(La) = inf 2D(pallon)




STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez
Garcia-Rouzé, ’19).

Decay of correlations

INTRODUCT

IOTIVATIO!

M G TIME AND
BOLEV
1ES

on the Gibbs state
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QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)]

for pa,on € D(Hapc), where £(capc) depends only on capc and
measures how far ocac is from o4 ® oc.




ExXaAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia ’18) LT\(pA) = Z (0’1 & pze — pA) heat-bath
zEA

Dq(palloa) := D(palloa) = D(pae|loze)

orn=Q 0a, @

TEA
D(palloa) <
6%17 S ZDQC (pAHUA) EXAMPLES
€A
-y St ¢ 5 tr[L5 (pa)(log pa —log oa)]
zEA ZOCA(’C;)
1
<> —tr[Lh(pa) (1 —1
= 9inf OzA(,C,*)Z r[L5(pa)(log pa — log oa)]
TEA TEA
@® _ 1

= 3igrax) IEen)108 pn ~logow))

{5}53 < (= tr[LA(pa)(log pa — logoa)]) .




QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

D(palloa) < c[Dag(palloa) + Dpc(palloa)] +d Al

Classical quasi-factorization Strong subadditivity

Ent(f) < cpu[Ent(f|Fy) + Ent(f| )] S(pasc) +S(ps) < S(pag) + S(psc)

D(pallas) = Dipaclloa)

General superadditivity

DY (pallon) == D(pal| E4

(pa))

Pinching onto

<c [Dl + Do) +d - different bases
LX)=E

+B(X

2 assumptions,

on QMC. Dap(A) < Da(A) + Dp(A)

D < ¢[D1 + Do

BRS20
Local 0 high
Generalized depolarizing 1D Heat-bath generator, @ (1:II)ess|cal
Apa) = 0o @ pue = pa 2 i - Nearest neighbour

When does

(Universitit
Tiibingen)

EXAMPLES




MOST RECENT RESULT

MLSI FOR 1D DAVIES GENERATORS,

(Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let Ef;* be a Davies generator with unique fixed point o given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, Cf;* satisfies a positive
MLST a(L5*) = Q(In(]A]) 7).
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MLSI FOR 1D DAVIES GENERATORS,

(Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let Ef;* be a Davies generator with unique fixed point oa given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, £f;* satisfies a positive
MLST a(L5*) = Q(In(]A]) 7).

(Kastoryano-Brandao, '16) ﬁf?* has a positive spectral gap that is

EXAMPLES
independent of the system size, for every temperature. A

Rapid mixing:

sup |lp: — oall, < poly(|A])e™".
PAESA

For a(£}) a MLSI constant:

ot — oall, < +/2108(1/0min) e~ <A ¢,

RAPID MIXING

In the setting above, 51[\);* has rapid mixing.
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Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DZ(palloa) == D(pal B4 (pa)) -

S TEL ) o T 1/2 _—1/2 =iga_a/2\®
Heat-bath cond. expectation: E, (-) := ’!LILmDO (a’A gy’ “tral-lo ' oy
LOG-S
INEQ
EXAMPLES
D(pasclloasc) Dag(papclloasc Dpc(pasclloasc)

OABC

AlBlc <E(Ad) |FalBlc + 4Blc
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Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DZ(palloa) == D(pal B4 (pa)) -
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Last step: Spectral gap
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Consequences of this result:

The Davies generator converging to the Gibbs state of a local,
commuting, translation-invariant Hamiltonian in 1D has rapid mixing
for every 5 > 0.

» Dissipative phase transitions: Absence of dissipative phase
transitions in 1D for Davies evolutions over translation-invariant
spin chains.

> Symmetry Protected Topological phases: Example of a EXAMPLES
non-trivial interacting SPT phase with decoherence time of
O(log ).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in [A],
even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian
with 3-local interactions given by Z ® X ® Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong
symmetry.
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CONCLUSIONS

In this talk:

» We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

» We have introduced log-Sobolev constants as a tool to prove rapid
mixing.

» We have shown that some results of quasi-factorization and decay
of correlations imply positivity of log-Sobolev constants.
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» Extension to more dimensions.
» Any dimension at high temperature, with ”small interactions”.
»> 2D, quantum double models (positive spectral gap recently proven
in (Lucia-Perez Garcia-Perez Hernandez, ’21) ).
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» Improve results of quasi-factorization for the relative entropy:
More systems?

» New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Dgs(pllo) = tr [p log (pl/chlpl/z)} :
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Thank you for your attention!

Do you have any questions?
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David Pérez-Garcia .
U. Complutense Angelo Lucia
Madrid U. Complutense Cambyse Rouzé
Madrid T. U. Munich

Ivan Bardet
Inria Paris

i Andreas Bluhm Li Gao
Daniel Stilck Franca _ Antonio U. Copenhagen
ENS Lyon Pérez-Herndndez
UNED Madrid

U. Houston
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QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,oasc € Sapc. The following holds
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where
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QUASI-FACTORIZATION FOR, QUANTUM MARKOV CHAINS

(Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)
Since op is a QMC between A; +» (A;) <> (A; UIA;)C, then:

Da(palloa) < D Da,(palloa).

o8 = D 04,00,k © T(0a,)R(A;U0A:)°
JjeJ
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Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -

COMPARISON CONDITIONAL REL. ENT. (Bardet-C.-Rouzé, ’20)

DA(PA”O'A) S DE(PAHUA) EXAMPLES

cg} 2
Therefore, by this and + \\,// , we have:

D(palloa) < g(aAch)Z [Dfi (palloa) + DE, (PA”UA)} ]

and thus )min{DZA,-([:/I;I;*),OZB,;([:/I;I;*)},

a(['f’*) = g(UACBc

for

o —tr [Lglf*(p,\)(ln pa — In O'A):|
A lla™) = U D A TER (on)
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