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Notation: An open quantum many-body system

Open quantum many-body system.

No experiment can be executed at zero temperature or be
completely shielded from noise.

I Finite lattice Λ ⊂⊂ Zd.

I Hilbert space associated to Λ is
HΛ =

⊗
x∈ΛHx.

I Density matrices: SΛ := S(HΛ) =
{ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.

I Dynamics of S is dissipative!

I The continuous-time evolution of a state on S is given by a q.
Markov semigroup (Markovian approximation).
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Ángela Capel
Cuevas

(Universität
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Quantum Markov semigroups / Dissipative quantum
evolution

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous
semigroup {T ∗t }t≥0 of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in SΛ.

Semigroup:

I T ∗t ◦ T ∗s = T ∗t+s.
I T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.

For ρΛ ∈ SΛ, L∗Λ(ρΛ) = −i[HΛ, ρΛ] +
∑
k∈Λ

L∗k(ρΛ) .
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Dissipative quantum systems

Mixing ⇔ Convergence

Primitive QMS

We assume that {T ∗t }t≥0 has a unique full-rank invariant state which
we denote by σΛ.

Reversibility

We also assume that the quantum Markov process studied is
reversible, i.e., satisfies the detailed balance condition:

〈f,LΛ(g)〉σ = 〈LΛ(f), g〉σ,

for every f, g ∈ BΛ and Hermitian, where

〈f, g〉σ = tr
[
f σ1/2 g σ1/2

]
.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Mixing time

I Under the previous conditions, there is always convergence to σΛ.

I How fast does convergence happen?

Note T ∗∞(ρ) := σΛ for every ρ.

Mixing time

We define the mixing time of {T ∗t } by

tmix(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε
}

.
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Rapid mixing

Mixing time

We define the mixing time of {T ∗t } by

tmix(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ ε
}

.

Remember: ρt := T ∗t (ρ) , σΛ := T ∗∞(ρ).

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

tmix(ε) ∼ log(|Λ|).
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Quantum dissipative evolutions useful?

If rapid mixing, no error correction:

Further applications:

I Robust and efficient preparation of topologically ordered
phases of matter via dissipation.

I Classification of dissipative phases of matter.

I Design of more efficient quantum error-correcting codes
optimized for correlated Markovian noise models.
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When does a quantum dissipative evolution mix
rapidly?

Quantum logarithmic Sobolev inequalities via
quasi-factorization of the relative entropy.
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Modified logarithmic Sobolev inequality (MLSI)

(in this talk, we simply call it log-Sobolev inequality)

Recall: ρt := T ∗t (ρ).

Master equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in
terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Modified logarithmic Sobolev inequality
Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗Λ) t,

and Pinsker’s inequality

(
1

2
‖ρ− σ‖21 ≤ D(ρ‖σ) for ‖A‖1 := tr[|A|]

)
‖ρt − σΛ‖1 ≤

√
2D(ρΛ||σΛ) e−α(L∗Λ) t ≤

√
2 log(1/σmin) e−α(L∗Λ) t.

For thermal states, σmin ∼ 1/exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗Λ) t.
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Modified logarithmic Sobolev inequality
Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant
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When does a quantum dissipative evolution mix
rapidly?

When does a quantum dissipative evolution mix
rapidly?

ANSWER: When our quantum dissipative evolution has
a positive MLSI, it mixes rapidly.

Remark: And when it only has a positive spectral gap, in general it
does not mix rapidly.
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Quantum spin systems

Exp. decay of correlations:
sup

‖OA‖=‖OB‖=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]| ≤ K e−γd(A,B) .
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Decay of correlations on Gibbs state

Motivation
Describe the correlation properties of Gibbs states of local Hamiltonians.

I Hamiltonian: HΛ = HA +HB +H(A∪B)c +H∂A +H∂B ,

I Gibbs state: σΛ(β) = e−βHΛ /Tr[e−βHΛ ] .

` := dist(A,B)

Questions:

For non-commuting Hamiltonians:

e−βHA∪B ≈ e−βHA e−βHB ?

trAc [σΛ]⊗ trBc [σΛ] :=
(
σΛ

)
A
⊗
(
σΛ

)
B
≈

tr(A∪B)c [σΛ] :=
(
σΛ

)
A∪B ?
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Decay of correlations on Gibbs state

3 different forms of decay of correlations.

Operator correlation

Corrσ(A : B) := sup
‖OA‖=‖OB‖=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]|

Mutual information

Iσ(A : B) := D(ρAB ||ρA ⊗ ρB)

for D(ρ‖σ) = Tr[ρ(logρ− logσ)]

Mixing condition

‖h(σAB)‖∞ =
∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞

Relation:

1

2
Corrσ(A : B)2 ≤ Iσ(A : B)

≤
∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
.
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Ángela Capel
Cuevas

(Universität
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Ángela Capel
Cuevas

(Universität
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When does a quantum dissipative evolution have a
positive MLSI?
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Objective

MLSI constant

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .



When does a
quantum

dissipative
evolution mix

rapidly?
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ =
∑
k∈Λ

L∗k is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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MLSI constant

The MLSI constant of L∗Λ =
∑
k∈Λ

L∗k is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez
Garćıa-Rouzé, ’19).
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ ξ(σABC) [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] ,

for ρΛ, σΛ ∈ D(HABC), where ξ(σABC) depends only on σABC and
measures how far σAC is from σA ⊗ σC .
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Example: Tensor product fixed point
(C.-Lucia-Pérez Garćıa ’18) L∗Λ(ρΛ) =

∑
x∈Λ

(σx ⊗ ρxc − ρΛ) heat-bath

Dx(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρxc‖σxc)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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Most recent result

MLSI for 1D Davies generators,
(Bardet-C.-Gao-Lucia-Pérez Garćıa-Rouzé, ’21)

Let LD;∗
Λ be a Davies generator with unique fixed point σΛ given by

the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, LD;∗

Λ satisfies a positive
MLSI α(LD;∗

Λ ) = Ω(ln(|Λ|)−1).

(Kastoryano-Brandao, ’16) LD;∗
Λ has a positive spectral gap that is

independent of the system size, for every temperature.

Rapid mixing:

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

For α(L∗Λ) a MLSI constant:

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗Λ) t.

Rapid mixing

In the setting above, LD;∗
Λ has rapid mixing.



When does a
quantum

dissipative
evolution mix

rapidly?
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Sketch of the proof

Conditional relative entropies: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc ) ,

DEA(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Heat-bath cond. expectation: E∗A(·) := lim
n→∞

(
σ

1/2
Λ σ

−1/2
Ac

trA[ · ]σ−1/2
Ac

σ
1/2
Λ

)n
.

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Sketch of the proof: Quasi-factorization

σΛ = e−βHΛ

tr(e−βHΛ )
is the Gibbs state of a k-local, commuting Hamiltonian HΛ.

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

where
ξ(σAcBc ) =

(
1− 2

∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

)−1
.

Last step: Spectral gap
O(logn)7→ MLSI.
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Consequences
Consequences of this result:

The Davies generator converging to the Gibbs state of a local,
commuting, translation-invariant Hamiltonian in 1D has rapid mixing
for every β > 0.

I Dissipative phase transitions: Absence of dissipative phase
transitions in 1D for Davies evolutions over translation-invariant
spin chains.

I Symmetry Protected Topological phases: Example of a
non-trivial interacting SPT phase with decoherence time of
O(log |Λ|).

Corollary for SPT phases

For every β > 0, 1D SPT phases thermalize in time logarithmic in |Λ|,
even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian
with 3-local interactions given by Z ⊗X ⊗ Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong
symmetry.
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Ángela Capel
Cuevas

(Universität
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Conclusions

In this talk:

I We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

I We have introduced log-Sobolev constants as a tool to prove rapid
mixing.

I We have shown that some results of quasi-factorization and decay
of correlations imply positivity of log-Sobolev constants.
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Open problems and lines of research

Open problems:

I In the last result, can the MLSI be independent of the system size?

I Extension to more dimensions.
I Any dimension at high temperature, with ”small interactions”.
I 2D, quantum double models (positive spectral gap recently proven

in (Lucia-Perez Garcia-Perez Hernandez, ’21) ).

I Improve results of quasi-factorization for the relative entropy:
More systems?

I New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

DBS(ρ‖σ) = tr
[
ρ log

(
ρ1/2σ−1ρ1/2

)]
.
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Open problems and lines of research

Open problems:

I In the last result, can the MLSI be independent of the system size?

I Extension to more dimensions.
I Any dimension at high temperature, with ”small interactions”.
I 2D, quantum double models (positive spectral gap recently proven

in (Lucia-Perez Garcia-Perez Hernandez, ’21) ).

I Improve results of quasi-factorization for the relative entropy:
More systems?

I New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

DBS(ρ‖σ) = tr
[
ρ log

(
ρ1/2σ−1ρ1/2

)]
.



When does a
quantum

dissipative
evolution mix

rapidly?
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Thank you for your attention!

Do you have any questions?

David Pérez-Garćıa
U. Complutense

Madrid

Daniel Stilck Franca
ENS Lyon

Angelo Lucia
U. Complutense

Madrid

Antonio
Pérez-Hernández
UNED Madrid

Cambyse Rouzé
T. U. Munich

Andreas Bluhm
U. Copenhagen

Ivan Bardet
Inria Paris

Li Gao
U. Houston
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Proof: Conditional relative entropies +
Quasi-factorization

Conditional relative entropies: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc ) ,

DEA(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Heat-bath cond. expectation: E∗A(·) := lim
n→∞

(
σ

1/2
Λ σ

−1/2
Ac

trA[ · ]σ−1/2
Ac

σ
1/2
Λ

)n
.

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Proof: Quasi-factorization

σΛ = e−βHΛ

tr(e−βHΛ )
is the Gibbs state of a k-local, commuting Hamiltonian HΛ.

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

.

Quasi-factorization for quantum Markov chains
(Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Since σΛ is a QMC between Ai ↔ ∂(Ai)↔ (Ai ∪ ∂Ai)c, then:

DA(ρΛ||σΛ) ≤
∑
i

DAi (ρΛ||σΛ).

σΛ =
⊕
j∈J

σAi(∂ai)Lj
⊗ σ(∂ai)

R
j (Ai∪∂Ai)c
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Proof: Decay of correlations

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc )
∑
i

[
DAi (ρΛ||σΛ) +DBi (ρΛ||σΛ)

]
,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

.

Decay of correlations, (Bluhm-C.-Pérez Hernández, ’21)

Let σXY Z be the Gibbs state of a finite-range, translation-invariant
Hamiltonian. There is ` 7→ δ(`) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞
≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as
# segments = O(|Λ|/ ln |Λ|).
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Let σXY Z be the Gibbs state of a finite-range, translation-invariant
Hamiltonian. There is ` 7→ δ(`) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞
≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as
# segments = O(|Λ|/ ln |Λ|).



When does a
quantum

dissipative
evolution mix

rapidly?
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Proof: Geometric recursive argument

Let us recall: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc) ,
DE
A(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Comparison conditional rel. ent. (Bardet-C.-Rouzé, ’20)

DA(ρΛ‖σΛ) ≤ DE
A(ρΛ‖σΛ)

Therefore, by this and + , we have:

D(ρΛ||σΛ) ≤ ξ(σAcBc)
∑
i

[
DE
Ai(ρΛ‖σΛ) +DE

Bi(ρΛ‖σΛ)
]
,

and thus
α(LH;∗

Λ ) ≥ K

ξ(σAcBc)
min

{
αAi(L

H;∗
Λ ), αBi(L

H;∗
Λ )

}
,

for

αAi(L
H;∗
Λ ) = sup

ρΛ∈SΛ

− tr
[
LH;∗
Ai

(ρΛ)(ln ρΛ − lnσΛ)
]

D(ρΛ‖E∗Ai(ρΛ))
.
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A(ρΛ‖σΛ)

Therefore, by this and + , we have:

D(ρΛ||σΛ) ≤ ξ(σAcBc)
∑
i

[
DE
Ai(ρΛ‖σΛ) +DE

Bi(ρΛ‖σΛ)
]
,

and thus
α(LH;∗

Λ ) ≥ K

ξ(σAcBc)
min

{
αAi(L

H;∗
Λ ), αBi(L

H;∗
Λ )

}
,

for

αAi(L
H;∗
Λ ) = sup

ρΛ∈SΛ

− tr
[
LH;∗
Ai

(ρΛ)(ln ρΛ − lnσΛ)
]

D(ρΛ‖E∗Ai(ρΛ))
.
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Proof: Positive CMLSI

Reduction of conditional relative entropies (Gao-Rouzé,
’21)

D(ρΛ‖E∗Ai(ρΛ)) ≤ 4kAi
∑
j∈Ai

D(ρΛ‖E∗j (ρΛ))

Reduction from CMLSI to Gap

kAi ∝
1

lnλ
,

where λ < 1 is a constant related to the spectral gap by the
detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D
commuting Gibbs samplers (Kastoryano-Brando ’16), kAi = O(ln |Λ|)
for Ai = O(ln |Λ|).
CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:

αc(LD;∗
j ) := inf

k∈N
α(LD;∗

j ⊗ Idk) > 0 .
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Last step

Heat-bath cond. expectation:

EH;∗
A (·) := lim

n→∞

(
σ

1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n
.

Davies cond. expectation: ED;∗
A (·) := lim

t→∞
etL

D;∗
A (·) .

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath
dynamics coincide.

Conclusion

For LD;∗
Λ , there is a positive MLSI constant α(LD;∗

Λ ) = Ω(ln |Λ|−1).
Therefore, LD;∗

Λ has rapid mixing.
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Last step

Heat-bath cond. expectation:

EH;∗
A (·) := lim

n→∞

(
σ

1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n
.

Davies cond. expectation: ED;∗
A (·) := lim

t→∞
etL

D;∗
A (·) .

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)
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