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Ángela Capel
Cuevas

(Universität
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Notation: A (closed) quantum many-body system

Figure: A quantum spin lattice system.

I Finite lattice Λ ⊂⊂ Zd.
I To every site x ∈ Λ we associate Hx (= CD).

I The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.

I The set of bounded linear endomorphisms on HΛ is denoted by
BΛ := B(HΛ).

I The set of density matrices is denoted by
SΛ := S(HΛ) = {ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.
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Notation: An open quantum many-body system

Open quantum many-body system.

No experiment can be executed at zero temperature or be
completely shielded from noise.

I Dynamics of S is dissipative!

I The continuous-time evolution of a state on S is given by a q.
Markov semigroup (Markovian approximation).



When does a
quantum

many-body
system mix

rapidly?
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Postulates of quantum mechanics

Postulate 1

Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state
vector, which is a unitary vector in the state space.

Postulate 2

Given an isolated physical system, its evolution is described by a
unitary transformation in the Hilbert space.
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Ángela Capel
Cuevas

(Universität
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Evolution of an (open) quantum many-body system.
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Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

I States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

I Completely positive.

T quantum channel (CPTP map)
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Ángela Capel
Cuevas

(Universität
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Open systems

Open systems ⇒ Environment and system interact.

Figure: Environment + System form a closed system.

State for the environment: |ψ〉 〈ψ|E
ρ 7→ ρ⊗ |ψ〉 〈ψ|E 7→ U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗ 7→ trE [U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗] = ρ̃

T : S(H) → S(H)
ρ 7→ ρ̃

quantum channel
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When does a dissipative quantum many-body system
mix rapidly?

When does a dissipative quantum many-body
system mix rapidly?
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Ángela Capel
Cuevas

(Universität
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Markovian approximation

Continuous-time description: For every t ≥ 0, the
corresponding time slice is a realizable evolution Tt (quantum
channel).

The effect of the environment on the system is almost irrelevant,
but still important.

Assumption: The environment does not evolve

⇒Weak-coupling limit

Environment holds no memory + Future evolution only depends
on the present.

Markovian approximation
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous
semigroup {T ∗t }t≥0 of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in SΛ.

Semigroup:

I T ∗t ◦ T ∗s = T ∗t+s.
I T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.

For ρΛ ∈ SΛ, L∗Λ(ρΛ) = −i[HΛ, ρΛ] +
∑
k∈Λ

L∗k(ρΛ) .
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When does a dissipative quantum many-body system
mix rapidly?

When does a dissipative quantum many-body system
mix rapidly?
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Dissipative quantum systems

Mixing ⇔ Convergence

Primitive QMS

We assume that {T ∗t }t≥0 has a unique full-rank invariant state which
we denote by σΛ.

Reversibility

We also assume that the quantum Markov process studied is
reversible, i.e., satisfies the detailed balance condition:

〈f,L(g)〉σ = 〈L(f), g〉σ,

for every f, g ∈ BΛ and Hermitian, where

〈f, g〉σ = tr
[
f σ1/2 g σ1/2

]
.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Mixing time

I Under the previous conditions, there is always convergence to σΛ.

I How fast does convergence happen?

Note T ∗∞(ρ) := σΛ for every ρ.

Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε
}

.
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mix rapidly?

When does a dissipative quantum many-body system
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Rapid mixing

Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ ε
}

.

Remember: ρt := T ∗t (ρ) , σΛ := T ∗∞(ρ).

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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When does a dissipative quantum many-body system
mix rapidly?

When does a dissipative quantum many-body system
mix rapidly?

Why?



When does a
quantum

many-body
system mix

rapidly?
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Quantum dissipative evolutions useful?

Main objective:

One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum
dissipative evolutions.
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Quantum dissipative evolutions useful?

Recent change of perspective ⇒ Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in
favor (protecting the system from noisy evolutions).

Interesting problems:

I Computational power

I Conditions against noise

I Time to obtain certain states

I ...
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When does a dissipative quantum many-body system
mix rapidly?

When does a dissipative quantum many-body system
mix rapidly?

Quantum logarithmic Sobolev inequalities via
quasi-factorization of the relative entropy.
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Modified logarithmic Sobolev inequality (MLSI)

(in this talk, we simply call it log-Sobolev inequality)

Recall: ρt := T ∗t (ρ).

Master equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Modified logarithmic Sobolev inequality
Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗Λ) t,

and Pinsker’s inequality

(
1

2
‖ρ− σ‖21 ≤ D(ρ‖σ) for ‖A‖1 := tr[|A|]

)
‖ρt − σΛ‖1 ≤

√
2D(ρΛ||σΛ) e−α(L∗Λ) t ≤

√
2 log(1/σmin) e−α(L∗Λ) t.

For thermal states, σmin ∼ 1/exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗Λ) t.
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Ángela Capel
Cuevas

(Universität
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When does a dissipative quantum many-body system
mix rapidly?

When does a dissipative quantum many-body system
mix rapidly?

ANSWER: When our dissipative quantum many-body
system has a positive MLSI, it mixes rapidly.

Remark: And when it only has a positive spectral gap, in general it
does not mix rapidly.
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Quantum spin systems

Exp. decay of correlations:
sup

‖OA‖=‖OB‖=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]| ≤ K e−γd(A,B) .
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Proof of main
result

Decay of correlations on Gibbs state

Motivation
Describe the correlation properties of Gibbs states of local Hamiltonians.

I Hamiltonian: HΛ = HA +HB +H(A∪B)c +H∂A +H∂B ,

I Gibbs state: σΛ(β) = e−βHΛ /Tr[e−βHΛ ] .

` := dist(A,B)

Questions:

For non-commuting Hamiltonians:

e−βHA∪B ≈ e−βHA e−βHB ?

trAc [σΛ]⊗ trBc [σΛ] :=
(
σΛ

)
A
⊗
(
σΛ

)
B
≈

tr(A∪B)c [σΛ] :=
(
σΛ

)
A∪B ?
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Ángela Capel
Cuevas

(Universität
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Decay of correlations on Gibbs state

3 different forms of decay of correlations.

Operator correlation

Corrσ(A : B) := sup
‖OA‖=‖OB‖=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]|

Mutual information

Iσ(A : B) := D(ρAB ||ρA ⊗ ρB)

for D(ρ‖σ) = Tr[ρ(logρ− logσ)]

Mixing condition

‖h(σAB)‖∞ =
∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞

Relation:

1

2
Corrσ(A : B)2 ≤ Iσ(A : B)

≤
∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
.
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Quantum spin systems



When does a
quantum

many-body
system mix

rapidly?
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When does a dissipative quantum many-body system
mix rapidly?

When does a dissipative quantum many-body system
have a positive MLSI?
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Objective

MLSI constant

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .
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Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ =
∑
k∈Λ

L∗k is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez
Garćıa-Rouzé, ’19).
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ ξ(σABC) [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] ,

for ρΛ, σΛ ∈ D(HABC), where ξ(σABC) depends only on σABC and
measures how far σAC is from σA ⊗ σC .
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Example: Tensor product fixed point
(C.-Lucia-Pérez Garćıa ’18) L∗Λ(ρΛ) =

∑
x∈Λ

(σx ⊗ ρxc − ρΛ) heat-bath

Dx(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρxc‖σxc)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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Ángela Capel
Cuevas

(Universität
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Dynamics

Let σΛ = e−βHΛ

tr[e−βHΛ ]
be the Gibbs state of finite-range, commuting

Hamiltonian.

Heat-bath generator
The heat-bath generator is defined as:

LH;∗
Λ (ρΛ) :=

∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)

Davies generator
The Davies generator is given by:

LDΛ (X) := i[HΛ, X] +
∑
x∈Λ

LDx (X) ,

where the LDx are defined in terms of the Fourier coefficients of the
correlation functions in the bath and the ones of the system couplings.

Schmidt generator
The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

LSΛ(X) =
∑
x∈Λ

(
ESx (X)−X

)
,

where the conditional expectations do not depend on system-bath couplings.
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Ángela Capel
Cuevas

(Universität
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Previous results

Let us recall: For α(L∗Λ) a MLSI constant,

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗Λ) t.

Using the spectral gap λ(L∗Λ):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗Λ) t.

Spectral gap for Davies and heat-bath
(Kastoryano-Brandao, ’16)

Let LH,D;∗
Λ be the heat-bath or Davies generator in 1D. Then, LH,D;∗

Λ

has a positive spectral gap that is independent of the system size, for
every temperature.

MLSI for heat-bath with tensor product fixed point
(C.-Lucia-Pérez Garćıa, Beigi-Datta-Rouzé ’18)

Let LH;∗
Λ be the heat-bath generator with tensor product fixed point.

Then, it has a positive MLSI constant.
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Let LH;∗
Λ be the heat-bath generator with tensor product fixed point.

Then, it has a positive MLSI constant.



When does a
quantum

many-body
system mix

rapidly?
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Quasi-factorization of the relative entropy
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Most recent result

MLSI for 1D Davies generators,
(Bardet-C.-Gao-Lucia-Pérez Garćıa-Rouzé, ’21)

Let LD;∗
Λ be a Davies generator with unique fixed point σΛ given by

the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, LD;∗

Λ satisfies a positive
MLSI α(LD;∗

Λ ) = Ω(ln(|Λ|)−1).

Rapid mixing:

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

For α(L∗Λ) a MLSI constant:

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗Λ) t.

Rapid mixing

In the setting above, LD;∗
Λ has rapid mixing.
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Sketch of the proof

Conditional relative entropies: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc ) ,

DEA(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Heat-bath cond. expectation: E∗A(·) := lim
n→∞

(
σ

1/2
Λ σ

−1/2
Ac

trA[ · ]σ−1/2
Ac

σ
1/2
Λ

)n
.

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Sketch of the proof: Quasi-factorization

σΛ = e−βHΛ

tr(e−βHΛ )
is the Gibbs state of a k-local, commuting Hamiltonian HΛ.

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

where
ξ(σAcBc ) =

(
1− 2

∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

)−1
.
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Conclusions

In this talk:

I We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

I We have introduced log-Sobolev constants as a tool to prove rapid
mixing.

I We have shown that some results of quasi-factorization and decay
of correlations imply positivity of log-Sobolev constants.
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Open problems and lines of research

Open problems:

I In the last result, can the MLSI be independent of the system size?

I Extension to more dimensions.
I Any dimension at high temperature, with ”small interactions”.
I 2D, quantum double models.

I Improve results of quasi-factorization for the relative entropy:
More systems?

I New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

DBS(ρ‖σ) = tr
[
ρ log

(
ρ1/2σ−1ρ1/2

)]
.
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Thank you for your attention!

Do you have any questions?

David Pérez-Garćıa
U. Complutense

Madrid

Daniel Stilck Franca
ENS Lyon

Angelo Lucia
U. Complutense

Madrid

Antonio
Pérez-Hernández
UNED Madrid

Cambyse Rouzé
T. U. Munich

Andreas Bluhm
U. Copenhagen

Ivan Bardet
Inria Paris

Li Gao
U. Houston
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Proof: Conditional relative entropies +
Quasi-factorization

Conditional relative entropies: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc ) ,

DEA(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Heat-bath cond. expectation: E∗A(·) := lim
n→∞

(
σ

1/2
Λ σ

−1/2
Ac

trA[ · ]σ−1/2
Ac

σ
1/2
Λ

)n
.

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Proof: Quasi-factorization

σΛ = e−βHΛ

tr(e−βHΛ )
is the Gibbs state of a k-local, commuting Hamiltonian HΛ.

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

.

Quasi-factorization for quantum Markov chains
(Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Since σΛ is a QMC between Ai ↔ ∂(Ai)↔ (Ai ∪ ∂Ai)c, then:

DA(ρΛ||σΛ) ≤
∑
i

DAi (ρΛ||σΛ).

σΛ =
⊕
j∈J

σAi(∂ai)Lj
⊗ σ(∂ai)

R
j (Ai∪∂Ai)c
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Proof: Decay of correlations

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc )
∑
i

[
DAi (ρΛ||σΛ) +DBi (ρΛ||σΛ)

]
,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

.

Decay of correlations, (Bluhm-C.-Pérez Hernández, ’21)

Let σXY Z be the Gibbs state of a finite-range, translation-invariant
Hamiltonian. There is ` 7→ δ(`) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞
≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as
# segments = O(|Λ|/ ln |Λ|).
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Proof of main
result

Proof: Geometric recursive argument

Let us recall: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc) ,
DE
A(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Comparison conditional rel. ent. (Bardet-C.-Rouzé, ’20)

DA(ρΛ‖σΛ) ≤ DE
A(ρΛ‖σΛ)

Therefore, by this and + , we have:

D(ρΛ||σΛ) ≤ ξ(σAcBc)
∑
i

[
DE
Ai(ρΛ‖σΛ) +DE

Bi(ρΛ‖σΛ)
]
,

and thus
α(LH;∗

Λ ) ≥ K

ξ(σAcBc)
min

{
αAi(L

H;∗
Λ ), αBi(L

H;∗
Λ )

}
,

for

αAi(L
H;∗
Λ ) = sup

ρΛ∈SΛ

− tr
[
LH;∗
Ai

(ρΛ)(ln ρΛ − lnσΛ)
]

D(ρΛ‖E∗Ai(ρΛ))
.



When does a
quantum

many-body
system mix

rapidly?
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Proof: Positive CMLSI

Reduction of conditional relative entropies (Gao-Rouzé,
’21)

D(ρΛ‖E∗Ai(ρΛ)) ≤ 4kAi
∑
j∈Ai

D(ρΛ‖E∗j (ρΛ))

Reduction from CMLSI to Gap

kAi ∝
1

lnλ
,

where λ < 1 is a constant related to the spectral gap by the
detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D
commuting Gibbs samplers (Kastoryano-Brando ’16), kAi = O(ln |Λ|)
for Ai = O(ln |Λ|).
CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:

αc(LD;∗
j ) := inf

k∈N
α(LD;∗

j ⊗ Idk) > 0 .
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Proof of main
result

Proof: Positive CMLSI

Reduction of conditional relative entropies (Gao-Rouzé,
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Last step

Heat-bath cond. expectation:

EH;∗
A (·) := lim

n→∞

(
σ

1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n
.

Davies cond. expectation: ED;∗
A (·) := lim

t→∞
etL

D;∗
A (·) .

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath
dynamics coincide.

Conclusion

For LD;∗
Λ , there is a positive MLSI constant α(LD;∗

Λ ) = Ω(ln |Λ|−1).
Therefore, LD;∗

Λ has rapid mixing.
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Tübingen)

Introduction and
motivation

Mixing time and
log-Sobolev
inequalities

Examples

Proof of main
result

Last step

Heat-bath cond. expectation:

EH;∗
A (·) := lim

n→∞

(
σ

1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n
.

Davies cond. expectation: ED;∗
A (·) := lim

t→∞
etL

D;∗
A (·) .

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath
dynamics coincide.

Conclusion

For LD;∗
Λ , there is a positive MLSI constant α(LD;∗

Λ ) = Ω(ln |Λ|−1).
Therefore, LD;∗

Λ has rapid mixing.
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