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Figure: A quantum spin lattice system.

Finite lattice A cc Z<.
To every site z € A we associate H, (= CP).
The global Hilbert space associated to A is Ha = ®I€A Ho.

The set of bounded linear endomorphisms on Ha is denoted by
Ba := B(Ha).

The set of density matrices is denoted by

Sp = S('HA) = {pA € Ba : pa >0 and tr[pA] = 1}‘

INTRODUCTION AND
MOTIVATION
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Open quantum many-body system.

No experiment can be executed at zero temperature or be
completely shielded from noise.




NOTATION: AN OPEN QUANTUM MANY-BODY SYSTEM

Open quantum many-body system.

No experiment can be executed at zero temperature or be
completely shielded from noise.

» Dynamics of S is dissipative!

» The continuous-time evolution of a state on S is given by a q.
Markov semigroup (Markovian approximation).

When does a




When does a

POSTULATES OF QUANTUM MECHANICS

POSTULATE 1

Given an isolated physical system, there is a complex Hilbert space H INTRODUCTION AND
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Moreover, the physical system is completely described by its state
vector, which is a unitary vector in the state space.
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POSTULATE 1
Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state
vector, which is a unitary vector in the state space.

POSTULATE 2

Given an isolated physical system, its evolution is described by a
unitary transformation in the Hilbert space.
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Evolution of an (open) quantum many-body system.
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EVOLUTION OF A SYSTEM

Isolated system.

Physical evolution: p — UpU™ ~» Reversible

INTRODUCTION AND
MOTIVATION

Dissipative quantum system (non-reversible evolution)
T:p—T(p)

» States to states = Linear, positive and trace preserving.
pRc € S(H®H), o with trivial evolution
T: SHOH) — SHOH) X
B =T=T31
Tlpeo) = T(p)®o

» Completely positive.

7 quantum channel (CPTP map)
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Figure: Environment + System form a closed system.

quantum
many-bo

INTRODUCTION AND
MOTIVATION




OPEN SYSTEMS

Open systems = Environment and system interact.

Tib

E environment

INTRODUCTION AND
MOTIVATION

S system

Figure: Environment + System form a closed system.

State for the environment: ) (Y|,
p=p® ) (Ylg = U(p@ ) (¥lg) U = trelU (p @ |9) (%] ) U] =

™




OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: ) (Y|,
P p@ Y)Y Bl = U (p® 9) (¥]g) U™ = trs(U (p @ [9) (1) U]

T: S(H) S(H)

~ - quantum channel
P = P

™

Tib

INTRODUCTION AND
MOTIVATION
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Continuous-time description: For every ¢t > 0, the
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MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢t > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

INTRODUCTION AND

The effect of the environment on the system is almost irrelevant, pomanes
but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only depends
on the present.

Markovian approximation
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QUANTUM MARKOV SEMIGROUPS
A quantum Markov semigroup is a 1-parameter continuous
semigroup {7;"},-, of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in Sa.
Semigroup:

> T 0Ty =Tk

> T =1.

d * * * * *
aﬁ =T, oLy =LroT.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

d

T*: tﬁz®£*27
t € A dt

T:" |e=o.
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QUANTUM MARKOV SEMIGROUPS
A quantum Markov semigroup is a 1-parameter continuous
semigroup {7;"},-, of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in Sa.
Semigroup:

> T 0Ty =Tk

> T =1.

d * * * * *
aﬁ =T, oLy =LroT.

QMS GENERATOR
The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

4
dt

For pa € Sa, Li(pa) = —i[Ha, pa] + > L5(pn)
keA

tLA
To ="t & Ly = —T; |i=o.

When does a




WHEN DOES A DISSIPATIVE QUANTUM MANY-BODY SYSTEM [ASSSwoa
MIX RAPIDLY? 4

When does a dissipative quantum many-body system
mix rapidly?

PA
XF,,

_

TA




DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

INTRODUCTION AND
MOTIVATION




DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrIMITIVE QMS

We assume that {7;"},., has a unique full-rank invariant state which
we denote by oa. - MOTIVATION

STION AND




DISSIPATIVE QUANTUM SYSTEMS When docs a

Mixing < Convergence

PrIMITIVE QMS

We assume that {7;"},s, has a unique full-rank invariant state which romienon A
> NTRODUCTION AND
we denote by oa. MOTIVATION

REVERSIBILITY

We also assume that the quantum Markov process studied is
reversible, i.e., satisfies the detailed balance condition:

(fs £(9))e = (L(f),9) 0

for every f,g € Ba and Hermitian, where

(f,9), = tr[f 01/2901/2} :




DISSIPATIVE QUANTUM SYSTEMS When docs a

Mixing < Convergence

PrIMITIVE QMS

We assume that {7;"},s, has a unique full-rank invariant state which romienon A
> NTRODUCTION AND
we denote by oa. MOTIVATION

REVERSIBILITY

We also assume that the quantum Markov process studied is
reversible, i.e., satisfies the detailed balance condition:

(fs £(9))e = (L(f),9) 0

for every f,g € Ba and Hermitian, where

(f,9), = tr[f 01/2901/2} :

Notation: p; := 7 (p).

t—oo

pa =55 pe =T (pa) = €73 (pa) =5 oa
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MIXING TIME
» Under the previous conditions, there is always convergence to ox.
» How fast does convergence happen?

Note 75 (p) := oa for every p.

MIXING TIME
INTRODUCTION AND

We define the mixing time of {7;"} by MOTIVATION

7—(5) = min{t >0: sup H'E*(P) - To*o(P)H1 < 5}'
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RAPID MIXING

MIXING TIME

We define the mixing time of {7;"} by

) =minft>0: sup o —onll < }.
PAESA
STION AND

Remember: p: := T;"(p), oa := T (p)- S —

PA
‘\.pi

yAl)cﬂ

gA




When does a

RAPID MIXING

MIXING TIME
We define the mixing time of {7;"} by

T(e) = min{t >0: sup ||p —oall; < 8}.
PAESA
INTRODUCTION AND

Remember: p; := T (p), oa = T (p). MOTIVATION
We say that £} satisfies rapid mixing if

sup |lp: — oall; < poly(|A])e™".
PAESA

PA
‘\.pi

«//jngAcht
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Main objective:

INTRODUCTION AND
MOTIVATION

One problem: Appearance of noise.
Some kinds of noise can be modelled using quantum
dissipative evolutions.
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INTRODUCTION AND
MOTIVATION

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in
favor (protecting the system from noisy evolutions).

Interesting problems:
» Computational power
» Conditions against noise
> Time to obtain certain states
> ...
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mix rapidly?

Quantum logarithmic Sobolev inequalities via
quasi-factorization of the relative entropy.

Decay of correlations,

on the Gibbs state.

When does a
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MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLST)

(in this talk, we simply call it log-Sobolev inequality)

Recall: p: := T (p).

Master equation:
Oepe = LA (pe)-

Relative entropy of p; and ox:

D(plloa) = tr[p:(log pr — logon)].

Differentiating:

9eD(pt|loa) = tr[LA(pe)(log pe — log on)]-

Lower bound for the derivative of D(pt||oa) in terms of itself:

20D (prl|oa) < —tr L3 (pe) (log pi — log on)]
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Relative entropy: D(p||o) := tr[p(log p — logo)]

MLSI CONSTANT

The MLSI constant of £} is defined as:

" .o —tr[L3(pa)(log pa —logaa)]
LY) = f
(L) = lnf 2D(pllon)

If lim inf a(L}) > O:
A zd
D(ptlloa) < D(palloa)e > *ERY,

1
and Pinsker’s inequality (in — o2 < D(pllo) for || A := tr[\AH)
92— oally < /ZD(aalloa) e=2E0)* < \/BTog(i/amm) €= *ER)*,
For thermal states, omin ~ 1/exp(|A]).
_______________________________________________________________|

MLSI = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

ot — oally < V/1/Omin e MERE,
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When does a dissipative quantum many-body system
mix rapidly?

ANSWER: When our dissipative quantum many-body
system has a positive MLSI, it mixes rapidly.

Remark: And when it only has a positive spectral gap, in general it
does not mix rapidly.




QUANTUM SPIN SYSTEMS e o ®
™

Kastoryano-Temme, '13 This
project

Kastoryano-Temme, '13

Cubitt et al, ’13

eBHA
Cubitt et al, 1/ \’3":31(.:m et al, ’15 Hy:=Y0() oa= T ()
s

Stability Area law

R (pa) '2F o

Exp. decay of correlations:

sup [tr[Oa ® O(caB — 04 ® oB)]| gKe_Wd(A’B)
l0all=ll0OglI=1
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DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

> Hamiltonian: Hy = Ha + Hp + Haup)c + Hoa + Hop ,
Gibbs state: g5 (8) = e #HA /Tr[e=AHA] .
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DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

> Hamiltonian: Hy = Ha + Hp + Haup)c + Hoa + Hop ,
Gibbs state: g5 (8) = e #HA /Tr[e=AHA] .

5000000000000 00 30
Q2922929292929 929209292929929 QuestionS:

SIS D I S I I R A R D R —_—

SRS ]| 9

20000000000 ,B Blo o For non-commuting Hamiltonians:
SIS R S I R R A R D I

JJJJJJJﬂJ Fo 00 00 0 e PHAUB rx e~ PHA ¢—FHB 7
900002 #T50000000090

QIO DY 999 VIIIYVIVY

JJJAJJJJJJJJJJJJJ

o o[RS0 o 0000000000 trAc[o'A]®tch[crA]::(o’A)A@(oA)B%
) 9500000000000

tr(AuB)C[UA] = (OA)AUB ?
¢ := dist(A, B)
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3 different forms of decay of correlations.

OPERATOR CORRELATION

Corry(A: B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
I0all=lOBl=1

MUTUAL INFORMATION

Is(A: B) = D(pagllpa ® pB)
for D(pl|o) = Tr[p(logp — logo)]
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DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Corry (A : B) := sup [tr[O4 ® Op(cap — oA @ oB)]|
lOoal=l0gll=1

MUTUAL INFORMATION

Is(A: B) = D(pagllpa ® pB)
for D(pl|o) = Tr[p(logp — logo)]

MIXING CONDITION

Ih(@aB)l = 03" @05 oanox* @ 05" * — 1an|_

Relation:

Corry(A: B)2 < I,(A: B)

1/2

1
2
< ®on? -1 H

= B AB -

—1/2 —-1/2 -
Ha’A Rop OABO 4
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quantum

Thermalization Decay of
correlations

D(p,1165) < Dipyl|op)e 2R N Mixing condition y e

MLSI (log-Sobolev)

=1 =1 —;
” 0, ®ogous—Lup ” - < Ke-7d(A.B)
Rapid Mixing
Mutual information

sup || pr—0n | < poly(|A])e " . —rd(a,
s ool A58 < Kerrans)

Operator correlation
Spectralgap
2 oA Corr,(A : B) < Ke~rd(4.B)

Var(p,,6,) < Var(p, ,6,)e” *ZR*
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When does a dissipative quantum many-body system
have a positive MLSI?

Decay of correlations

&

on the Gibbs state
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OBJECTIVE

MLSI CONSTANT

« o —tr[LA(pa)(log pa —logon)]
Ly) = f
o(£a) = il 2D(pallon)

What do we want to prove?
lim inf a(L}) > ¥(|A]) > 0.
A zd

A

Can we prove something like

a(Lh) = Y(JA]) a(L2) > 07
No, but we can prove

a(Lh) =2 V(JA]) aa(£a) > 0.
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MLSI CONSTANT

The MLSI constant of £} = > £, is defined by
kEA

* .o —tr[Lh(pa)(log pa —logon)]
Ly) = f
al£a) = inf 2D(pallon)

When does a




CONDITIONAL MLSI CONSTANT

[

MLSI CONSTANT

The MLSI constant of £} = > £, is defined by
kEA

* .o —tr[Lh(pa)(log pa —logon)]
Ly) = f
al£a) = inf 2D(pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

. o —tr[Lh(pa)(log pa —logoa)]
L) = f
ar(La) = inf 2D(pallon)




STRATEGY

When doe

quantum

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez
Garcia-Rouzé, ’19).

Decay of correlations

INTRODUCT

IOTIVATIO!

M G TIME AND
BOLEV
1ES

on the Gibbs state
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QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

BC

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)]

for pa,on € D(Hapc), where £(capc) depends only on capc and
measures how far ocac is from o4 ® oc.




ExXAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia ’18) LT\(pA) = Z (0’1 & pze — pA) heat-bath
zEA

Dq(palloa) := D(palloa) = D(pae|loze)

orn=Q 0a, @

TEA
D(palloa) <
()E; = ZDOC(/)AHUA)
zEA
“““”"»L»W < Z — tr[ﬁz(PA)(lOg PA — log O'A)}
zEA ZOCA(‘C;)
1
U S S : )
— 2inf aa(L3) Z tr[L£3(pa)(log pa — logan)]
TEA TEA
@® _ 1

= 3igrax) IEen)108 pn ~logow))

{5}53 < (= tr[LA(pa)(log pa — logoa)]) .
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DyNAMICS
BHA

Let op = tre[e__ﬁ be the Gibbs state of finite-range, commuting
Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

LI (pa) =" ( N0 P pgeaPa)/? PA)
TEA

DAVIES GENERATOR

The Davies generator is given by:

LR (X) = i[Ha, X]+ > _ LD (X),
xEN

where the £D are defined in terms of the Fourier coefficients of the
correlation functions in the bath and the ones of the system couplings.
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DyNAMICS antum
Let op = % be the Gibbs state of finite-range, commuting d .

Hamiltonian.

HEAT-BATH GENERATOR
The heat-bath generator is defined as:

H; 1/2 _—1/2 —1/2 1/2
Ly (pa) == Z (O'A/ crxc/ Pmcch/ O'A/ —pA)
TEA

DAVIES GENERATOR

The Davies generator is given by:

LR (X) = i[Ha, X]+ > _ LD (X),
xEN

where the £D are defined in terms of the Fourier coefficients of the
correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

50 =3 (ESx0) - x),

zEA

where the conditional expectations do not depend on system-bath couplings.
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Using the spectral gap A\(L}):

loe = oally < v/LTmm e ER?.

SPECTRAL GAP FOR DAVIES AND HEAT-BATH

(Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £37
has a positive spectral gap that is independent of the system size, for
every temperature.




PREVIOUS RESULTS When docs a

Let us recall: For a(L£}) a MLSI constant,
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SPECTRAL GAP FOR DAVIES AND HEAT-BATH

(Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £37
has a positive spectral gap that is independent of the system size, for
every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia, Beigi-Datta-Rouzé ’18)

Let Cf;* be the heat-bath generator with tensor product fixed point.
Then, it has a positive MLSI constant.
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY hen docs

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

Tiibingen)

D(palloa) < c[Dag(palloa) + Dpc(palloa)] +d Al

Classical quasi-factorization Strong subadditivity

Ent(f) < cpu[Ent(f|Fy) + Ent(f| )] S(pasc) +S(ps) < S(pag) + S(psc)

D(pallas) = Dipaclloa)

General superadditivity

DY (pallon) == D(pal| E4

EXAMPLES

(pa))

Pinching onto

<c [Dl + Do) +d - different bases
LX)=E

+B(X

2 assumptions,

on QMC. Dap(A) < Da(A) + Dp(A)

D < ¢[D1 + Do

BRS20
Local 0 high
Generalized depolarizing 1D Heat-bath generator, @ (1:II)ess|cal
Apa) = 0o @ pue = pa 2 i - Nearest neighbour
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MLSI FOR 1D DAVIES GENERATORS,

(Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let L’f * be a Davies generator with unique fixed point o given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, .Cf‘* satisfies a positive
MLSI a(£Y™*) = Q(In(|A]) ™).
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MLSI FOR 1D DAVIES GENERATORS,

(Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let .Cf * be a Davies generator with unique fixed point o given by
the Gibbs state of a commuting, finite-range, translation-invariant
Hamiltonian at any temperature in 1D. Then, .Cf ™ satisfies a positive
MLSI a(£Y™*) = Q(In(|A]) ™).

EXAMPLES

Rapid mixing:

sup |lp: — oall; < poly(|A])e™".
PAESA

For a(L£}) a MLSI constant:

loe = oally < v/Z10g(T/omin) e~ “R".

In the setting above, ﬁf” has rapid mixing.




SKETCH OF THE PROOF WO CE

e
X

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DZ(palloa) == D(pal B4 (pa)) -

S TEL ) o T 1/2 _—1/2 —1/8_1/2\\®
Heat-bath cond. expectation: E, (-) := ’!LILmDO (a’A gy’ “tral-lo ' oy
D(pasclloasc) Dag(papclloasc Dpc(pasclloasc)

OABC

AlBlc <E(Ad) |FalBlc + 4Blc
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e
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-

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DZ(palloa) == D(pal B4 (pa)) -

Heat-bath cond. expectation: E7 (-) := lim (0'11\/20';3/2 traf-] U;i/Zallx/z)n
n— oo

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia '18)

Let Hapc and papc,oaBc € Sapc. The following holds
D(pasclloasc) < &(oac)[Das(pasc|loapc) + Dec(pasc|loasc)],

where

§(oac) = !

1— 2H021/2 ®o5?oaco * ®ag? ~ ILACH

oo

D(pasclloasc) Dag(papclloasc Dpc(pasclloasc)

OABC

AlBlc <E(Ad) |FalBlc + 4Blc
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SKETCH OF THE PROOF: QUASI-FACTORIZATION

By By

~ ~ ~ ~
099090000000 0000000
. o 7 < =

Ay Aa

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI-FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

VL 1/2 1/2 1/2 1/2
‘E(UACBC):(I_2H0'AC ®O’BC O'ACBCO'AC ®0’BC —ﬂAch

N

b) DA, (pllo) Da,(pllo)
— —

9000000000000 0009
S—— —

d) [SIS[e[[o[[o]o[o[oo]oo]oo]a[3]
3 D (pllE=(p))
TEA

B, (p

a p
90000000000000000
D(pl|o)

X

[c) ooooaoooaoooococa}

> > <>
oA o oA
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CONCLUSIONS

In this talk:

» We have discussed dissipative evolutions of quantum many-body
systems and their mixing time.

» We have introduced log-Sobolev constants as a tool to prove rapid
mixing.

» We have shown that some results of quasi-factorization and decay
of correlations imply positivity of log-Sobolev constants.
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Open problems:
» In the last result, can the MLSI be independent of the system size?

» Extension to more dimensions.

» Any dimension at high temperature, with ”small interactions”.
» 2D, quantum double models.

» Improve results of quasi-factorization for the relative entropy:
More systems?

» New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Dus(pllo) = tx | plog (p'*0 9"/} ] .
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Thank you for your attention!

Do you have any questions?

David Pérez-Garcia .
U. Complutense Angelo Lucia
Madrid U. Complutense Cambyse Rouzé
Madrid T. U. Munich

Ivan Bardet
Inria Paris

i Andreas Bluhm Li Gao
Daniel Stilck Franca _ Antonio U. Copenhagen
ENS Lyon Pérez-Herndndez
UNED Madrid

U. Houston




PrROOF: CONDITIONAL RELATIVE ENTROPIES +
QUASI-FACTORIZATION

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DX (pallon) := D(pallE4(pa)) -

Heat-bath cond. expectation: E () := lim (03\/2022/2 tral-] U;i/za}\/z)" .
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QUASI-FACTORIZATION

Be
X
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Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,

DX (pallon) := D(pallE4(pa)) -

Heat-bath cond. expectation: E} () := lim (U}\/QUAC tral-]o,
n— oo

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,oasc € Sapc. The following holds
D(pasclloasc) < €&(oac) [Das(pascl|loasc) + Dec(papc|loasc)],

where

§(oac) = !

1-— ZHGZUZ ® 051/2 oAC 021/2 R o

51/2 _ 1ACH

oo

D(pasclloasc) Dap(pasclloasc Dgc(pasclloasc)

0ABC

AMBlc <&(io) |FalBl ¢ + 4Bl c

—1/2 —i/zo_}\/g)n i
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B By

P - g <A
20000000000000000
S

~—— M

Ay Aa

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1 PROOF OF MAIN

— RESULT
§(oaepe) = “1/2 o _—1/2 “1/2 o _—1/2
1—2 O'AC ®O’BC O'A(:B(:O'AC ®C7'BC 71[ACBC
oo

QUASI-FACTORIZATION FOR, QUANTUM MARKOV CHAINS

(Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)
Since op is a QMC between A; +» (A;) <> (A; UIA;)C, then:

Da(palloa) < D Da,(palloa).

o8 = D 04,00,k © T(0a,)R(A;U0A:)°
JjeJ
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QUASI—FACTORIZATION
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Da(palloa) < DX (palloa)

cg} 2
Therefore, by this and + \\,// , we have:

D(palloa) < &(oacne) Y | [Dfi (pallon) + DE, (PA”UA)} ,

7

smnin {a, (577 am, (577},
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a(LyT) >
( A ) = g(UACBC

for

o —tr [Lglf*(p,\)(ln pa — In O'A):|
A lla™) = U D A TER (on)
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