A strengthened data processing inequality for the Belavkin-Staszewski relative entropy

Ángela Capel (ICMAT-UAM, Madrid)

Joint work with Andreas Bluhm (T. U. München)

Based on arXiv: 1904.10768

ICMAT, Thematic Research Program: "Operator Algebras, Groups and Applications to Quantum Information", Workshop II, 13th May 2019

- MOTIVATION
- 2 STANDARD AND MAXIMAL f-DIVERGENCES

- Main results
 - Equivalent conditions for equality on DPI
 - STRENGTHENED DPI FOR THE BS-ENTROPY
 - ullet Strengthened DPI for maximal f-divergences

NOTATION

- \bullet \mathcal{H} finite-dimensional Hilbert space.
- $\mathcal{B}(\mathcal{H})$ algebra of bounded linear operators on it.
- $\mathcal{D}(\mathcal{H}) := \{ \rho \in \mathcal{B}(\mathcal{H}) : \rho \geq 0, \operatorname{tr}[\rho] = 1 \}$ density matrices.
 - Assume full rank.
- \mathcal{M} matrix algebra and $\mathcal{N} \subset \mathcal{M}$ matrix subalgebra.
- $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ quantum channel.
- $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation.
 - $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$.
- $\Gamma := \sigma^{-1/2} \rho \sigma^{-1/2}$ and $\Gamma_{\mathcal{N}} := \sigma_{\mathcal{N}}^{-1/2} \rho_{\mathcal{N}} \sigma_{\mathcal{N}}^{-1/2}$.
- Note: Identify L_A , the left multiplication operator by A on \mathcal{M} , with A for $A \in \mathcal{M}$.

Main concepts

RELATIVE ENTROPY

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **relative entropy** is defined as:

$$D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)].$$

Belavkin-Staszewski belative entropy

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **BS-entropy** is defined as:

$$D_{\mathrm{BS}}(\sigma||\rho) := \mathrm{tr}\Big[\sigma \log\Big(\sigma^{1/2}\rho^{-1}\sigma^{1/2}\Big)\Big].$$

Main concepts

RELATIVE ENTROPY

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **relative entropy** is defined as:

$$D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)].$$

Belavkin-Staszewski relative entropy

Given $\sigma > 0, \rho > 0$ states on a matrix algebra \mathcal{M} , their **BS-entropy** is defined as:

$$D_{\mathrm{BS}}(\sigma||\rho) := \mathrm{tr} \Big[\sigma \log \Big(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \Big) \Big].$$

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every $\sigma > 0, \rho > 0$

$$D_{\rm BS}(\sigma||\rho) \ge D(\sigma||\rho)$$

Main concepts

RELATIVE ENTROPY

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **relative entropy** is defined as:

$$D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)].$$

Belavkin-Staszewski relative entropy

Given $\sigma > 0, \rho > 0$ states on a matrix algebra \mathcal{M} , their **BS-entropy** is defined as:

$$D_{\mathrm{BS}}(\sigma||\rho) := \mathrm{tr} \Big[\sigma \log \Big(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \Big) \Big].$$

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every $\sigma > 0$, $\rho > 0$:

$$D_{\mathrm{BS}}(\sigma||\rho) \ge D(\sigma||\rho).$$

MOTIVATION: RELATIVE ENTROPY

Relative entropy of σ and ρ : $D(\sigma||\rho) := tr[\sigma(\log \sigma - \log \rho)].$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \mathrm{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

Relative entropy of σ and ρ : $D(\sigma||\rho) := \text{tr}[\sigma(\log \sigma - \log \rho)].$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \mathrm{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

MOTIVATION: RELATIVE ENTROPY

Relative entropy of σ and ρ : $D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)].$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \mathrm{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

Data Processing inequality

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

$$D(\sigma||\rho) = D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \Leftrightarrow \sigma = \rho^{1/2}\mathcal{T}^* \left(\mathcal{T}(\rho)^{-1/2}\mathcal{T}(\sigma)\mathcal{T}(\rho)^{-1/2}\right)\rho^{1/2}$$

$$\mathbf{Petz}\ \mathbf{recovery}\ \mathbf{map}\ \mathcal{R}^{\rho}_{\mathcal{T}}(\cdot) := \rho^{1/2}\mathcal{T}^*\left(\mathcal{T}(\rho)^{-1/2}(\cdot)\mathcal{T}(\rho)^{-1/2}\right)\rho^{1/2}.$$

MOTIVATION: RELATIVE ENTROPY

Relative entropy of σ and ρ : $D(\sigma||\rho) := tr[\sigma(\log \sigma - \log \rho)].$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{M}$ CPTP map.

- $\sigma > 0 \mapsto \mathcal{T}(\sigma) > 0$.
- $\mathcal{T} \otimes \operatorname{Id}_n : \mathcal{M} \otimes \mathcal{M}_n \to \mathcal{M} \otimes \mathcal{M}_n$ is positive for every $n \in \mathbb{N}$.
- $\operatorname{tr}[\mathcal{T}(\sigma)] = \operatorname{tr}[\sigma].$

Data Processing inequality

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

CONDITIONS FOR EQUALITY

$$D(\sigma||\rho) = D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \Leftrightarrow \sigma = \rho^{1/2}\mathcal{T}^* \left(\mathcal{T}(\rho)^{-1/2}\mathcal{T}(\sigma)\mathcal{T}(\rho)^{-1/2}\right)\rho^{1/2}.$$

$$\mathbf{Petz}\ \mathbf{recovery}\ \mathbf{map}\ \mathcal{R}^{\rho}_{\mathcal{T}}(\cdot) := \rho^{1/2}\mathcal{T}^*\left(\mathcal{T}(\rho)^{-1/2}(\cdot)\mathcal{T}(\rho)^{-1/2}\right)\rho^{1/2}.$$

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process.
- Partial trace: Conditional relative entropy.

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process.
- Partial trace: Conditional relative entropy.

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

PROBLEM

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process.
- Partial trace: Conditional relative entropy.

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

PROBLEM

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

(Fawzi-Renner '15) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC}} (-2\log_2 F(\sigma_{ABC}, \eta_{ABC})),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \|\sqrt{\sigma_{ABC}}\sqrt{\eta_{ABC}}\|$$

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process.
- Partial trace: Conditional relative entropy.

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

(Fawzi-Renner '15) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC}} \left(-2\log_2 F(\sigma_{ABC}, \eta_{ABC})\right),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \|\sqrt{\sigma_{ABC}}\sqrt{\eta_{ABC}}\|_{1}$$

(Fawzi-Renner '15) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC}} (-2\log_2 F(\sigma_{ABC}, \eta_{ABC})),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \left\| \sqrt{\sigma_{ABC}} \sqrt{\eta_{ABC}} \right\|_{1}$$

More specifically, if we consider $\mathcal{V}_{BC} \circ \mathcal{R}_{\text{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B$, with U_B and V_{BC} unitaries on \mathcal{H}_B , \mathcal{H}_{BC} respectively,

$$\mathcal{V}_{BC} \circ \mathcal{R}_{\mathrm{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B(\sigma_{AB}) = V_{BC} \sigma_{BC}^{1/2} \sigma_B^{-1/2} U_B \sigma_{AB} U_B^* \sigma_B^{-1/2} \sigma_{BC}^{1/2} V_{BC}^*,$$

we have

$$I(A:C|B)_{\sigma} \geq -2\log_2 F(\sigma_{ABC}, \mathcal{V}_{BC} \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B(\sigma_{AB})).$$

(Fawzi-Renner '15) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

CMI:
$$I(A:C|B)_{\sigma} = D(\sigma_{ABC}||\rho_{ABC}) - D(\sigma_{BC}||\rho_{BC}).$$

$$I(A:C|B)_{\sigma} \ge \inf_{\eta_{ABC}} (-2\log_2 F(\sigma_{ABC}, \eta_{ABC})),$$

where

$$F(\sigma_{ABC}, \eta_{ABC}) = \left\| \sqrt{\sigma_{ABC}} \sqrt{\eta_{ABC}} \right\|_{1}$$

More specifically, if we consider $\mathcal{V}_{BC} \circ \mathcal{R}_{\text{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B$, with U_B and V_{BC} unitaries on \mathcal{H}_B , \mathcal{H}_{BC} respectively,

$$\mathcal{V}_{BC} \circ \mathcal{R}_{\mathrm{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B(\sigma_{AB}) = V_{BC} \sigma_{BC}^{1/2} \sigma_B^{-1/2} U_B \sigma_{AB} U_B^* \sigma_B^{-1/2} \sigma_{BC}^{1/2} V_{BC}^*,$$

we have

$$I(A:C|B)_{\sigma} \geq -2\log_2 F(\sigma_{ABC}, \mathcal{V}_{BC} \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}} \circ \mathcal{U}_B(\sigma_{AB})).$$

Extensions and improvements of the previous result: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) > (1), (2), (3)$, where:

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) dt \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}} \mathcal{T}^* \left(\mathcal{T}(\rho)^{\frac{-1-it}{2}}(\cdot) \mathcal{T}(\rho)^{\frac{-1+it}{2}} \right) \rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2}(\cosh(\pi t) + 1)^{-1}.$$

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) dt \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}}\mathcal{T}^*\left(\mathcal{T}(\rho)^{\frac{-1-it}{2}}(\cdot)\mathcal{T}(\rho)^{\frac{-1+it}{2}}\right)\rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

(2) :=
$$D_M\left(\sigma \left\| \int \beta_0(t) \mathcal{R}_{\mathcal{T}}^{\sigma,[t]} \circ \mathcal{T}(\sigma) \right) dt$$
 (Sutter-Berta-Tomamichel '16),

with

$$D_M(\sigma||\rho) = \sup_{(\xi,M)} D(P_{\sigma,M}||P_{\rho,M})$$
, for M a POVM on the power-set of a finite ξ .

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) \mathrm{d}t \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}} \mathcal{T}^* \left(\mathcal{T}(\rho)^{\frac{-1-it}{2}}(\cdot) \mathcal{T}(\rho)^{\frac{-1+it}{2}} \right) \rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

$$(2) := D_M \left(\sigma \left\| \int \beta_0(t) \, \mathcal{R}_{\mathcal{T}}^{\sigma,[t]} \circ \mathcal{T}(\sigma) \right) \mathrm{d}t \, \, \text{(Sutter-Berta-Tomamichel '16)}, \right.$$

with

 $D_M(\sigma||\rho) = \sup_{(\xi,M)} D(P_{\sigma,M}||P_{\rho,M}), \text{ for } M \text{ a POVM on the power-set of a finite } \xi.$

$$(3) := \limsup_{n \to \infty} \frac{1}{n} D\left(\sigma^{\otimes n} \left\| \int \beta_0(t) \, \left(\mathcal{R}^{\sigma,[t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \right)^{\otimes n} \right) \mathrm{d}t \text{ (Berta et al. '17)},$$

Extensions and improvements of the previous result:

$$D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge (1), (2), (3), \text{ where:}$$

$$(1) := -\int \beta_0(t) \log F\left(\sigma, \mathcal{R}^{\rho, [t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma)\right) \mathrm{d}t \text{ (Junge et al. '15)},$$

with

$$\mathcal{R}_{\mathcal{T}}^{\rho,[t]}(\cdot) = \rho^{\frac{1+it}{2}} \mathcal{T}^* \left(\mathcal{T}(\rho)^{\frac{-1-it}{2}} (\cdot) \mathcal{T}(\rho)^{\frac{-1+it}{2}} \right) \rho^{\frac{1-it}{2}}$$

and

$$\beta_0(t) = \frac{\pi}{2} (\cosh(\pi t) + 1)^{-1}.$$

$$(2) := D_M \left(\sigma \left\| \int \beta_0(t) \, \mathcal{R}_{\mathcal{T}}^{\sigma,[t]} \circ \mathcal{T}(\sigma) \right) \mathrm{d}t \, \, \text{(Sutter-Berta-Tomamichel '16)}, \right.$$

with

$$D_M(\sigma||\rho) = \sup_{(\xi,M)} D(P_{\sigma,M}||P_{\rho,M}), \text{ for } M \text{ a POVM on the power-set of a finite } \xi.$$

$$(3) := \limsup_{n \to \infty} \frac{1}{n} D\left(\sigma^{\otimes n} \left\| \int \beta_0(t) \, \left(\mathcal{R}^{\sigma,[t]}_{\mathcal{T}} \circ \mathcal{T}(\sigma) \right)^{\otimes n} \right) \mathrm{d}t \text{ (Berta et al. '17)},$$

Problem

Can we find a lower bound for the DPI in terms of $D(\sigma||\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma))$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

Problem

Can we find a lower bound for the DPI in terms of $D(\sigma||\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma))$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

(Sutter-Renner '18) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

$$D(\sigma_{ABC}||\mathcal{R}_{\operatorname{tr}_{C}}^{\sigma_{BC}} \circ \operatorname{tr}_{C}[(\sigma_{ABC})]) + \Lambda_{\max}(\sigma_{AB}||\mathcal{R}_{B \to B}) \geq I(A:C|B)_{\sigma},$$

where

$$\Lambda_{\max}(\sigma||\mathcal{E}) = 0 \Leftrightarrow \mathcal{E}(\sigma) = \sigma,$$

and

$$\mathcal{R}_{B\to B} := \operatorname{tr}_C \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}}$$

Problem

Can we find a lower bound for the DPI in terms of $D(\sigma||\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma))$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

(Sutter-Renner '18) $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$, $\sigma_{ABC} > 0$ and $\rho_{ABC} = I_A \otimes \sigma_{BC}$, $\mathcal{T}(\cdot) = \operatorname{tr}_C[\cdot]$.

$$D(\sigma_{ABC}||\mathcal{R}_{\operatorname{tr}_{C}}^{\sigma_{BC}} \circ \operatorname{tr}_{C}[(\sigma_{ABC})]) + \Lambda_{\max}(\sigma_{AB}||\mathcal{R}_{B \to B}) \geq I(A:C|B)_{\sigma},$$

where

$$\Lambda_{\max}(\sigma||\mathcal{E}) = 0 \Leftrightarrow \mathcal{E}(\sigma) = \sigma,$$

and

$$\mathcal{R}_{B\to B} := \operatorname{tr}_C \circ \mathcal{R}_{\operatorname{tr}_C}^{\sigma_{BC}}.$$

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^{4}.$$

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma)$?

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^{4}.$$

(Carlen-Vershynina '18) Extension to standard f-divergences.

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\tau} \circ \mathcal{T}(\sigma)$?

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^{4}.$$

(Carlen-Vershynina '18) Extension to standard f-divergences.

Some definitions

CONDITIONAL EXPECTATION

Let \mathcal{M} matrix algebra with matrix subalgebra \mathcal{N} . There exists a unique linear mapping $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ such that

- \bullet \mathcal{E} is a positive map,
- $\mathcal{E}(B) = B \text{ for all } B \in \mathcal{N},$
- **3** $\mathcal{E}(AB) = \mathcal{E}(A)B$ for all $A \in \mathcal{M}$ and all $B \in \mathcal{N}$,
- **4** \mathcal{E} is trace preserving.

A map fulfilling (1)-(3) is called a *conditional expectation*.

OPERATOR CONVEX

Let $\mathcal{I} \subseteq \mathbb{R}$ interval and $f: \mathcal{I} \to \mathbb{R}$. If

$$f(\lambda A + (1 - \lambda)B) \le \lambda f(A) + (1 - \lambda)f(B)$$

for all Hermitian $A, B \in \mathcal{B}(\mathcal{H})$ with spectrum contained in \mathcal{I} , all $\lambda \in [0, 1]$, and for all finite-dimensional Hilbert spaces \mathcal{H} , then f is operator convex.

Some definitions

CONDITIONAL EXPECTATION

Let \mathcal{M} matrix algebra with matrix subalgebra \mathcal{N} . There exists a unique linear mapping $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ such that

- \bullet \mathcal{E} is a positive map,
- $\mathcal{E}(B) = B \text{ for all } B \in \mathcal{N},$
- **3** $\mathcal{E}(AB) = \mathcal{E}(A)B$ for all $A \in \mathcal{M}$ and all $B \in \mathcal{N}$,
- \bullet \mathcal{E} is trace preserving.

A map fulfilling (1)-(3) is called a *conditional expectation*.

OPERATOR CONVEX

Let $\mathcal{I} \subseteq \mathbb{R}$ interval and $f: \mathcal{I} \to \mathbb{R}$. If

$$f(\lambda A + (1 - \lambda)B) \le \lambda f(A) + (1 - \lambda)f(B)$$

for all Hermitian $A, B \in \mathcal{B}(\mathcal{H})$ with spectrum contained in \mathcal{I} , all $\lambda \in [0, 1]$, and for all finite-dimensional Hilbert spaces \mathcal{H} , then f is operator convex.

(Hiai-Mosonyi '17)

STANDARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\ \rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma||\rho) = \operatorname{tr}\left[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2}\right]$$

is the standard f-divergence.

(Hiai-Mosonyi '17)

STANDARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\ \rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2}\right]$$

is the standard f-divergence.

Example: Let $f(x) = x \log x$. Then,

$$S_f(\sigma || \rho) = \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

defines the relative entropy $D(\sigma || \rho)$.

(Hiai-Mosonyi '17)

STANDARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra $\mathcal{M}.$ Then,

$$S_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2}\right]$$

is the $standard\ f$ -divergence.

Example: Let $f(x) = x \log x$. Then,

$$S_f(\sigma \| \rho) = \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

defines the relative entropy $D(\sigma || \rho)$.

DATA PROCESSING INFOUALITY

Let $\mathcal{T}: \mathcal{M} \to \mathcal{B}$ be a TP map such that its dual map is a 2PTP map. Then, for every $\sigma > 0$, $\rho > 0$ on \mathcal{M} and every operator convex function $f: (0, \infty) \to \mathbb{R}$,

$$S_f(\mathcal{T}(\sigma)||\mathcal{T}((\rho)) \le S_f(\sigma||\rho)$$

(Hiai-Mosonyi '17)

STANDARD f-DIVERGENCES

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\ \rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$S_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(L_{\sigma} R_{\rho^{-1}}) \rho^{1/2}\right]$$

is the standard f-divergence.

Example: Let $f(x) = x \log x$. Then,

$$S_f(\sigma \| \rho) = \operatorname{tr}[\sigma(\log \sigma - \log \rho)]$$

defines the relative entropy $D(\sigma || \rho)$.

Data Processing inequality

Let $\mathcal{T}: \mathcal{M} \to \mathcal{B}$ be a TP map such that its dual map is a 2PTP map. Then, for every $\sigma > 0$, $\rho > 0$ on \mathcal{M} and every operator convex function $f: (0, \infty) \to \mathbb{R}$,

$$S_f(\mathcal{T}(\sigma)||\mathcal{T}((\rho)) \le S_f(\sigma||\rho).$$

Conditions for equality

Let $\sigma > 0$, $\rho > 0$ be on \mathcal{M} and let $\mathcal{T} : \mathcal{M} \to \mathcal{B}$ be a 2PTP linear map. Then, the following are equivalent:

- There exists a TP map $\hat{\mathcal{T}}: \mathcal{B} \to \mathcal{M}$ such that $\hat{\mathcal{T}}(\mathcal{T}(\rho)) = \rho$ and $\hat{\mathcal{T}}(\mathcal{T}(\sigma)) = \sigma$.
- ② $S_f(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) = S_f(\sigma||\rho)$ for some operator convex function on $(0,\infty)$ such that $f(0^+) < \infty$ and

$$|\operatorname{supp} \mu_f| \ge |\operatorname{spec}(L_{\sigma}R_{\rho^{-1}}) \cup \operatorname{spec}(L_{\Phi(\sigma)}R_{\Phi(\rho)^{-1}})|,$$

for a certain μ_f from the representation of the op-convex function.

- $S_f(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) = S_f(\sigma||\rho)$ for all operator convex f on [0, ∞).

Maximal f-divergences

Maximal f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\ \rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$\hat{S}_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(\rho^{-1/2} \sigma \rho^{-1/2}) \rho^{1/2}\right]$$

is the maximal f-divergence.

Example: Let $f(x) = x \log x$. Then,

$$\hat{S}_f(\sigma \| \rho) = \operatorname{tr} \left[\rho^{1/2} \sigma \rho^{-1/2} \log \left(\rho^{-1/2} \sigma \rho^{-1/2} \right) \right] = \operatorname{tr} \left[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \right]$$

is the Belavkin-Staszewski relative entropy (BS-entropy)

MAXIMAL f-DIVERGENCES

Maximal f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$\hat{S}_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(\rho^{-1/2} \sigma \rho^{-1/2}) \rho^{1/2}\right]$$

is the $maximal\ f$ -divergence.

Example: Let $f(x) = x \log x$. Then,

$$\hat{S}_f(\sigma \| \rho) = \operatorname{tr} \left[\rho^{1/2} \sigma \rho^{-1/2} \log \left(\rho^{-1/2} \sigma \rho^{-1/2} \right) \right] = \operatorname{tr} \left[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \right]$$

is the Belavkin-Staszewski relative entropy (BS-entropy).

Data processing inequality

Let $\sigma > 0$, $\rho > 0$ be two states on a matrix algebra \mathcal{M} and $\mathcal{T} : \mathcal{M} \to \mathcal{B}$ be a PTP linear map. Then,

$$\hat{S}_f(\mathcal{T}(\sigma) \| \mathcal{T}(\rho)) \le \hat{S}_f(\sigma \| \rho)$$

Maximal f-divergences

Maximal f-divergences

Let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function and $\sigma>0,\,\rho>0$ be two states on a matrix algebra \mathcal{M} . Then,

$$\hat{S}_f(\sigma \| \rho) = \text{tr}\left[\rho^{1/2} f(\rho^{-1/2} \sigma \rho^{-1/2}) \rho^{1/2}\right]$$

is the $maximal\ f$ -divergence.

Example: Let $f(x) = x \log x$. Then,

$$\hat{S}_f(\sigma \| \rho) = \operatorname{tr} \left[\rho^{1/2} \sigma \rho^{-1/2} \log \left(\rho^{-1/2} \sigma \rho^{-1/2} \right) \right] = \operatorname{tr} \left[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \right]$$

is the Belavkin-Staszewski relative entropy (BS-entropy).

Data Processing inequality

Let $\sigma > 0$, $\rho > 0$ be two states on a matrix algebra \mathcal{M} and $\mathcal{T} : \mathcal{M} \to \mathcal{B}$ be a PTP linear map. Then,

$$\hat{S}_f(\mathcal{T}(\sigma) \| \mathcal{T}(\rho)) \le \hat{S}_f(\sigma \| \rho).$$

Maximal f-divergences

CONDITIONS FOR EQUALITY

Let $\sigma > 0$, $\rho > 0$ be on \mathcal{M} and $\mathcal{T} : \mathcal{M} \to \mathcal{B}$ be a PTP linear map. Then, the following are equivalent:

- $\hat{S}_f(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) = \hat{S}_f(\sigma||\rho)$ for some non-linear operator convex function f on $[0,\infty)$.
- ② $\hat{S}_f(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) = \hat{S}_f(\sigma||\rho)$ for all operator convex functions f on $[0,\infty)$.
- $\mathbf{3} \operatorname{tr} \left[\mathcal{T}(\sigma)^2 \mathcal{T}(\rho)^{-1} \right] = \operatorname{tr} \left[\sigma^2 \rho^{-1} \right].$

Relation between f-divergences

Relation between f-divergences

For every two states $\sigma > 0$, $\rho > 0$ on \mathcal{M} and every operator convex function $f:(0,\infty) \to \mathbb{R}$,

$$S_f(\sigma \| \rho) \leq \hat{S}_f(\sigma \| \rho).$$

REMARK DIFFERENCE

For maximal f-divergences, there is no equivalent condition for equality in DPI which provides a explicit expression of recovery for σ .

Relation between f-divergences

Relation between f-divergences

For every two states $\sigma > 0$, $\rho > 0$ on \mathcal{M} and every operator convex function $f:(0,\infty) \to \mathbb{R}$,

$$S_f(\sigma \| \rho) \leq \hat{S}_f(\sigma \| \rho).$$

Remark: Difference

For maximal f-divergences, there is no equivalent condition for equality in DPI which provides a explicit expression of recovery for σ .

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS entropy (or for maximal f-divergences) which provides a explicit expression of recovery for σ ?

STRENGTHENED DPI FOR BS ENTROPY

Following Carlen-Vershynina, can we provide a lower bound for the DPI for the BS entropy (or for maximal f-divergences) in terms of a (hypothetical) BS recovery condition?

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS entropy (or for maximal f-divergences) which provides a explicit expression of recovery for σ ?

STRENGTHENED DPI FOR BS ENTROPY

Following Carlen-Vershynina, can we provide a lower bound for the DPI for the BS entropy (or for maximal f-divergences) in terms of a (hypothetical) BS recovery condition?

Equivalent conditions for equality on DPI

$$\begin{split} \Gamma &:= \sigma^{-1/2} \rho \sigma^{-1/2} \text{ and } \Gamma_{\mathcal{N}} := \sigma_{\mathcal{N}}^{-1/2} \rho_{\mathcal{N}} \sigma_{\mathcal{N}}^{-1/2} \\ \rho_{\mathcal{N}} &:= \mathcal{E}(\rho), \, \sigma_{\mathcal{N}} := \mathcal{E}(\sigma) \end{split}$$

Equivalent conditions for equality on DPI (Bluhm-C. '19

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0$, $\rho > 0$ be two quantum states on \mathcal{M} . Then, the following are equivalent:

- $\ \, \mathbf{3} \ \, \sigma^{1/2}\sigma_{\mathcal{N}}^{-1/2}\Gamma_{\mathcal{N}}^{1/2}\sigma_{\mathcal{N}}^{1/2}=\Gamma^{1/2}\sigma^{1/2}.$

Equivalent conditions for equality on DPI

$$\Gamma := \sigma^{-1/2} \rho \sigma^{-1/2}$$
 and $\Gamma_{\mathcal{N}} := \sigma_{\mathcal{N}}^{-1/2} \rho_{\mathcal{N}} \sigma_{\mathcal{N}}^{-1/2}$
 $\rho_{\mathcal{N}} := \mathcal{E}(\rho), \ \sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$

Equivalent conditions for equality on DPI (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0, \, \rho > 0$ be two quantum states on \mathcal{M} . Then, the following are equivalent:

$$\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}).$$

3
$$\sigma^{1/2}\sigma_N^{-1/2}\Gamma_N^{1/2}\sigma_N^{1/2} = \Gamma^{1/2}\sigma^{1/2}$$
.

BS RECOVERY CONDITION

$$\mathcal{T}^{\sigma}_{\mathcal{E}}(\cdot) := \sigma \sigma_{\mathcal{N}}^{-1}(\cdot).$$

Equivalent conditions for equality on DPI

$$\Gamma := \sigma^{-1/2} \rho \sigma^{-1/2}$$
 and $\Gamma_{\mathcal{N}} := \sigma_{\mathcal{N}}^{-1/2} \rho_{\mathcal{N}} \sigma_{\mathcal{N}}^{-1/2}$
 $\rho_{\mathcal{N}} := \mathcal{E}(\rho), \ \sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$

Equivalent conditions for equality on DPI (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0, \, \rho > 0$ be two quantum states on \mathcal{M} . Then, the following are equivalent:

$$\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}).$$

3
$$\sigma^{1/2}\sigma_N^{-1/2}\Gamma_N^{1/2}\sigma_N^{1/2} = \Gamma^{1/2}\sigma^{1/2}$$
.

BS RECOVERY CONDITION

$$\mathcal{T}^{\sigma}_{\mathcal{E}}(\cdot) := \sigma \sigma_{\mathcal{N}}^{-1}(\cdot).$$

Consequences

Note: Although they can be seen as a consequence of the previous result, the following facts were previously known.

COROLLARY

$$\hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \Leftrightarrow \rho = \mathcal{T}_{\varepsilon}^{\rho} \circ \mathcal{E}(\rho)
\Leftrightarrow \sigma = \mathcal{T}_{\varepsilon}^{\rho} \circ \mathcal{E}(\sigma)
\Leftrightarrow \hat{S}_{BS}(\rho \| \sigma) = \hat{S}_{BS}(\rho_{\mathcal{N}} \| \sigma_{\mathcal{N}}).$$

Consequences

Note: Although they can be seen as a consequence of the previous result, the following facts were previously known.

COROLLARY

$$\begin{split} \hat{S}_{\mathrm{BS}}(\sigma \| \rho) &= \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \Leftrightarrow \rho = \mathcal{T}_{\mathcal{E}}^{\sigma} \circ \mathcal{E}(\rho) \\ &\Leftrightarrow \sigma = \mathcal{T}_{\mathcal{E}}^{\rho} \circ \mathcal{E}(\sigma) \\ &\Leftrightarrow \hat{S}_{\mathrm{BS}}(\rho \| \sigma) = \hat{S}_{\mathrm{BS}}(\rho_{\mathcal{N}} \| \sigma_{\mathcal{N}}). \end{split}$$

COROLLARY

$$D(\sigma \| \rho) = D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \implies \hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}).$$

Equivalently

$$\sigma = \mathcal{R}_{\mathcal{E}}^{\rho} \circ \mathcal{E}(\sigma) \implies \sigma = \mathcal{T}_{\mathcal{E}}^{\rho} \circ \mathcal{E}(\sigma)$$

The converse of this result is false (Jencová-Petz-Pitrik '09, Hiai-Mosonyi '17).

Consequences

Note: Although they can be seen as a consequence of the previous result, the following facts were previously known.

COROLLARY

$$\begin{split} \hat{S}_{\mathrm{BS}}(\sigma \| \rho) &= \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \Leftrightarrow \rho = \mathcal{T}_{\mathcal{E}}^{\sigma} \circ \mathcal{E}(\rho) \\ &\Leftrightarrow \sigma = \mathcal{T}_{\mathcal{E}}^{\rho} \circ \mathcal{E}(\sigma) \\ &\Leftrightarrow \hat{S}_{\mathrm{BS}}(\rho \| \sigma) = \hat{S}_{\mathrm{BS}}(\rho_{\mathcal{N}} \| \sigma_{\mathcal{N}}). \end{split}$$

COROLLARY

$$D(\sigma \| \rho) = D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \implies \hat{S}_{BS}(\sigma \| \rho) = \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}).$$

Equivalently,

$$\sigma = \mathcal{R}^{\rho}_{\mathcal{E}} \circ \mathcal{E}(\sigma) \implies \sigma = \mathcal{T}^{\rho}_{\mathcal{E}} \circ \mathcal{E}(\sigma).$$

The converse of this result is false (Jencová-Petz-Pitrik '09, Hiai-Mosonyi '17).

STRENGTHENED DPI FOR THE BS-ENTROPY

STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma > 0, \, \rho > 0$ be two quantum states onto \mathcal{M} . Then,

$$\hat{S}_{BS}(\sigma \| \rho) - \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|\Gamma\|_{\infty}^{-4} \|\sigma^{-1}\|_{\infty}^{-2} \|\rho - \sigma\sigma_{\mathcal{N}}^{-1}\rho_{\mathcal{N}}\|_{2}^{4}.$$

STEP 1

$$\hat{S}_{\mathrm{BS}}(\sigma\|\rho) - \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{N}}\|\rho_{\mathcal{N}}) \ge \left(\frac{\pi}{4}\right)^4 \|\Gamma\|_{\infty}^{-2} \left\|\sigma^{1/2}\sigma_{\mathcal{N}}^{-1/2}\Gamma_{\mathcal{N}}^{1/2}\sigma_{\mathcal{N}}^{1/2} - \Gamma^{1/2}\sigma^{1/2}\right\|_2^4.$$

STRENGTHENED DPI FOR THE BS-ENTROPY

STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma>0,\ \rho>0$ be two quantum states onto \mathcal{M} . Then,

$$\hat{S}_{BS}(\sigma \| \rho) - \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|\Gamma\|_{\infty}^{-4} \|\sigma^{-1}\|_{\infty}^{-2} \|\rho - \sigma\sigma_{\mathcal{N}}^{-1}\rho_{\mathcal{N}}\|_{2}^{4}.$$

STEP

$$\hat{S}_{\mathrm{BS}}(\sigma\|\rho) - \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{N}}\|\rho_{\mathcal{N}}) \geq \left(\frac{\pi}{4}\right)^4 \|\Gamma\|_{\infty}^{-2} \left\|\sigma^{1/2}\sigma_{\mathcal{N}}^{-1/2}\Gamma_{\mathcal{N}}^{1/2}\sigma_{\mathcal{N}}^{1/2} - \Gamma^{1/2}\sigma^{1/2}\right\|_2^4.$$

STEP 2

$$\left\|\sigma^{1/2}\sigma_{\mathcal{N}}^{-1/2}\Gamma_{\mathcal{N}}^{1/2}\sigma_{\mathcal{N}}^{1/2} - \Gamma^{1/2}\sigma^{1/2}\right\|_{2} \ge \frac{1}{2}\|\Gamma\|_{\infty}^{-1/2}\|\sigma^{-1}\|_{\infty}^{-1/2}\|\sigma\sigma_{\mathcal{N}}^{-1}\rho_{\mathcal{N}} - \rho\|_{2}$$

STRENGTHENED DPI FOR THE BS-ENTROPY

STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma>0,\ \rho>0$ be two quantum states onto \mathcal{M} . Then,

$$\hat{S}_{BS}(\sigma \| \rho) - \hat{S}_{BS}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|\Gamma\|_{\infty}^{-4} \|\sigma^{-1}\|_{\infty}^{-2} \|\rho - \sigma\sigma_{\mathcal{N}}^{-1}\rho_{\mathcal{N}}\|_{2}^{4}.$$

STEP

$$\hat{S}_{\mathrm{BS}}(\sigma\|\rho) - \hat{S}_{\mathrm{BS}}(\sigma_{\mathcal{N}}\|\rho_{\mathcal{N}}) \geq \left(\frac{\pi}{4}\right)^4 \|\Gamma\|_{\infty}^{-2} \left\|\sigma^{1/2}\sigma_{\mathcal{N}}^{-1/2}\Gamma_{\mathcal{N}}^{1/2}\sigma_{\mathcal{N}}^{1/2} - \Gamma^{1/2}\sigma^{1/2}\right\|_2^4.$$

STEP 2

$$\left\|\sigma^{1/2}\sigma_{\mathcal{N}}^{-1/2}\Gamma_{\mathcal{N}}^{1/2}\sigma_{\mathcal{N}}^{1/2}-\Gamma^{1/2}\sigma^{1/2}\right\|_{2}\geq\frac{1}{2}\|\Gamma\|_{\infty}^{-1/2}\left\|\sigma^{-1}\right\|_{\infty}^{-1/2}\left\|\sigma\sigma_{\mathcal{N}}^{-1}\rho_{\mathcal{N}}-\rho\right\|_{2}.$$

STRENGTHENED DPI FOR MAXIMAL f-DIVERGENCES

STRENGTHENED DPI FOR MAXIMAL f-DIVERGENCES (Bluhm-C. '19)

Let \mathcal{M} be a matrix algebra with unital subalgebra \mathcal{N} . Let $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ be the trace-preserving conditional expectation onto this subalgebra. Let $\sigma>0,\ \rho>0$ be two quantum states on \mathcal{M} and let $f:(0,\infty)\to\mathbb{R}$ be an operator convex function with transpose \tilde{f} . We assume that \tilde{f} is operator monotone decreasing and such that the measure $\mu_{-\tilde{f}}$ that appears in the representation of $-\tilde{f}$ is absolutely continuous with respect to Lebesgue measure. Moreover, we assume that for every $T\geq 1$, there exist constants $\alpha\geq 0,\ C>0$ satisfying $\mathrm{d}\mu_{-\tilde{f}}(t)/\mathrm{d}t\geq (CT^{2\alpha})^{-1}$ for all $t\in[1/T,T]$ and such that

$$\left(\frac{(2\alpha+1)\sqrt{C}}{4}\frac{(\hat{S}_f(\sigma\|\rho)-\hat{S}_f(\sigma_{\mathcal{N}}\|\rho_{\mathcal{N}}))^{1/2}}{1+\|\Gamma\|_{\infty}}\right)^{\frac{1}{1+\alpha}} \leq 1.$$

Then, there is a constant $L_{\alpha} > 0$ such that

$$\hat{S}_{f}(\sigma \| \rho) - \hat{S}_{f}(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge$$

$$\ge \frac{L_{\alpha}}{C} \left(1 + \| \Gamma \|_{\infty} \right)^{-(4\alpha + 2)} \| \Gamma \|_{\infty}^{-(2\alpha + 2)} \| \sigma^{-1} \|_{\infty}^{-(2\alpha + 2)} \| \rho - \sigma \sigma_{\mathcal{N}}^{-1} \rho_{\mathcal{N}} \|_{2}^{4(\alpha + 1)}.$$

