Ángela Capel (ICMAT-UAM, Madrid)

Joint work with Angelo Lucia (U. Copenhagen and Caltech) and David Pérez-García (U. Complutense de Madrid).

Based on arXiv: 1705.03521 and 1804.09525

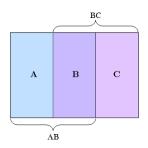
AQIS 2018, Nagoya, 10th September 2018

CONTENTS

- QUASI-FACTORIZATION OF THE RELATIVE ENTROPY
 - Conditional relative entropy
 - Quasi-factorization of the relative entropy

- 2 QUANTUM SPIN LATTICES
 - QUANTUM DISSIPATIVE SYSTEMS
 - Log-Sobolev Constant

STATEMENT OF THE PROBLEM



PROBLEM

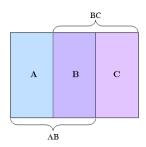
Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$$

QUANTUM RELATIVE ENTROPY

$$D(\rho||\sigma) = \operatorname{tr}\left[\rho(\log \rho - \log \sigma)\right]$$

STATEMENT OF THE PROBLEM



PROBLEM

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$$

QUANTUM RELATIVE ENTROPY

$$D(\rho||\sigma) = \operatorname{tr}\left[\rho(\log \rho - \log \sigma)\right]$$

PROBLEM

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr}\left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **Ontinuity.** $\rho_{AB} \mapsto D(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.
- Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr}\left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **①** Continuity. $\rho_{AB} \mapsto D(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.
- Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

CONDITIONAL RELATIVE ENTROPY

Conditional relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. We define a **conditional relative entropy** in A as a function

$$D_A(\cdot||\cdot): \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$$

verifying the following properties for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$:

- **① Continuity:** The map $\rho_{AB} \mapsto D_A(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Non-negativity: $D_A(\rho_{AB}||\sigma_{AB}) \geq 0$ and
 - $(2.1) \ \ D_A(\rho_{AB}||\sigma_{AB}) = 0 \ \text{if, and only if, } \\ \rho_{AB} = \sigma_{AB}^{1/2}\sigma_B^{-1/2}\rho_B\sigma_B^{-1/2}\sigma_{AB}^{1/2}.$
- **3** Semi-superadditivity: $D_A(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)$ and
 - (3.1) **Semi-additivity:** if $\rho_{AB} = \rho_A \otimes \rho_B$, $D_A(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A)$.
- **3** Semi-motonicity: For every quantum channel \mathcal{T} ,

$$D_A(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB})) + D_B((\operatorname{tr}_A \circ \mathcal{T})(\rho_{AB})||(\operatorname{tr}_A \circ \mathcal{T})(\sigma_{AB}))$$

$$< D_A(\rho_{AB}||\sigma_{AB}) + D_B(\operatorname{tr}_A(\rho_{AB})||\operatorname{tr}_A(\sigma_{AB})).$$

Remark

Consider for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$

$$D_{A,B}^{+}(\rho_{AB}||\sigma_{AB}) = D_{A}(\rho_{AB}||\sigma_{AB}) + D_{B}(\rho_{AB}||\sigma_{AB}).$$

Then, $D_{A,B}^+$ verifies the following properties:

- Continuity: $\rho_{AB} \mapsto D_{AB}^+(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity: $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity: $D_{A,B}^+(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B).$

However, it does not satisfy the property of monotonicity.

Axiomatic characterization of the conditional relative entropy

The only possible conditional relative entropy is given by

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$

Remark

Consider for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$

$$D_{A,B}^{+}(\rho_{AB}||\sigma_{AB}) = D_{A}(\rho_{AB}||\sigma_{AB}) + D_{B}(\rho_{AB}||\sigma_{AB}).$$

Then, $D_{A,B}^+$ verifies the following properties:

- Continuity: $\rho_{AB} \mapsto D_{AB}^+(\rho_{AB}||\sigma_{AB})$ is continuous.
- **2** Additivity: $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B)$.
- **3** Superadditivity: $D_{A,B}^+(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B).$

However, it does not satisfy the property of monotonicity.

Axiomatic characterization of the conditional relative entropy

The only possible conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every ρ_{AB} , $\sigma_{AB} \in \mathcal{S}_{AB}$.

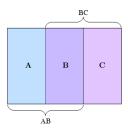


Figure: Choice of indices in $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Result of quasi-factorization of the relative entropy, for every ρ_{ABC} , $\sigma_{ABC} \in \mathcal{S}_{ABC}$:

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.

QUASI-FACTORIZATION FOR THE CRE

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$\begin{split} D(\rho_{ABC}||\sigma_{ABC}) \leq \\ \frac{1}{1 - 2\|H(\sigma_{AC})\|_{\infty}} \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right], \end{split}$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

$$\Leftrightarrow$$

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

$$\Leftrightarrow (1 + 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{C}||\sigma_{C}).$$

$$\Leftrightarrow \Box$$

$$(1 - 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

$$\Leftrightarrow (1 + 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{C}||\sigma_{C}).$$

$$\Leftrightarrow (1 + 2\|H(\sigma_{AC})\|_{\infty})D(\rho_{AC}||\sigma_{AC}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{C}||\sigma_{C}).$$

This result is equivalent to:

$$\boxed{(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})}.$$

Recall.

• Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.

This result is equivalent to:

$$\left| (1+2||H(\sigma_{AB})||_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B}) \right|.$$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$$

This result is equivalent to:

$$\boxed{(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \geq D(\rho_{A}||\sigma_{A}) + D(\rho_{B}||\sigma_{B})}.$$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A\otimes\sigma_B)\geq D(\rho_A||\sigma_A)+D(\rho_B||\sigma_B)$.

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

RELATION WITH THE CLASSICAL CASE

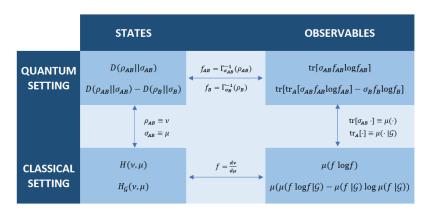


Figure: Identification between classical and quantum quantities when the states considered are classical.

APPLICATION

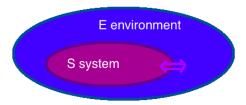


Figure: An open quantum many-body system.

- Interesting for information processing ⇒ Open (unavoidable interactions).
- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a quantum Markov semigroup.

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Rapid Mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

Problem

Find examples of rapid mixing

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Rapid Mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

Problem

Find examples of rapid mixing!

Log-Sobolev Constant

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Log-Sobolev constant ⇒ Rapid mixing.

Log-Sobolev Constant

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Log-Sobolev constant \Rightarrow Rapid mixing.

PROBLEM

Find positive log-Sobolev constants

Log-Sobolev Constant

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

QUANTUM SPIN LATTICES

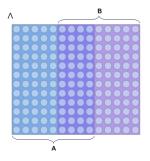


Figure: A quantum spin lattice system Λ and $A, B \subseteq \Lambda$ such that $A \cup B = \Lambda$.

Problem

For a certain \mathcal{L}^*_{Λ} , can we prove $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ using the result of quasi-factorization of the relative entropy?

+

(2) Recursive geometric argument.

Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

+

(2) Recursive geometric argument.

Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

+

(3) Positive (and size-independent) conditional log-Sobolev constant

+

(2) Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

+

(3) Positive (and size-independent) conditional log-Sobolev constant.

Positive log-Sobolev constant

+

(2) Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

+

(3) Positive (and size-independent) conditional log-Sobolev constant.

Positive log-Sobolev constant.

General quasi-factorization for σ a tensor product

Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following

inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}). \tag{1}$$

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

General quasi-factorization for σ a tensor product

Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following

inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}). \tag{1}$$

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_{\Lambda}, \ \mathcal{L}_{\Lambda}^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_{x} \otimes \rho_{x^{c}} - \rho_{\Lambda}).$$

General quasi-factorization for σ a tensor product

Let $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following

inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}). \tag{1}$$

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_{\Lambda}, \ \mathcal{L}_{\Lambda}^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}_{\Lambda}^{*}(
ho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_{x} \otimes
ho_{x^{c}} -
ho_{\Lambda}).$$

CONDITIONAL LOG-SOBOLEV CONSTANT

For $x \in \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* in x by

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

where σ_{Λ} is the fixed point of the evolution, and $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$ is the conditional relative entropy.

LEMMA

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \ge \frac{1}{2}.\tag{3}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

For $x \in \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* in x by

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

where σ_{Λ} is the fixed point of the evolution, and $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$ is the conditional relative entropy.

LEMMA

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \ge \frac{1}{2}.\tag{3}$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right). \tag{2}$$

Positive log-Sobolev constant

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \frac{1}{2}$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \right). \tag{2}$$

Positive log-Sobolev constant

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \frac{1}{2}.$$

OPEN PROBLEMS

Problem 1

Can we use any of the quasi-factorization results to prove log-Sobolev constants in a more general setting?

(Kastoryano-Brandao, '15) The heat-bath dynamics, with σ_{Λ} the Gibbs state of a commuting Hamiltonian, has positive spectral gap. \Rightarrow Log-Sobolev constant?

Problem 2

Is there a better definition for conditional relative entropy?

FOR FURTHER KNOWLEDGE, ARXIV: 1705.03521 AND 1804.09525

