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Main topic of this talk

Field of study

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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1. Quantum dissipative systems
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Open quantum systems

No experiment can be executed at zero temperature or
be completely shielded from noise.

⇒ Open quantum many-body systems.

Figure: An open quantum many-body system.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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Notation

Figure: A quantum spin lattice system.

Finite lattice Λ ⊂⊂ Zd.
To every site x ∈ Λ we associate Hx (= CD).

The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.

The set of bounded linear endomorphisms on HΛ is denoted by
BΛ := B(HΛ).

The set of density matrices is denoted by
SΛ := S(HΛ) = {ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.
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Quantum dissipative systems

Quantum dissipative systems

A quantum dissipative system is a 1-parameter continuous semigroup
{T ∗t }t≥0 of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε

}
.
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Rapid mixing

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

Problem

Find examples of rapid mixing!
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2. General strategy for log-Sobolev inequalities
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Classical spin systems
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Quantum spin systems
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Log-Sobolev inequality (MLSI)

Recall: ρt := T ∗t (ρ).

Liouville’s equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Log-Sobolev constant

Log-Sobolev constant

The log-Sobolev constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Log-Sobolev constant

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|) e−γt.

For thermal states, σmin ∼ exp(|Λ|).

Log-Sobolev constant ⇒ Rapid mixing.

Problem

Find positive log-Sobolev constants!
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Main problem of this talk

Develop a strategy to find positive log-Sobolev constants.

Concrete problem

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant for the
heat-bath dynamics in 1D.
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Classical spin systems

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev

constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

⇓

Positive log-Sobolev constant.
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Conditional log-Sobolev constant

Log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ. We define the log-Sobolev constant of L∗Λ by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ, A ⊆ Λ. We define the conditional log-Sobolev constant of L∗Λ
on A by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Strategy
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Quasi-factorization of the relative entropy

The strategy is based on a solution for the following problem.

Problem

Let HABC = HA ⊗HB ⊗HC and ρABC , σABC ∈ SABC . Can we prove
something like

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)]

where ξ(σABC) depends only on σABC and measures how far σAC is from
σA ⊗ σC?
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3. Log-Sobolev inequality for the heat-bath
dynamics for 1D system
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Log-Sobolev inequality for the heat-bath dynamics

The dynamics: For every ρΛ ∈ SΛ,

L∗Λ(ρΛ) :=
∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)
.

Given A ⊂ Λ, can we prove something like

α(L∗Λ) ≥ Ψ(A)αΛ(L∗A) ?

If so, we could use it to prove

lim inf
Λ↗Z

α(L∗Λ) > 0.
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Conditional relative entropy

Classical entropy and conditional entropy

Entropy:

Entµ(f) = µ(f log f)− µ(f) log µ(f).

Conditional entropy:

Entµ(f | G) = µ(f(log f − log µ(f | G)) | G).

Quantum relative entropy

The quantum relative entropy of ρΛ and σΛ is defined by:

D(ρΛ||σΛ) = tr [ρΛ(log ρΛ − log σΛ)] .

Conditional relative entropy

Given a bipartite space HAB , we define the conditional relative entropy in A by:

DA(ρAB ||σAB) = D(ρAB ||σAB)−D(ρB ||σB)

for every ρAB , σAB ∈ SAB .

C.-Lucia-Pérez Garćıa, ’18 → Axiomatic characterization of the CRE.
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Entropy:

Entµ(f) = µ(f log f)− µ(f) log µ(f).

Conditional entropy:

Entµ(f | G) = µ(f(log f − log µ(f | G)) | G).

Quantum relative entropy

The quantum relative entropy of ρΛ and σΛ is defined by:

D(ρΛ||σΛ) = tr [ρΛ(log ρΛ − log σΛ)] .

Conditional relative entropy

Given a bipartite space HAB , we define the conditional relative entropy in A by:

DA(ρAB ||σAB) = D(ρAB ||σAB)−D(ρB ||σB)

for every ρAB , σAB ∈ SAB .
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Conditional log-Sobolev constant

Conditional log-Sobolev constant

For A ⊂ Λ, we define the conditional log-Sobolev constant of L∗Λ in A
by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
,

where σΛ is the fixed point of the evolution, and

DA(ρΛ||σΛ) = D(ρΛ||σΛ)−D(ρAc ||σAc).
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Quasi-factorization of the relative entropy

Quasi-factorization for the CRE, C.-Lucia-Pérez Garćıa ’18

Let HXY Z and ρXY Z , σXY Z ∈ SXY Z . The following holds

D(ρXY Z ||σXY Z) ≤ ξ(σXZ) [DXY (ρXY Z ||σXY Z) +DY Z(ρXY Z ||σXY Z)] ,

where

ξ(σXZ) =
1

1− 2
∥∥∥σ−1/2

X ⊗ σ−1/2
Z σXZ σ

−1/2
X ⊗ σ−1/2

Z − 1XZ
∥∥∥
∞

.
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This result is equivalent to:

(1 + 2‖H(σXY )‖∞)D(ρXY ||σXY ) ≥ D(ρX ||σX) +D(ρY ||σY ) .

Recall:

Superadditivity. D(ρXY ||σX ⊗ σY ) ≥ D(ρX ||σX) +D(ρY ||σY ).

Due to:

Monotonicity. D(ρXY ||σXY ) ≥ D(T (ρXY )||T (σXY )) for every
quantum channel T .

we have

2D(ρXY ||σXY ) ≥ D(ρX ||σX) +D(ρY ||σY ).
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Quasi-factorization of the relative entropy

STEP 1

A =

n⋃
i=1

Ai and B =

n⋃
j=1

Bj

D(ρΛ||σΛ) ≤ 1

1− 2‖H(σAcBc)‖∞
[DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

H(σAcBc) := σ
−1/2
Ac ⊗ σ−1/2

Bc σAcBcσ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc .
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Sketch of the proof

STEP 2

DA(ρΛ||σΛ) ≤
n∑
i=1

DAi(ρΛ||σΛ)

σΛ is a QMC between A1 ↔ ∂A1 ↔ Λ \ (A1 ∪ ∂A1)

σΛ =
⊕
i∈I
σA1(∂a1)Li

⊗ σ(∂a1)Ri Λ\(A1∪∂A1)
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Clustering of correlations on the Gibbs state

Assumption 1

In a tripartite Hilbert space HA ⊗HC ⊗HB , A and B not connected, we
have

‖h(σAB)‖∞ =
∥∥∥σ−1/2

A ⊗ σ−1/2
B σABσ

−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
≤ K <

1

2
.

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any B ⊂ Λ, B = B1 ∪B2, it holds:

DB(ρΛ||σΛ) ≤ f(σB∂) (DB1(ρΛ||σΛ) +DB2(ρΛ||σΛ)) .

In particular, tensor products satisfy this (with f = 1).
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Geometric recursive argument

STEP 3

Using locality of the Lindbladian

L∗A + L∗B = L∗A∪B + L∗A∩B
and quasi-factorization:

Assumption 1⇒ α(L∗Λ) ≥ K̃ min
i∈{1,...n}

{
αΛ(L∗Ai

), αΛ(L∗Bi
)
}

Recursion appears in a possible extension to larger dimension.
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Geometric recursive argument

STEP 3

Using locality of the Lindbladian

L∗A + L∗B = L∗A∪B + L∗A∩B
and quasi-factorization:

Assumption 1⇒ α(L∗Λ) ≥ K̃ min
i∈{1,...n}

{
αΛ(L∗Ai

), αΛ(L∗Bi
)
}

Recursion appears in a possible extension to larger dimension.
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Sketch of the proof

STEP 4

Assumption 2⇒ αΛ(L∗Ai
) ≥ g(σAi∂) > 0.
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Heat-bath dynamics in 1D

Theorem, Bardet-C.-Lucia-Pérez Garćıa-Rouzé ’19

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

Previous results:

Kastoryano-Brandao ’15. In 1D, for a k-local commuting
Hamiltonian, the heat-bath dynamics is always gapped.
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Open problems

Problem 1

Does this hold for larger dimension?

Problem 2

Is there a better definition for conditional relative entropy?

Problem 3

Can we do something similar for different dynamics?



Quantum dissipative systems General strategy Log-Sobolev inequality for heat-bath


	Quantum dissipative systems
	General strategy for log-Sobolev inequalities
	Log-Sobolev inequality for the heat-bath dynamics for 1D systems
	1. Definition of the conditional log-Sobolev constant
	2. Quasi-factorization of the relative entropy
	3. Clustering of correlations
	4. Geometric recursive argument
	5. Positive conditional log-Sobolev constant


