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Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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JM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!

e The continuous-time evolution of a state on .S is given by a
q. Markov semigroup (Markovian approximation).
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NOTATION

Figure: A quantum spin lattice system.

Finite lattice A cc Z<.

o To every site z € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®I€A H.
The set of bounded linear endomorphisms on H is denoted by
Ba = B(Ha).

o The set of density matrices is denoted by

Sa :=8(Ha) = {pa € Ba : pa >0 and tr[ps] = 1}.



QUANTUM DISSIPATIVE SYSTEMS
[e]e] lele}

QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous semigroup
{T},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.




QUANTUM DISSIPATIVE SYSTEMS
[e]e] lele}

QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous semigroup
{7 },~, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
° T o T = Tt

o Ty =1.



QUANTUM DISSIPATIVE SYSTEMS

QUANTUM DISSIPATIVE SYSTEMS

A quantum dissipative system is a 1-parameter continuous semigroup
{7 },~, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T 0T =Tk
o Ty =1.

d * * * * *
%7; :7; OﬁA:,CAOﬁ.

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Lindbladian.

* d
* = A o LR = — T |t=0-
T: e A dtﬂ |¢=0
Notation: p; := T (p).

t—o0

pa —5 pe =T (pa) = €A (pa) =F o
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We define the mixing time of {7,*} by

7(€) :min{t>0 sup || (p) — T (p)|l; < }

PAESA
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We say that £} satisfies rapid mixing if

sup |lp: — oall; < poly(|A])e™".
PAESA

PA
\,p,

poly(|A)e™"

TA

PROBLEM
Find examples of rapid mixing!
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QUANTUM SPIN SYSTEMS

This
Log-Sobolev constant project

Kastoryano-Temme, "13

Kastoryano-Temme, '13

S I ) Exponential
pectra’gap K"‘“"'Y"‘“‘}'Br“d"”’ e decay of correlations
X Rapid mixing %al, 13
Cubitt et al, ’1y Vranda@ et al, ’15

Stability = Arealaw
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LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).

Liouville’s equation:
pr = Ly (pr)-

Relative entropy of p; and oy:
D(ptllon) = tr[pi(log py — log ap)].
Differentiating:

0D (ptl|loa) = tr[L) (pe)(log pr —logop)].

Lower bound for the derivative of D(p;||oy) in terms of itself:

2aD(pyllop) < —tr[L3 (pr)(log py — log an)].
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LOG-SOBOLEV CONSTANT

The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
LA) = f
alfa) = it 2D(pallon)

If lim inf /(£}) > O:
o a(L})

D(pellon) < Dipalloa)e 2 ER),
and with Pinsker’s inequality, we have:

llo: — oally < v/2D(palloa) e~ ERt < /2Tog (T Jomm) e (R0,

Using the spectral gap (Kastoryano-Temme ’13):

loe = oally < v/Tfomim e XER®,
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RAPID MIXING
We say that £} satisfies rapid mixing if

sup |[lpe — oall; < poly(|A])e™".
PAESA

For thermal states, omin ~ exp(|A]).

Log-Sobolev constant = Rapid mixing. J

PROBLEM
Find positive log-Sobolev constants!
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MAIN PROBLEM OF THIS TALK
Develop a strategy to find positive log-Sobolev constants.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant for the
heat-bath dynamics in 1D.
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
4

Positive log-Sobolev constant. )
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Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logoa)]
Ly) = f
al£h) = fof 2D(pallon)
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LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

o —tr[LA(pa)(log pa —logon)]
inf
PAESA 2D(PA||0'A)

CONDITIONAL LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state oa, A C A. We define the conditional log-Sobolev constant of L}
on A by

a(Ly) =

. o —tr[Lh(pa)(log pa —logaa )
L) = f
an(Lh) = inf 2D a(pallon)
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Quasi-factorization Geomeie
of the recursive
relative Definition argument
entropy conditional
Log-Sobolev
constant

Positive conditional
log-Sobolev constant

on the Gibbs state




The strategy is based on a solution for the following problem.

AB

PROBLEM

Let Hapc = Ha ® Hp ® He and papc,casc € Sapc. Can we prove
something like

D(pasclloasc) < &(casc) [Dag(pasclloasc) + Dec(pasclloasc)]

where &(0aBc) depends only on o04pc and measures how far oac is from
o4 Roc?
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The dynamics: For every pp € Sa,

* 1/2 —1/2 —-1/2 1/2
['A(pA) o= Z (UA/ Ux“/ pfﬂco—x"/ UA/ - pA)
TEA

Given A C A, can we prove something like
a(LR) = V(A)aa(Lh) 7
If so, we could use it to prove

h}\n/l%lfa(ﬁ/\) > 0.
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Enty(f | G) = u(f(log f —logpu(f 1)) | 9)-
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Q UANTUM RELATIVE ENTROPY

The quantum relative entropy of pp and o, is defined by:

D(palloa) = tr [pa(log pp —logon)] .
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CONDITIONAL RELATIVE ENTROPY

CLASSICAL ENTROPY AND NDITIONAL ENTROPY

Entropy:
Ent, (f) = pu(flog f) — p(f) log u(f).

Conditional entropy:

Enty(f | G) = u(f(log f —logpu(f 1)) | 9)-

Q UANTUM RELATIVE ENTROPY

The quantum relative entropy of pp and o, is defined by:

D(palloa) = tr [pa(log pp —logon)] .

CONDITIONAL RELATIVE ENTROPY

Given a bipartite space H 4 p, we define the conditional relative entropy in A by:

Da(paBlloas) = D(paslloas) — D(psllos)

for every pap,oaB € SaB-

C.-Lucia-Pérez Garcia, 18 — Axiomatic characterization of the CRE.
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CONDITIONAL LOG-SOBOLEV CONSTANT
For A C A, we define the conditional log-Sobolev constant of £} in A
by

inf —HEA(pa)(log pa —log oa)]
PAESA 2D A(pal|loa)

an(Ly) =

)

where o, is the fixed point of the evolution, and

Da(palloa) = D(palloa) — D(pac|loac).
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QUASI-FACTORIZATION FOR THE CRE, C.-Lucia-Pérez Garcia ’18

Let Hxyz and pxyz,o0xvz € Sxyz. The following holds

D(pxyzl|loxyz) < &(oxz) [Dxy(pxyzlloxyz) + Dyz(pxyzlloxyz)],
where
1

§(oxz) =
1—2”0}1/2@)021 oxz0x ?®0y

—1/2

= 1[XZH
oo

D(pxyzlloxyz) Dxy(pxyzlloxyz) Dyz(pxyzlloxyz)

XI <§(§:§) Xz - xBlz




This result is equivalent to:

(1 +2[|H(oxy)|loo)P(pxvlloxy) = D(px|lox) + D(py|loy) |




This result is equivalent to:

(1 +2[|H(oxy)|loo)P(pxvlloxy) = D(px|lox) + D(py|loy) |

Recall:
o Superadditivity. D(pxyHO’X ® Jy) > D(px”o’x) —+ D(py”dy).
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This result is equivalent to:

(1 +2[|H(oxy)|loo)P(pxvlloxy) = D(px|lox) + D(py|loy) |

Recall:
o Superadditivity. D(pxyHO’x ® Jy) > D(px”o’x) —+ D(py”dy).

Due to:

e Monotonicity. D(pxy||loxy) > D(T(pxv)||T(oxy)) for every
quantum channel T'.

we have

2D(pxvlloxy) = D(px|lox) + D(py|loy).
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QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

STEP 1 J

A= OAZ and B = OB]

i=1 j=1

1

D(pallon) < [Da(palloa) + De(palloa)],

1= 2[H(oa 57,

—1/2 ~1/2 ~1/2 —1/2
H(oacpe) =0, ®JBC/ oacpeo g’ ®UBC/ — L acpe.
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SKETCH OF THE PROOF

STEP 2 J

Da(palloa) <> Da,(palloa)

=1

oa is a QMC between A1 <> A1 <> A\ (A1 U9A,)

oA = @UAl(aal)f ® 0(9ar)FA\(41U041)



ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

—1/2 1/2

Hh(UAB)Hoo:HO'A ®og ' ‘capo, ®0_1/2

—]lABH §K<%

oo

In particular, Gibbs states at high enough temperature satisfy this.
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CLUSTERING OF CORRELATIONS ON THE GIBBS STATE

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® Hp, A and B not connected, we
have

_ _ 1
lh(oaB)ll. = H 1/2®U U'ABO' ’®0 1/2—11ABH <K< 2
oo

In particular, Gibbs states at high enough temperature satisfy this.

N,

ASSUMPTION 2
For any B C A, B = B; U Bs, it holds:

Dg(palloa) < f(opa) (Dp, (palloa) + De,(palloa)) -

In particular, tensor products satisfy this (with f = 1).




GEOMETRIC RECURSIVE ARGUMENT

STEP 3 J

Using locality of the Lindbladian
Ly +Ls =Laus + Lans

and quasi-factorization:

Assumption 1 = a(£}) > K {nlun {aa(L%,),an(LE,)}
S )



GEOMETRIC RECURSIVE ARGUMENT

STEP 3 J

Using locality of the Lindbladian
Ly +Ls =Laus + Lans

and quasi-factorization:

Assumption 1 = a(£}) > K {nlun {aa(L%,),an(LE,)}
S )

Recursion appears in a possible extension to larger dimension.



SKETCH OF THE PROOF

STEP 4 J

Assumption 2 = aa(L%,) > g(oa,0) > 0.
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In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.




11CS IN 1D

THEOREM, Bardet-C.-Lucia-Pérez Garcia-Rouzé '19

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

Previous results:

o Kastoryano-Brandao ’15. In 1D, for a k-local commuting
Hamiltonian, the heat-bath dynamics is always gapped.
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OPEN PROBLEMS

PROBLEM 1

Does this hold for larger dimension?

PROBLEM 2

Is there a better definition for conditional relative entropy?

PROBLEM 3

Can we do something similar for different dynamics?
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