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Introduction

HAB = HA ⊗HB (or HABC = HA ⊗HB ⊗HC).

BΛ := B(HΛ), set of bounded linear operators.

AΛ ⊆ BΛ, set of Hermitian operators.

SΛ := {f ∈ AΛ : f ≥ 0 and tr[f ] = 1}.
f ∈ BΛ has support on A ⊆ Λ if f = fA ⊗ 1B for certain
fA ∈ BA.

Modified partial trace: trA : f 7→ trA[f ]⊗ 1A, where trA[f ]
has support in B.

We denote by fB the observable trA[f ] with support in B.
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Relative entropy

Quantum relative entropy

Let f, g ∈ AΛ, f verifying tr[f ] 6= 0. The quantum relative
entropy of f and g is defined by:

D(f ||g) =
1

tr[f ]
tr [f(log f − log g)] . (1)

Remark

In this talk, we only consider density matrices (with trace 1). In
this case, the quantum relative entropy is given by:

D(ρ||σ) = tr [ρ(log ρ− log σ)] . (2)
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Relative entropy

Properties of the relative entropy

Let HAB be a bipartite finite dimensional Hilbert space,
HAB = HA ⊗HB. Let ρAB, σAB ∈ SAB. The following properties
hold:

1 Non-negativity. D(ρAB||σAB) ≥ 0 and
D(ρAB||σAB) = 0⇔ ρAB = σAB.

2 Finiteness. D(ρAB||σAB) <∞ if, and only if,
supp(ρAB) ⊆ supp(σAB), where supp stands for support.

3 Monotonicity. D(ρAB||σAB) ≥ D(T (ρAB)||T (σAB)) for
every quantum channel T .

4 Factorization.
D(ρA ⊗ ρB||σA ⊗ σB) = D(ρA||σA) +D(ρB||σB).

5 Joint convexity.
D(ρAB||σAB) ≤ p1D(ρ1

AB||σ1
AB) + p2D(ρ2

AB||σ2
AB) if

ρAB = p1 ρ
1
AB + p2 ρ

2
AB and σAB = p1 σ

1
AB + p2 σ

2
AB.
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Relative entropy

Problem

Let HAB = HA ⊗HB and ρAB, σAB ∈ SAB. Can we prove
something like

D(ρAB||σAB) ≤ C [DA(ρAB||σAB) +DB(ρAB||σAB)] ?

Yes! (We will see how later)
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Classical case

Classical entropy and conditional entropy

Consider a probability space (Ω,F , µ) and define, for every f > 0,
the entropy of f by

Entµ(f) = µ(f log f)− µ(f) logµ(f).

Given a σ-field G ⊆ F , we define the conditional entropy of f in
G by

Entµ(f | G) = µ(f log f | G)− µ(f | G) logµ(f | G).
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Classical case

With these definitions, the following lemma is proven:

Lemma

Let (Ω,F , µ) be a probability space, and F1,F2 sub-σ-fields of F .
Suppose that there exists a probability measure µ̄ that makes F1

and F2 independent, µ� µ̄ and µ | Fi = µ̄ | Fi for i = 1, 2. Then,
for every f ≥ 0 such that f log f ∈ L1(µ) and µ(f) = 1,

Entµ(f) ≤ 1

1− 4‖h− 1‖∞
µ [Entµ(f | F1) + Entµ(f | F2)],

where h =
dµ

dµ̄
.
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Conditional relative entropy

Conditional relative entropy by differences

Conditional relative entropy by
differences

DD
A (ρ||σ) =

tr[trA[ρ(log ρ− log σ)]− trA[ρ](log trA[ρ]− log trA[σ])],

Conditional relative entropy by differences

Let HAB = HA ⊗HB and let ρAB, σAB ∈ SAB. We define the
conditional relative entropy by differences of ρAB and σAB in
A by:

DD
A (ρAB||σAB) = D(ρAB||σAB)−D(ρB||σB).
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Conditional relative entropy

Conditional relative entropy by differences

Properties

Let HAB = HA ⊗HB. The following properties hold:

1 DD
A (ρAB||σAB) ≥ 0 for every ρAB, σAB ∈ SAB.

2 If ρAB = σAB, then DD
A (ρAB||σAB) = 0.
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Conditional relative entropy

Conditional relative entropy by expectations

Conditional expectation

Conditional expectation

Let A and B be two matrix algebras, and σ a full rank state on
A⊗ B. A map E : A⊗ B → B will be called a conditional
expectation of σ on B if it satisfies the following:

1 Complete positivity. E is completely positive and unital.

2 Consistency. For every f ∈ A⊗ B, tr[σE(f)] = tr[σf ].

3 Reversibility. For every f, g ∈ A⊗B, 〈E(f), g〉σ = 〈f,E(g)〉σ.

4 Monotonicity. For every f ∈ A⊗ B and n ∈ N,
〈En(f), f〉σ ≥ 〈En+1(f), f〉σ.
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Conditional relative entropy

Conditional relative entropy by expectations

Remark

1 E∗(σ) = σ, where the dual is taken with respect to the
Hilber-Schimdt scalar product.

2 E is self-adjoint in L2(σ).
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Conditional relative entropy

Conditional relative entropy by expectations

Minimal conditional expectation

We define the minimal conditional expectation of σ on A by

EσA(ρAB) := trA[ησA ρAB η
σ†
A ], (3)

where ησA := (trA[σAB])−1/2σ
1/2
AB.

(EσA)∗ (hereafter denoted by E∗A) is given by

E∗A(ρAB) := σ
1/2
AB σ

−1/2
B ρB σ

−1/2
B σ

1/2
AB. (4)
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Conditional relative entropy

Conditional relative entropy by expectations

Conditional relative entropy by
expectations

Conditional relative entropy by expectations

Let HAB = HA ⊗HB be a composite Hilbert space and
ρAB, σAB ∈ SAB. Let E be a conditional expectation. We define
the conditional relative entropy by expectations of ρAB and
σAB in A by:

DE
A(ρAB||σAB) = D(ρAB||E∗A(ρAB)).

Properties

Let HAB = HA ⊗HB be a composite Hilbert space. The following
properties hold:

1 DE
A(ρAB||σAB) ≥ 0 for every ρAB, σAB ∈ SAB.

2 If ρAB = σAB, then DE
A(ρAB||σAB) = 0.
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Conditional relative entropy

Conditional relative entropy by expectations

Problem

Under which conditions holds

DD
A (ρ||σ) = DE

A(ρ||σ)?

Example

Let H = HA ⊗HB. If σ = σA ⊗ σB, then

DD
A (ρ||σ) = DE

A(ρ||σ)

for every ρ ∈ SΛ, A ⊆ Λ.

In general, it is an open question.
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Quasi-factorization

Quasi-factorization results
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Quasi-factorization

Conditional relative entropy by differences

Conditional relative entropy by
differences

Figura: The set of indices of a tripartite Hilbert space
HABC = HA ⊗HB ⊗HC .
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Quasi-factorization

Conditional relative entropy by differences

Quasi-factorization

Let HABC = HA ⊗HB ⊗HC be a tripartite Hilbert space and
ρABC , σABC ∈ SABC . Then, the following inequality holds

(1− 2‖h‖∞)D(ρABC ||σABC) ≤
≤ DD

AB(ρABC ||σABC) +DD
BC(ρABC ||σABC),

where

h =
1

2

{
σ−1
A ⊗ σ

−1
C , σAC

}
− 1AC .

Note that h = 0 if σ is a tensor product between A and C.
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Quasi-factorization

Conditional relative entropy by expectations

Quasi-factorization for conditional expectations

Let HABC = HA ⊗HB ⊗HC be a tripartite Hilbert space and
ρABC , σABC ∈ SABC . Then, the following inequality holds

(1− 2‖h‖∞)D(ρABC ||σABC) ≤
≤ DE

AB(ρABC ||σABC) +DE
BC(ρABC ||σABC),

where

h = σ
−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC ,

and E is the minimal conditional expectation. Note that h = 0 if σ
is a tensor product between A and C.
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Quasi-factorization

Conditional relative entropy by expectations

Step 1

For density matrices ρABC , σABC ∈ SABC , it holds that

D(ρABC ||σABC) ≤
≤ DE

AB(ρABC ||σABC) +DE
BC(ρABC ||σABC) + log trM,

where M = exp [− log σABC + logE∗AB(ρABC) + logE∗BC(ρABC)]
and equality holds (both sides being equal to zero) if
ρABC = σABC .
Moreover, if B is an empty set and σAC = σA ⊗ σC , then
log trM = 0.



Quasi-factorization of the quantum relative entropy

Quasi-factorization

Conditional relative entropy by expectations

Step 2

With the same notation of step 1, we have that

log trM ≤ tr(h ρA ⊗ ρC), (5)

where

h = σ
−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC .

Step 3

With the same notation of the previous steps,

tr[h ρA ⊗ ρC ] ≤ 2‖h‖∞D(ρABC ||σABC). (6)
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Motivation

Figura: A quantum spin lattice system.

Lattice Λ ⊆ Zd.

For every site x, Hx (= Cd).

The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.
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Motivation

Rapid mixing

Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous
semigroup {Tt}t≥0 of completely positive, trace preserving (CPTP)
maps (a.k.a. quantum channels) in BΛ.

Positive: Maps positive operators to positive operators.

Completely positive: T ⊗ 1 : BΛ ⊗Mn → BΛ ⊗Mn is
positive ∀n ∈ N.

Trace preserving: tr[T (f)] = tr[f ] ∀f ∈ BΛ.
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Motivation

Liouvillian

The infinitesimal generator L of a semigroup of quantum channels
is called Liouvillian.

Tt = etL ⇔ L =
d

dt
Tt |t=0

Contraction

We define the contraction of Tt by

η(Tt) =
1

2
sup
ρ∈SΛ

‖Tt(ρ)− T∞(ρ)‖1.

Rapid mixing

We say that L satisfies rapid mixing if

η(Tt) ≤ poly(|Λ|)e−γt.
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Motivation

Log-Sobolev inequality

Let σ be the stationary state of a semigroup generated by the
quantum dynamical master equation

∂tρt = L∗(ρt), (7)

where L is the Liouvillian in the Heisenberg picture.

We define the relative entropy of ρt and σ by:

D(ρt||σ) = tr[ρt(log ρt − log σ)]. (8)

Therefore, since ρt evolves according to L∗, the derivate of
D(ρt||σ) is given by

∂tD(ρt||σ) = tr[L∗(ρt)(log ρt − log σ)], (9)

and we want to find a lower bound for the derivative of D(ρt||σ) in
terms of itself:

2αD(ρt||σ) ≤ − tr[L∗(ρt)(log ρt − log σ)]. (10)
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Motivation

Log-Sobolev inequality

Let L : BΛ → BΛ be a primitive reversible Liouvillian with
stationary state σ. We define the log-Sobolev constant of L by

SΛ(L) := inf
ρ∈SΛ

− tr[L∗(ρ)(log ρ− log σ)]

2D(ρ||σ)

Result

If SΛ(L) > 0,

‖ρt − σ‖1 ≤
√

2 log(1/σmin)e−SΛ(L)t.

Log-Sobolev inequality ⇒ Rapid mixing.



Quasi-factorization of the quantum relative entropy

Motivation

Figura: A quantum spin lattice system Λ and A,B ⊆ Λ such that
A ∪B = Λ.
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Motivation

Quasi-factorization for lattices

Let Λ be a finite subset of Zd and let A,B ⊆ Λ so that A∪B = Λ
but they are not necessarily disjoint. Let ρ, σ ∈ SΛ. Then, the
following inequality holds

(1− 2‖hX‖∞)D(ρ||σ) ≤ DX
A (ρ||σ) +DX

B (ρ||σ), (11)

where DX
A (ρ||σ) = DD

A (ρ||σ) or DE
A(ρ||σ) and the same for B,

and

I For DX
A (ρ||σ) = DD

A (ρ||σ),

hX = 1
2

{
σ−1
Ac ⊗ σ−1

Bc , σAc∪Bc

}
− 1Ac∪Bc .

I For DX
A (ρ||σ) = DE

A(ρ||σ),

hX = σ
−1/2
Ac ⊗ σ−1/2

Bc σAc∪Bc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1Ac∪Bc

Note that h = 0 if A ∩B = ∅ and σ is a product.
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Motivation

Log-Sobolev inequality

Since

(1− 2‖h‖∞)D(ρ||σ) ≤ DD
A (ρ||σ) +DD

B (ρ||σ),

defining a conditional log-Sobolev constant in A and B, SΛ(LA)
and SΛ(LB), we have

SΛ(L) ≥ C min
1≤i≤n

{SΛ(Ai), SΛ(Bi)}.
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Motivation

For further knowledge,

soon on Arxiv.
(we hope so!)
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