ÁNGELA CAPEL CUEVAS

Mathematics and Quantum Information Seminar at UCM

Joint work with Angelo Lucia and David Pérez-García

5 April 2017

TABLE OF CONTENTS

Relative entropy

3 CLASSICAL CASE

Conditional relative entropy

• Conditional relative entropy by differences

• Conditional relative entropy by expectations

5 QUASI-FACTORIZATION

- Conditional relative entropy by differences
- Conditional relative entropy by expectations

6 MOTIVATION

INTRODUCTION

- $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ (or $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$).
- $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda})$, set of bounded linear operators.
- $\mathcal{A}_{\Lambda} \subseteq \mathcal{B}_{\Lambda}$, set of Hermitian operators.
- $\mathcal{S}_{\Lambda} := \{ f \in \mathcal{A}_{\Lambda} : f \ge 0 \text{ and } tr[f] = 1 \}.$
- $f \in \mathcal{B}_{\Lambda}$ has support on $A \subseteq \Lambda$ if $f = f_A \otimes \mathbb{1}_B$ for certain $f_A \in \mathcal{B}_A$.
- Modified partial trace: $\operatorname{tr}_A : f \mapsto \operatorname{tr}_A[f] \otimes \mathbb{1}_A$, where $\operatorname{tr}_A[f]$ has support in B.
- We denote by f_B the observable $tr_A[f]$ with support in B.

Relative entropy

QUANTUM RELATIVE ENTROPY

Let $f, g \in A_{\Lambda}$, f verifying $tr[f] \neq 0$. The **quantum relative** entropy of f and g is defined by:

$$D(f||g) = \frac{1}{\operatorname{tr}[f]} \operatorname{tr}\left[f(\log f - \log g)\right].$$
(1)

Remark

In this talk, we only consider density matrices (with trace 1). In this case, the **quantum relative entropy** is given by:

$$D(\rho||\sigma) = \operatorname{tr}\left[\rho(\log \rho - \log \sigma)\right].$$
 (2)

Relative entropy

PROPERTIES OF THE RELATIVE ENTROPY

Let \mathcal{H}_{AB} be a bipartite finite dimensional Hilbert space, $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. Let $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- Non-negativity. $D(\rho_{AB}||\sigma_{AB}) \ge 0$ and $D(\rho_{AB}||\sigma_{AB}) = 0 \Leftrightarrow \rho_{AB} = \sigma_{AB}$.
- Piniteness. D(ρ_{AB}||σ_{AB}) < ∞ if, and only if, supp(ρ_{AB}) ⊆ supp(σ_{AB}), where supp stands for support.
- Solution Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.
- Factorization.

 $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$

O Joint convexity.

$$\begin{split} D(\rho_{AB}||\sigma_{AB}) &\leq p_1 D(\rho_{AB}^1||\sigma_{AB}^1) + p_2 D(\rho_{AB}^2||\sigma_{AB}^2) \text{ if } \\ \rho_{AB} &= p_1 \, \rho_{AB}^1 + p_2 \, \rho_{AB}^2 \text{ and } \sigma_{AB} = p_1 \, \sigma_{AB}^1 + p_2 \, \sigma_{AB}^2. \end{split}$$

Relative entropy

Problem

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in S_{AB}$. Can we prove something like

 $D(\rho_{AB}||\sigma_{AB}) \leq C \left[D_A(\rho_{AB}||\sigma_{AB}) + D_B(\rho_{AB}||\sigma_{AB}) \right]$?

Yes! (We will see how later)

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Consider a probability space $(\Omega, \mathcal{F}, \mu)$ and define, for every f > 0, the **entropy** of f by

$$\mathsf{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Given a $\sigma\text{-field}\ \mathcal{G}\subseteq\mathcal{F},$ we define the **conditional entropy** of f in \mathcal{G} by

$$\mathsf{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

CLASSICAL CASE

With these definitions, the following lemma is proven:

LEMMA

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space, and $\mathcal{F}_1, \mathcal{F}_2$ sub- σ -fields of \mathcal{F} . Suppose that there exists a probability measure $\bar{\mu}$ that makes \mathcal{F}_1 and \mathcal{F}_2 independent, $\mu \ll \bar{\mu}$ and $\mu \mid \mathcal{F}_i = \bar{\mu} \mid \mathcal{F}_i$ for i = 1, 2. Then, for every $f \ge 0$ such that $f \log f \in L^1(\mu)$ and $\mu(f) = 1$,

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right]$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY DIFFERENCES

CONDITIONAL RELATIVE ENTROPY BY DIFFERENCES

$$D_A^D(\rho||\sigma) = \operatorname{tr}[\operatorname{tr}_A[\rho(\log \rho - \log \sigma)] - \operatorname{tr}_A[\rho](\log \operatorname{tr}_A[\rho] - \log \operatorname{tr}_A[\sigma])]$$

CONDITIONAL RELATIVE ENTROPY BY DIFFERENCES

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and let $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. We define the **conditional relative entropy by differences** of ρ_{AB} and σ_{AB} in A by:

$$D_A^D(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B).$$

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY DIFFERENCES

PROPERTIES

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. The following properties hold:

• $D_A^D(\rho_{AB}||\sigma_{AB}) \ge 0$ for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$.

2 If $\rho_{AB} = \sigma_{AB}$, then $D_A^D(\rho_{AB} || \sigma_{AB}) = 0$.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

CONDITIONAL EXPECTATION

CONDITIONAL EXPECTATION

Let \mathcal{A} and \mathcal{B} be two matrix algebras, and σ a full rank state on $\mathcal{A} \otimes \mathcal{B}$. A map $\mathbb{E} : \mathcal{A} \otimes \mathcal{B} \to \mathcal{B}$ will be called a **conditional** expectation of σ on \mathcal{B} if it satisfies the following:

- **O** Complete positivity. \mathbb{E} is completely positive and unital.
- **2** Consistency. For every $f \in \mathcal{A} \otimes \mathcal{B}$, $tr[\sigma \mathbb{E}(f)] = tr[\sigma f]$.
- **3** Reversibility. For every $f, g \in \mathcal{A} \otimes \mathcal{B}$, $\langle \mathbb{E}(f), g \rangle_{\sigma} = \langle f, \mathbb{E}(g) \rangle_{\sigma}$.

OMONOTORICITY. For every $f \in \mathcal{A} \otimes \mathcal{B}$ and $n \in \mathbb{N}$, $\langle \mathbb{E}^n(f), f \rangle_{\sigma} \geq \langle \mathbb{E}^{n+1}(f), f \rangle_{\sigma}$.

Conditional relative entropy

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Remark

■ ℝ*(σ) = σ, where the dual is taken with respect to the Hilber-Schimdt scalar product.

2 \mathbb{E} is self-adjoint in $L_2(\sigma)$.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

MINIMAL CONDITIONAL EXPECTATION

We define the **minimal conditional expectation** of σ on A by

$$\mathbb{E}_{A}^{\sigma}(\rho_{AB}) := \operatorname{tr}_{A}[\eta_{A}^{\sigma}\rho_{AB}\,\eta_{A}^{\sigma\dagger}],\tag{3}$$

where $\eta_A^{\sigma} := (\operatorname{tr}_A[\sigma_{AB}])^{-1/2} \sigma_{AB}^{1/2}$.

$$(\mathbb{E}_{A}^{\sigma})^{*} \text{ (hereafter denoted by } \mathbb{E}_{A}^{*}\text{) is given by}$$
$$\mathbb{E}_{A}^{*}(\rho_{AB}) := \sigma_{AB}^{1/2} \sigma_{B}^{-1/2} \rho_{B} \sigma_{B}^{-1/2} \sigma_{AB}^{1/2}. \tag{4}$$

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Conditional relative entropy by EXPECTATIONS

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ be a composite Hilbert space and $\rho_{AB}, \sigma_{AB} \in S_{AB}$. Let \mathbb{E} be a conditional expectation. We define the **conditional relative entropy by expectations** of ρ_{AB} and σ_{AB} in A by:

$$D_A^E(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\mathbb{E}_A^*(\rho_{AB})).$$

PROPERTIES

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ be a composite Hilbert space. The following properties hold:

- $D_A^E(\rho_{AB}||\sigma_{AB}) \ge 0 \text{ for every } \rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}.$
- 2 If $\rho_{AB} = \sigma_{AB}$, then $D_A^E(\rho_{AB} || \sigma_{AB}) = 0$.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Problem

Under which conditions holds

$$D_A^D(\rho||\sigma) = D_A^E(\rho||\sigma)?$$

EXAMPLE

Let
$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$
. If $\sigma = \sigma_A \otimes \sigma_B$, then

$$D_A^D(\rho||\sigma) = D_A^E(\rho||\sigma)$$

for every $\rho \in \mathcal{S}_{\Lambda}, A \subseteq \Lambda$.

In general, it is an open question.

QUASI-FACTORIZATION

QUASI-FACTORIZATION RESULTS

QUASI-FACTORIZATION

CONDITIONAL RELATIVE ENTROPY BY DIFFERENCES

Conditional relative entropy by DIFFERENCES

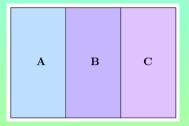


Figura: The set of indices of a tripartite Hilbert space $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C.$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - ∽へ⊙

CONDITIONAL RELATIVE ENTROPY BY DIFFERENCES

QUASI-FACTORIZATION

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ be a tripartite Hilbert space and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$(1 - 2||h||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq \leq D_{AB}^{D}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}^{D}(\rho_{ABC}||\sigma_{ABC}),$$

where

$$h = \frac{1}{2} \left\{ \sigma_A^{-1} \otimes \sigma_C^{-1}, \sigma_{AC} \right\} - \mathbb{1}_{AC}.$$

Note that h = 0 if σ is a tensor product between A and C.

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

QUASI-FACTORIZATION FOR CONDITIONAL EXPECTATIONS

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ be a tripartite Hilbert space and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$(1 - 2||h||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \le \le D^{E}_{AB}(\rho_{ABC}||\sigma_{ABC}) + D^{E}_{BC}(\rho_{ABC}||\sigma_{ABC}),$$

where

$$h = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC},$$

and \mathbb{E} is the minimal conditional expectation. Note that h = 0 if σ is a tensor product between A and C.

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Step 1

For density matrices ρ_{ABC} , $\sigma_{ABC} \in S_{ABC}$, it holds that

$$\begin{split} D(\rho_{ABC}||\sigma_{ABC}) &\leq \\ &\leq D^E_{AB}(\rho_{ABC}||\sigma_{ABC}) + D^E_{BC}(\rho_{ABC}||\sigma_{ABC}) + \log \operatorname{tr} M, \\ \text{where } M &= \exp\left[-\log \sigma_{ABC} + \log \mathbb{E}^*_{AB}(\rho_{ABC}) + \log \mathbb{E}^*_{BC}(\rho_{ABC})\right] \\ \text{and equality holds (both sides being equal to zero) if} \\ \rho_{ABC} &= \sigma_{ABC}. \\ \text{Moreover, if } B \text{ is an empty set and } \sigma_{AC} &= \sigma_A \otimes \sigma_C, \text{ then} \end{split}$$

 $\log \operatorname{tr} M = 0.$

CONDITIONAL RELATIVE ENTROPY BY EXPECTATIONS

Step 2

With the same notation of step 1, we have that

$$\log \operatorname{tr} M \le \operatorname{tr}(h \,\rho_A \otimes \rho_C),\tag{5}$$

where

$$h = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Step 3

With the same notation of the previous steps,

$$\operatorname{tr}[h\,\rho_A \otimes \rho_C] \le 2\|h\|_{\infty} D(\rho_{ABC} || \sigma_{ABC}). \tag{6}$$

MOTIVATION

MOTIVATION

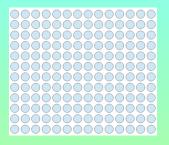


Figura: A quantum spin lattice system.

- Lattice $\Lambda \subseteq \mathbb{Z}^d$.
- For every site x, \mathcal{H}_x (= \mathbb{C}^d).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.

RAPID MIXING

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{B}_{Λ} .

- Positive: Maps positive operators to positive operators.
- **Completely positive:** $\mathcal{T} \otimes \mathbb{1} : \mathcal{B}_{\Lambda} \otimes \mathcal{M}_n \to \mathcal{B}_{\Lambda} \otimes \mathcal{M}_n$ is positive $\forall n \in \mathbb{N}$.

• Trace preserving: $\operatorname{tr}[\mathcal{T}(f)] = \operatorname{tr}[f] \ \forall f \in \mathcal{B}_{\Lambda}$.

LIOUVILLIAN

The infinitesimal generator \mathcal{L} of a semigroup of quantum channels is called **Liouvillian**.

$$\mathcal{T}_t = e^{t\mathcal{L}} \Leftrightarrow \mathcal{L} = \frac{d}{dt} \mathcal{T}_t \mid_{t=0}$$

CONTRACTION

We define the **contraction** of \mathcal{T}_t by

$$\eta(\mathcal{T}_t) = \frac{1}{2} \sup_{\rho \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_t(\rho) - \mathcal{T}_{\infty}(\rho)\|_1.$$

RAPID MIXING

We say that \mathcal{L} satisfies rapid mixing if

 $\eta(\mathcal{T}_t) \leq \mathsf{poly}(|\Lambda|)e^{-\gamma t}.$

LOG-SOBOLEV INEQUALITY

Let σ be the stationary state of a semigroup generated by the quantum dynamical master equation

$$\partial_t \rho_t = \mathcal{L}^*(\rho_t),\tag{7}$$

where \mathcal{L} is the Liouvillian in the Heisenberg picture.

We define the relative entropy of ρ_t and σ by:

$$D(\rho_t || \sigma) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma)].$$
(8)

Therefore, since ρ_t evolves according to \mathcal{L}^* , the derivate of $D(\rho_t || \sigma)$ is given by

$$\partial_t D(\rho_t || \sigma) = \operatorname{tr}[\mathcal{L}^*(\rho_t)(\log \rho_t - \log \sigma)], \tag{9}$$

and we want to find a lower bound for the derivative of $D(\rho_t || \sigma)$ in terms of itself:

$$2\alpha D(\rho_t || \sigma) \le -\operatorname{tr}[\mathcal{L}^*(\rho_t)(\log \rho_t - \log \sigma)]. \tag{10}$$

LOG-SOBOLEV INEQUALITY

Let $\mathcal{L} : \mathcal{B}_{\Lambda} \to \mathcal{B}_{\Lambda}$ be a primitive reversible Liouvillian with stationary state σ . We define the log-Sobolev constant of \mathcal{L} by

$$S_{\Lambda}(\mathcal{L}) := \inf_{
ho \in \mathcal{S}_{\Lambda}} rac{-\operatorname{tr}[\mathcal{L}^*(
ho)(\log
ho - \log \sigma)]}{2D(
ho||\sigma)}$$

Result

If $S_{\Lambda}(\mathcal{L}) > 0$,

$$\|\rho_t - \sigma\|_1 \le \sqrt{2\log(1/\sigma_{\min})}e^{-S_{\Lambda}(\mathcal{L})t}$$

Log-Sobolev inequality \Rightarrow Rapid mixing.

・ロ> ・目> ・目> ・目> ・<
 ・

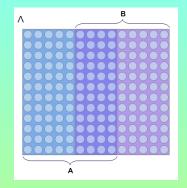


Figura: A quantum spin lattice system Λ and $A,B\subseteq\Lambda$ such that $A\cup B=\Lambda.$

QUASI-FACTORIZATION FOR LATTICES

Let Λ be a finite subset of \mathbb{Z}^d and let $A, B \subseteq \Lambda$ so that $A \cup B = \Lambda$ but they are not necessarily disjoint. Let $\rho, \sigma \in S_{\Lambda}$. Then, the following inequality holds

$$(1 - 2||h_X||_{\infty})D(\rho||\sigma) \le D_A^X(\rho||\sigma) + D_B^X(\rho||\sigma),$$
(11)

where $D^X_A(\rho||\sigma)=D^D_A(\rho||\sigma)$ or $D^E_A(\rho||\sigma)$ and the same for B, and

► For
$$D_A^X(\rho||\sigma) = D_A^D(\rho||\sigma)$$
,
 $h_X = \frac{1}{2} \{\sigma_{A^c}^{-1} \otimes \sigma_{B^c}^{-1}, \sigma_{A^c \cup B^c}\} - \mathbb{1}_{A^c \cup B^c}$.
► For $D_A^X(\rho||\sigma) = D_A^E(\rho||\sigma)$,
 $h_X = \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^c \cup B^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^c \cup B^c}$
lote that $h = 0$ if $A \cap B = \emptyset$ and σ is a product.

LOG-SOBOLEV INEQUALITY

Since

$$(1-2\|h\|_{\infty})D(\rho||\sigma) \leq D^D_A(\rho||\sigma) + D^D_B(\rho||\sigma),$$

defining a conditional log-Sobolev constant in A and B, $S_{\Lambda}(\mathcal{L}_A)$ and $S_{\Lambda}(\mathcal{L}_B)$, we have

$$S_{\Lambda}(\mathcal{L}) \ge C \min_{1 \le i \le n} \{ S_{\Lambda}(A_i), S_{\Lambda}(B_i) \}.$$

For further knowledge, soon on Arxiv. (we hope so!)

