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Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Field of study
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Main topic of this talk

Field of study

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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Open quantum systems

No experiment can be executed at zero temperature or
be completely shielded from noise.

⇒ Open quantum many-body systems.

Figure: An open quantum many-body system.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Open quantum systems

No experiment can be executed at zero temperature or
be completely shielded from noise.

⇒ Open quantum many-body systems.

Figure: An open quantum many-body system.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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Postulates of quantum mechanics

Postulate 1

Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector,
which is a unitary vector in the state space.

Postulate 2

Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space.
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Notation

Figure: A quantum spin lattice system.

Finite lattice Λ ⊂⊂ Zd.
To every site x ∈ Λ we associate Hx (= CD).

The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.

The set of bounded linear endomorphisms on HΛ is denoted by
BΛ := B(HΛ).

The set of density matrices is denoted by
SΛ := S(HΛ) = {ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.

Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel (CPTP map)
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Open systems

Open systems ⇒ Environment and system interact.

Figure: Environment + System form a closed system.

State for the environment: |ψ〉 〈ψ|E
ρ 7→ ρ⊗ |ψ〉 〈ψ|E 7→ U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗ 7→ trE [U

(
ρ⊗ |ψ〉 〈ψ|E

)
U∗] = ρ̃

T : S(H) → S(H)
ρ 7→ ρ̃

quantum channel
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Markovian approximation

Continuous-time description: For every t ≥ 0, the
corresponding time slice is a realizable evolution Tt (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

⇒Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

Markovian approximation
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Dissipative quantum systems

Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup
{T ∗t }t≥0 of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.
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Dissipative quantum systems

Primitive QMS

We assume that {T ∗t }t≥0 has a unique full-rank invariant state, which we
denote by σ.

Reversibility

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

〈f,L(g)〉σ = 〈L(f), g〉σ
for every f, g ∈ A, in the Heisenberg picture.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Quantum dissipative evolutions useful?

Main objective:

One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative
evolutions.
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Quantum dissipative evolutions useful?

Recent change of perspective ⇒ Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:

Computational power

Conditions against noise

Time to obtain certain states

...
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Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Quantum dissipative systems
Logarithmic Sobolev inequalities

Mixing time

Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε
}

.
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Rapid mixing

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

Problem

Find examples of rapid mixing!
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1.2 Logarithmic Sobolev inequalities
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Quantum spin systems
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Log-Sobolev inequality (MLSI)

Recall: ρt := T ∗t (ρ).

Liouville’s equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:

∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Log-Sobolev constant

The log-Sobolev constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

Log-Sobolev constant ⇒ Rapid mixing.

Problem

Find positive log-Sobolev constants!
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First main objective of this project

Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.

Second main objective of this project

Apply that strategy to certain dissipative dynamics.
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Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Strategy
Quasi-factorization of the relative entropy
Log-Sobolev constants

Classical spin systems

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev

constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

⇓

Positive log-Sobolev constant.
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Objective

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?
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Objective

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .
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Conditional log-Sobolev constant

Log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ. We define the log-Sobolev constant of L∗Λ by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional log-Sobolev constant

Let L∗Λ : SΛ → SΛ be a primitive reversible Lindbladian with stationary
state σΛ, A ⊆ Λ. We define the conditional log-Sobolev constant of L∗Λ
on A by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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2.2 Part 2: Quasi-factorization of the relative
entropy
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Statement of the problem

Problem

Let HABC = HA ⊗HB ⊗HC and ρABC , σABC ∈ SABC . Can we prove
something like

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ?

Quantum relative entropy

D(ρ||σ) = tr [ρ(log ρ− log σ)]
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Problem

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)]

Classical case, Dai Pra et al. ’02

Entµ(f) ≤ 1

1− 4‖h− 1‖∞
µ [Entµ(f | F1) + Entµ(f | F2)],

where h =
dµ

dµ̄
.

Classical entropy and conditional entropy

Entropy:

Entµ(f) = µ(f log f)− µ(f) logµ(f).

Conditional entropy:

Entµ(f | G) = µ(f log f | G)− µ(f | G) log µ(f | G).
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Figure: Choice of indices in HABC = HA ⊗HB ⊗HC .

Result of quasi-factorization of the relative entropy, for every
ρABC , σABC ∈ SABC :

D(ρABC ||σABC) ≤ ξ(σABC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where ξ(σABC) depends only on σABC and measures how far σAC is from
σA ⊗ σC .

Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.



Introduction and motivation
Results

Strategy
Quasi-factorization of the relative entropy
Log-Sobolev constants

Conditional Relative Entropy (C.-Lucia-Pérez Garćıa ’18)

The conditional relative entropy is given by:

DA(ρAB ||σAB) = D(ρAB ||σAB)−D(ρB ||σB)

for every ρAB , σAB ∈ SAB .

Quasi-factorization for the CRE (C.-Lucia-Pérez Garćıa ’18)

Let HABC = HA ⊗HB ⊗HC and ρABC , σABC ∈ SABC . Then, the following
inequality holds

D(ρABC ||σABC) ≤
1

1− 2‖H(σAC)‖∞
[DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

H(σAC) = σ
−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC .

Note that H(σAC) = 0 if σAC is a tensor product between A and C.
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2.3 Part 3: Log-Sobolev constants
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Quantum spin lattices

Figure: A quantum spin lattice system Λ and A,B ⊆ Λ such that A ∪B = Λ.

Problem

For a certain L∗Λ, can we prove α(L∗Λ) > 0 using the result of
quasi-factorization of the relative entropy?
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Heat-bath with tensor product fixed point

Theorem

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x

Since

E∗x(ρΛ) = σ
1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have

L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ).
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Heat-bath with tensor product fixed point

Assumption

σΛ =
⊗
x∈Λ

σx.
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Heat-bath with tensor product fixed point

Conditional log-Sobolev constant

For x ∈ Λ, we define the conditional log-Sobolev constant of L∗Λ in x by

αΛ(L∗x) := inf
ρΛ∈SΛ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2Dx(ρΛ||σΛ)
,

where σΛ is the fixed point of the evolution, and Dx(ρΛ||σΛ) is the
conditional relative entropy.
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Heat-bath with tensor product fixed point

General quasi-factorization for σ a tensor product

Let HΛ =
⊗
x∈Λ

Hx and ρΛ, σΛ ∈ SΛ such that σΛ =
⊗
x∈Λ

σx. The following

inequality holds:

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ).
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Heat-bath with tensor product fixed point

Lemma (Positivity of the conditional log-Sobolev constant)

αΛ(L∗x) ≥ 1

2
.
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Heat-bath with tensor product fixed point

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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Heat-bath with tensor product fixed point

Positive log-Sobolev constant

α(L∗Λ) ≥ 1

2
.
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Conclusions

In this talk, we have:

Introduced some notions on quantum dissipative evolutions and
logarithmic Sobolev inequalities.

Presented a strategy to prove positivity for logarithmic Sobolev
inequalities.

Applied that strategy to a particular setting.
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Ángela Capel (Technische Universität München) Functional Inequalities for Quantum Many-Body Syst.


	Introduction and motivation
	Quantum dissipative systems
	Logarithmic Sobolev inequalities

	Results
	Strategy
	Quasi-factorization of the relative entropy
	Log-Sobolev constants


