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INTRODUCTION AND MOTIVATION

MAIN TOPIC OF THIS TALK

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

Figure: An open quantum many-body system.
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INTRODUCTION AND MOTIVATION

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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associated to it, which is known as the state space of the system.
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which is a unitary vector in the state space.
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INTRODUCTION AND MOTIVATION

POSTULATES OF QUANTUM MECHANICS

Given an isolated physical system, there is a complex Hilbert space H
associated to it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector,
which is a unitary vector in the state space.

POSTULATE 2

Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space.
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NOTATION

Figure: A quantum spin lattice system.

Finite lattice A cc Z2.

L

o To every site z € A we associate H, (= CP).

o The global Hilbert space associated to A is Ha = @, ) He-

@ The set of bounded linear endomorphisms on Ha is denoted by
Ba = B(Ha).

@ The set of density matrices is denoted by

Sa :=8(Ha) ={pa € Ba : pan > 0 and trps] = 1}.
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INTRODUCTION AND MOTIVATION
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p — UpU* ~» Reversible

Dissipative quantum system (non-reversible evolution)

T:p—T(p)

o States to states = Linear, positive and trace preserving
pRo e SH®H), o with trivial evolution
7. / / R
T: SHOH) —» S(HRH) T —Tel

Teeo) = T oo

o Completely positive.
7 quantum channel (CPTP map)

Functional Inequalities for Quantum Many-Body Syst.

Angela Capel (Technische Universitit Miinchen)



INTRODUCTION AND MOTIVATION ANTUM DIS

OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Angela Capel (T



INTRODUCTION AND MOTIVATION ANTUM DIS

OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

Angela Capel (T i Tni it ione e ities for Quantum M



INTRODUCTION AND MOTIVATION QUANTUM DIS VE SYSTEMS
LOGARITHMIC LEV INEQUALIT

OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: [¢) (Y|
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OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: [¢) (Y|
prrp®[Y) (Ulp = U(p® W) (W) U = tepU (p @ [¥) (W]5) U =5

S(H)

P : ) quantum channel
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MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).
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Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.
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Continuous-time description: For every ¢ > 0, the
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MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.
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INTRODUCTION AND MOTIVATION

MARKOVIAN APPROXIMATION

Continuous-time description: For every ¢ > 0, the
corresponding time slice is a realizable evolution 7; (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present.

Markovian approximation
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DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T},>, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sx.

Semigroup:
o T o T = Tt
o Ty =1.

d * * * * %
%7; =T oLy =LAoT;.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

d

T =eth o L = =&
¢ A=

T |e=o-
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PriMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o.

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

(£, £(9) = (L£(£),9)4
for every f,g € A, in the Heisenberg picture.
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DISSIPATIVE QUANTUM SYSTEMS

PriMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we
denote by o.

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible,
i.e., satisfies the detailed balance condition:

(£, £(9) = (L£(£),9)4
for every f,g € A, in the Heisenberg picture.

Notation: p; := T (p).

pr = po =Ty (pa) = €A (pa) = oa
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main objective:

One problem: Appearance of noise.
Some kinds of noise can be modelled using quantum dissipative
evolutions.
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:
e Computational power
o Conditions against noise
o Time to obtain certain states
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RAPID MIXING

RAPID MIXING

We say that £} satisfies rapid mixing if

sup [|ps — oall; < poly(|A])e™".
PAESA

PA
sz

poly(JA])e™"

TA

PROBLEM

Find examples of rapid mixing!
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TUM SPIN SYSTEMS

Kastoryano-Temme, '13 This

/ Log-Sobolev constant V%-ect
Kastoryano-Temme, '13
Exponential
Spectral gap QT e o decay of correlations
B (py) F aAX Rapid mixing

Cubitt et al, *1% \hmduo et al, '15 B30 onm s

Stability Area law

Cubitt et al, 13 l -

Quantum M



INTRODUCTIC AND MOTIVATION QUANTUM DISSIPATIVE SYSTEMS
LOGARITHMIC SOBOLEV INEQUALITIES

LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Liouville’s equation:
Opr = Ly (pr)-
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Liouville’s equation:
Opr = Ly (pr)-

Relative entropy of p; and oy:

D(pt|lon) = tr[pi(log p; — log oa)].
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Liouville’s equation:
Opr = Ly (pr)-

Relative entropy of p; and oy:

D(pt|lon) = tr[pi(log p; — log oa)].

Differentiating:

0D (ptl|loa) = tr[L) (pe)(log pr —logop)].
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p; := T (p).

Liouville’s equation:
Opr = Ly (pr)-

Relative entropy of p; and oy:
D(ptl|oa) = tr[pi(log py — log on)].
Differentiating:

0D (ptl|loa) = tr[L) (pe)(log pr —logop)].

Lower bound for the derivative of D(p:||oy) in terms of itself:

20D (pylon) < — tr[L3 (pr)(log pr — log o).
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LOG-SOBOLEV CONSTANT

The log-Sobolev constant of L} is defined as:

« .« —tr[LA(pa)(log pa —logoa)]
L) = f
o(£a) = of 2D(pallon)

If a(L}) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
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LOG-SOBOLEV CONSTANT

The log-Sobolev constant of L} is defined as:

« o —tr[Lh(pa)(log pa —logon)]
LY) = f
o(£a) = of 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < /210g(1/0min) e~ * DL,
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The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L)) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:
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LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:

llo: — oall, < v/2D(palloa) e *ER" < \/2Tog(1/amm) e 1),

Log-Sobolev constant = Rapid mixing. )

PROBLEM

Find positive log-Sobolev constants!
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Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.
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INTRODUCTION AND MOTIVATION QUANTUM DISSIPATI E
LOGARITHMIC SOBOLEV INEQUALITIES

FIRST MAIN OBJECTIVE OF THIS PROJECT

Develop a strategy to find positive log Sobolev constants from
static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS PROJECT

Apply that strategy to certain dissipative dynamics.
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(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J
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(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.
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(3) Decay of correlations on the Gibbs measure. J
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RESULTS

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J
I

Positive log-Sobolev constant. )

t Miinchen) Functional Inequalities for Quantum Many-Body Syst.
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OF THE RELATIVE
RESULTS

OBJECTIVE

Can we prove something like

a(LR) =2 V([A]) a(£h) > 07

No, but we can prove

a(LR) = Y([A]) aa(Lh) > 0.

Angela Capel (
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LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

" .o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£h) = il 2D(pallon)
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RESULTS -

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

x o —tr[LA(pa)(log pa —logon)]
L) = f
al£h) = il 2D(pallon)

CONDITIONAL LOG-SOBOLEV CONSTANT

Let £} : SA — Sa be a primitive reversible Lindbladian with stationary
state oa, A C A. We define the conditional log-Sobolev constant of L}
on A by

. o —tr[Lh(pa)(log pa —logoa )]
L) = f
an(£a) = il 9D 4(pallon)
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PROBLEM

Let Hapc = Ha ® He @ He and papc,oasc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(papc|loasc) + Dec(papc|loase)] ?
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ORIZATION OF THE RELATIVE ENTROPY

OBOLEV CONSTA

RESULTS

STATEMENT OF THE PROBLEM

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocaBc € Sapc. Can we prove
something like

D(pasclloasc) < &(oasc) [Dap(papc|loasc) + Dec(papc|loase)] ?

QUANTUM RELATIVE ENTROPY

D(pl|o) = tr [p(log p — log o)]

Angela Capel (Techr e Uni iinche Functional Inequal for Quantum Many-Bod
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PROBLEM

D(pasclloasc) < &(oasc) [Das(pasclloasc) + Dec(papclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,.(f)

where h = d—/_L
dji

p[Enty(f [ F1) + Entu(f | F2),

<
1—4[p =1,
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PROBLEM

D(pasclloasc) < &(oasc) [Das(pasclloasc) + Dec(papclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Bt (/) < Tg =gy AEns(f | F2) 4 Btu(7 | ),

where h = d—'u

dp

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Ent,.(f) = u(flog f) — u(f) log u(f).
Conditional entropy:

Ent,(f|G) =p(flog f|G) — p(f|G)logu(f|G).

Miinchen) Functional Inequalities for Quantum Many-Body



THE RELATIVE ENTROPY

BC

AB
Figure: Choice of indices in Hapc = HA Q Hp @ He-

Result of quasi-factorization of the relative entropy, for every
PABC,TABC € SaBC:

D(pasclloasc) < &(oasc) [Dap(papcl|loasc) + Dec(pasc|loasce)],

where £(0capc) depends only on oapc and measures how far oac is from
oA Roc.

Angela Capel (
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CONDITIONAL RELATIVE ENTROPY (C.-Lucia-Pérez Garcia ’18)

The conditional relative entropy is given by:
Da(paslloas) = D(paslloas) — D(psllos)

for every pap,oaB € SaB.

QUASI-FACTORIZATION FOR THE CRE (C.-Lucia-Pérez Garcia ’18)

Let Hapc = Ha @ Hp ® Heo and papc,ocasc € Sapc. Then, the following
inequality holds

D(paBclloasc) <
1

m [DAB(PABCHUABC) = DBC(pABCHUABC)] s

where

H(oac) = 021/2 ® 051/2 oAC 021/2 ® 051/2 —Lac.

Note that H(cac) =0 if cac is a tensor product between A and C.
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QUANTUM SPIN LATTICES

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.

PROBLEM

For a certain £}, can we prove a(£}) > 0 using the result of
quasi-factorization of the relative entropy?

lities for Quantum N
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RESULTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.
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RESULTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

The heat-bath dynamics, with tensor product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Ly =E; —1a, L= L]
zEA
Since
Ez(pa) = 011\/20 e Paxe 0701/2 VP = =0z @ pPae

for every pa € Sa, we have
Li(pa) = (02 @ pae — pa)-

zeEA
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RESULTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

CONDITIONAL LOG-SOBOLEV CONSTANT

For z € A, we define the conditional log-Sobolev constant of £} in x by

. . —tr[L5(pa)(log pa — logon)]
inf
PAESA 2D (palloa)

an(Ly) =

)

where o, is the fixed point of the evolution, and D, (pal|loa) is the
conditional relative entropy.
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GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Ha = @ H. and pa,on € Sa such that oa = ®az‘ The following
rEA zEA

inequality holds:
D(palloa) < Da(palloa).

xzEA
D(palloa) Dy, ;(palloa)
‘j
A < Z % ij
i’j
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Lc

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

LEMMA (Positivity of the conditional log-Sobolev constant)

QA (‘Cr) >
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ORIZATION OF THE RELATIVE ENTROPY
BOLEV CONSTANTS

HEAT-BATH WITH TENSOR PRODUCT FIXED POINT

D(pallon) <Y Du(pallon)

zEA
<y — tr[£3(pa)(log pa —logoa)]
zEA 20‘/\([';;)
1
ol N o dos o  1
= 2inf aA(g;)Z tr[L (pa)(log pa —logon)]
zEA TEA
1 *
= Tiafan(cy) MRz en ~logon)

IN

(= tr[L3(pa)(log pa —logan)]) .

-~
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RESULTS

POSITIVE LOG-SOBOLEV CONSTANT

a(L}) =

N | =

Decay of correlations
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TORIZATION OF THE RELATIVE ENTROPY
STANTS

RESULTS

CONCLUSIONS

In this talk, we have:

@ Introduced some notions on quantum dissipative evolutions and
logarithmic Sobolev inequalities.

o Presented a strategy to prove positivity for logarithmic Sobolev
inequalities.

o Applied that strategy to a particular setting.

lities for Quantum Man
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