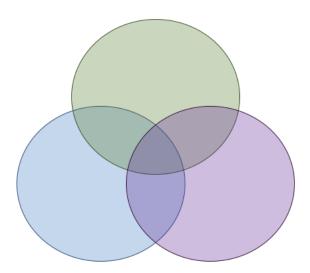
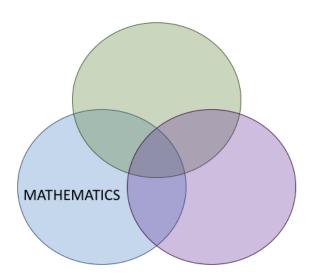
Functional inequalities in non-commutative \mathbb{L}_p spaces for quantum many-body systems

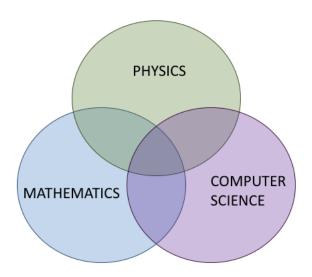
Ángela Capel (Technische Universität München)

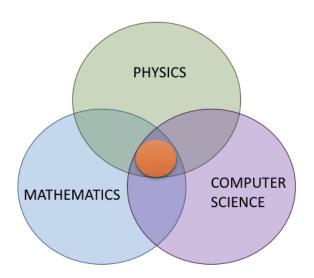
International Workshop on Operator Theory and its Applications, 10 August 2021

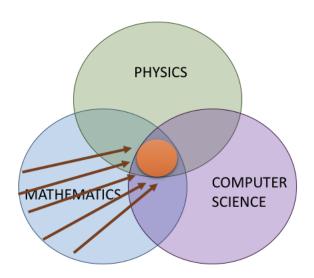












QUANTUM

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

QUANTUM

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Storage and transmision ← Models of information

Q. information theory \longleftrightarrow Q. many-body physics

Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Storage and

 $transmision \quad \longleftarrow \quad Models$

of information

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main Topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete Problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main Topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

CONTENTS

- 1 Introduction and motivation
 - Quantum dissipative systems
 - Logarithmic Sobolev inequalities

- 2 Results
 - Strategy
 - Quasi-factorization of the relative entropy
 - Log-Sobolev constants

Quantum dissipative systems Logarithmic Sobolev inequalitie

1.1 QUANTUM DISSIPATIVE SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

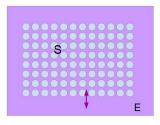


Figure: An open quantum many-body system.

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

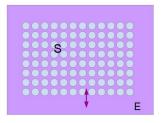


Figure: An open quantum many-body system.

- \bullet Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

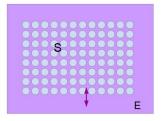


Figure: An open quantum many-body system.

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

POSTULATES OF QUANTUM MECHANICS

Postulate 1

Given an isolated physical system, there is a complex Hilbert space \mathcal{H} associated to it, which is known as the **state space** of the system.

Moreover, the physical system is completely described by its **state vector**, which is a unitary vector in the state space.

Postulate 2

Given an isolated physical system, its evolution is described by a **unitary transformation** in the Hilbert space.

POSTULATES OF QUANTUM MECHANICS

Postulate 1

Given an isolated physical system, there is a complex Hilbert space \mathcal{H} associated to it, which is known as the **state space** of the system.

Moreover, the physical system is completely described by its **state vector**, which is a unitary vector in the state space.

Postulate 2

Given an isolated physical system, its evolution is described by a **unitary transformation** in the Hilbert space.

NOTATION

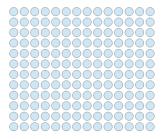


Figure: A quantum spin lattice system.

- Finite lattice $\Lambda \subset\subset \mathbb{Z}^d$.
- To every site $x \in \Lambda$ we associate \mathcal{H}_x (= \mathbb{C}^D).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.
- The set of bounded linear endomorphisms on \mathcal{H}_{Λ} is denoted by $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda}).$
- The set of density matrices is denoted by $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$$

• States to states \Rightarrow Linear, positive and trace preserving.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states \Rightarrow Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \text{ } \sigma \text{ with trivial evolution}
\hat{\mathcal{T}}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')
\hat{\mathcal{T}}(\rho \otimes \sigma) = \mathcal{T}(\rho) \otimes \sigma \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states \Rightarrow Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$$
, σ with trivial evolution

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

• Completely positive.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states \Rightarrow Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$$

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

• Completely positive.

 \mathcal{T} quantum channel (CPTP map)

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

 \bullet States to states \Rightarrow Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$$

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

• Completely positive.

 \mathcal{T} quantum channel (CPTP map)

Open systems \Rightarrow Environment and system interact.



Figure: Environment + System form a closed system.

Open systems \Rightarrow Environment and system interact.

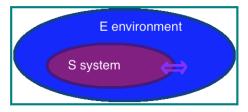


Figure: Environment + System form a closed system.

State for the environment: $|\psi\rangle\langle\psi|_E$

$$\rho \mapsto \rho \otimes |\psi\rangle \langle \psi|_E \mapsto U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^* \mapsto \operatorname{tr}_E[U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^*] = \hat{\rho}$$

Open systems \Rightarrow Environment and system interact.

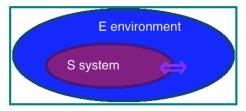


Figure: Environment + System form a closed system.

State for the environment: $|\psi\rangle\langle\psi|_E$

$$\rho \mapsto \rho \otimes |\psi\rangle \langle \psi|_E \mapsto U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^* \mapsto \operatorname{tr}_E[U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^*] = \tilde{\rho}$$

$$\begin{array}{cccc} \mathcal{T}: & \mathcal{S}(\mathcal{H}) & \rightarrow & \mathcal{S}(\mathcal{H}) \\ & \rho & \mapsto & \tilde{\rho} \end{array} \text{ quantum channel}$$

Open systems \Rightarrow Environment and system interact.



Figure: Environment + System form a closed system.

State for the environment: $|\psi\rangle\langle\psi|_E$

$$\rho \mapsto \rho \otimes |\psi\rangle \langle \psi|_E \mapsto U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^* \mapsto \operatorname{tr}_E[U\left(\rho \otimes |\psi\rangle \langle \psi|_E\right) U^*] = \tilde{\rho}$$

$$\begin{array}{cccc} \mathcal{T}: & \mathcal{S}(\mathcal{H}) & \rightarrow & \mathcal{S}(\mathcal{H}) \\ & \rho & \mapsto & \tilde{\rho} \end{array} \quad \text{quantum channel}$$

Markovian approximation

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

MARKOVIAN APPROXIMATION

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Markovian approximation

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

MARKOVIAN APPROXIMATION

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation

MARKOVIAN APPROXIMATION

Continuous-time description: For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$
.

•
$$\mathcal{T}_0^* = 1$$
.

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^*.$$

OMS GENERATOR

The infinitesimal generator \mathcal{L}_{Λ}^* of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

PRIMITIVE QMS

We assume that $\left\{\mathcal{T}_t^*\right\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by $\sigma.$

Reversibility

We also assume that the quantum Markov process studied is **reversible** i.e., satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}$$

for every $f, g \in \mathcal{A}$, in the Heisenberg picture

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by $\sigma.$

REVERSIBILITY

We also assume that the quantum Markov process studied is **reversible**, i.e., satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}$$

for every $f, g \in \mathcal{A}$, in the Heisenberg picture.

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \xrightarrow{t \to \infty} \sigma_{\Lambda}$$

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by $\sigma.$

REVERSIBILITY

We also assume that the quantum Markov process studied is **reversible**, i.e., satisfies the **detailed balance condition**:

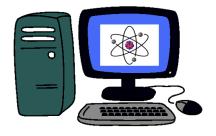
$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}$$

for every $f, g \in \mathcal{A}$, in the Heisenberg picture.

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

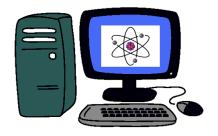
$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Main objective:



One problem: Appearance of noise.

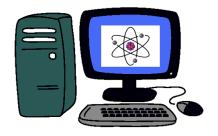
Main objective:



One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative evolutions.

Main objective:



One problem: Appearance of noise.

Some kinds of noise can be modelled using quantum dissipative evolutions.

Recent change of perspective \Rightarrow Resource to exploit

New area

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states
- o ...

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

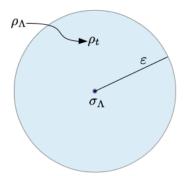
- Computational power
- Conditions against noise
- Time to obtain certain states
- _

MIXING TIME

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min \bigg\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \leq \varepsilon \bigg\}.$$

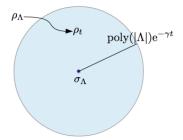


RAPID MIXING

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$



Problem

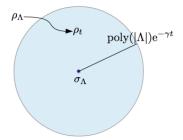
Find examples of rapid mixing

RAPID MIXING

Rapid Mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

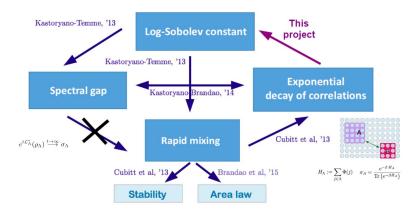


Problem

Find examples of rapid mixing!

1.2 Logarithmic Sobolev inequalities

QUANTUM SPIN SYSTEMS



Recall:
$$\rho_t := \mathcal{T}_t^*(\rho)$$
.

Liouville's equation

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t||\sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t||\sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$

$$D(\rho_t || \sigma_{\Lambda}) \le D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha (\mathcal{L}_{\Lambda}^*) t},$$

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^{*}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda}^*)t},$$

and with Pinsker's inequality, we have:

$$\left\|\rho_t - \sigma_\Lambda\right\|_1 \leq \sqrt{2D(\rho_\Lambda||\sigma_\Lambda)}\,e^{-\alpha(\mathcal{L}_\Lambda^*)\,t} \leq \sqrt{2\log(1/\sigma_{\min})}\,e^{-\alpha(\mathcal{L}_\Lambda^*)\,t}.$$

Log-Sobolev constant ⇒ Rapid mixing

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants

Log-Sobolev Constant

The log-Sobolev constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

FIRST MAIN OBJECTIVE OF THIS PROJECT

Develop a strategy to find positive log Sobolev constants from static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS PROJECT

Apply that strategy to certain dissipative dynamics.

FIRST MAIN OBJECTIVE OF THIS PROJECT

Develop a strategy to find positive log Sobolev constants from static properties on the fixed point.

SECOND MAIN OBJECTIVE OF THIS PROJECT

Apply that strategy to certain dissipative dynamics.

Quasi-factorization of the relative entro Log-Sobolev constants

2 Results

STRATEGY

QUASI-FACTORIZATION OF THE RELATIVE ENTRO

2.1 Strategy

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

Positive log-Sobolev constant

CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

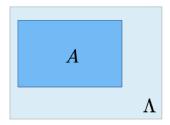
(3) Decay of correlations on the Gibbs measure.

 \downarrow

Positive log-Sobolev constant.

What do we want to prove?

$$\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) \ge \Psi(|\Lambda|) > 0.$$



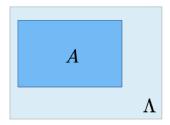
Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \ge \Psi(|A|) \ \alpha(\mathcal{L}_{A}^*) > 0 \ ?$$

OBJECTIVE

What do we want to prove?

$$\lim_{\Lambda \nearrow \mathbb{Z}^d} \inf \alpha(\mathcal{L}_{\Lambda}^*) \ge \Psi(|\Lambda|) > 0.$$



Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}^*) > 0 \ ?$$

OBJECTIVE

Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \ge \Psi(|A|) \ \alpha(\mathcal{L}_{A}^*) > 0 \ ?$$

No, but we can prove

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(|A|) \alpha_{\Lambda}(\mathcal{L}_{A}^*) > 0$$
.

OBJECTIVE

Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}^*) > 0 \ ?$$

No, but we can prove

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}_{A}^*) > 0 \ .$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Log-Sobolev Constant

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} , $A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Log-Sobolev Constant

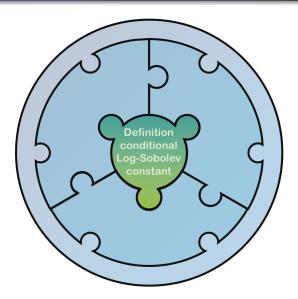
Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}_{Λ}^* by

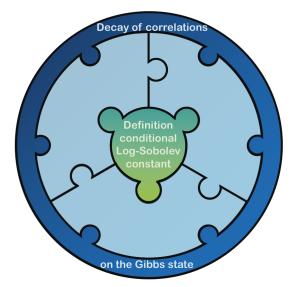
$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

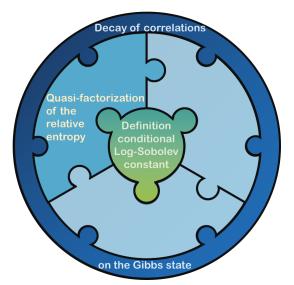
CONDITIONAL LOG-SOBOLEV CONSTANT

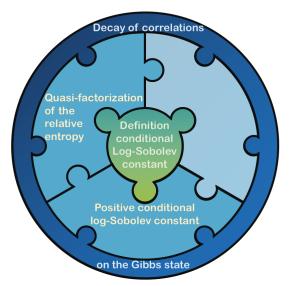
Let $\mathcal{L}_{\Lambda}^*: \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} , $A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* on A by

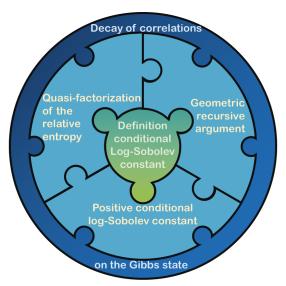
$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$



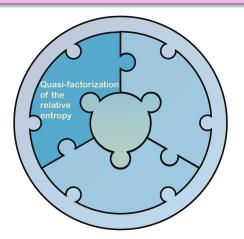




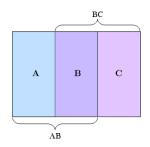




2.2 Part 2: Quasi-factorization of the relative entropy



STATEMENT OF THE PROBLEM



PROBLEM

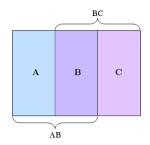
Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$$

QUANTUM RELATIVE ENTROPY

$$D(\rho||\sigma) = \operatorname{tr}\left[\rho(\log \rho - \log \sigma)\right]$$

STATEMENT OF THE PROBLEM



Problem

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$$

QUANTUM RELATIVE ENTROPY

$$D(\rho||\sigma) = \operatorname{tr}\left[\rho(\log \rho - \log \sigma)\right]$$

Problem

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4\|h - 1\|_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right]$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4||h - 1||_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f)$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

Problem

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4||h - 1||_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where $h = \frac{d\mu}{d\bar{\mu}}$.

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

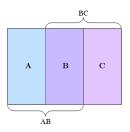


Figure: Choice of indices in $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Result of quasi-factorization of the relative entropy, for every $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$:

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.

CONDITIONAL RELATIVE ENTROPY (C.-Lucia-Pérez García '18)

The conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every ρ_{AB} , $\sigma_{AB} \in \mathcal{S}_{AB}$.

QUASI-FACTORIZATION FOR THE CRE (C.-Lucia-Pérez García '18)

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

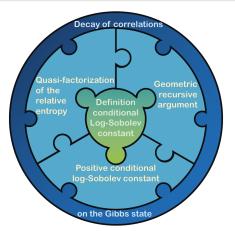
$$\begin{split} D(\rho_{ABC}||\sigma_{ABC}) \leq \\ \frac{1}{1 - 2\|H(\sigma_{AC})\|_{\infty}} \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right], \end{split}$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

2.3 Part 3: Log-Sobolev constants



QUANTUM SPIN LATTICES

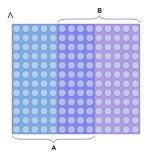


Figure: A quantum spin lattice system Λ and $A, B \subseteq \Lambda$ such that $A \cup B = \Lambda$.

Problem

For a certain \mathcal{L}_{Λ}^* , can we prove $\alpha(\mathcal{L}_{\Lambda}^*) > 0$ using the result of quasi-factorization of the relative entropy?

THEOREM

The **heat-bath dynamics**, with tensor product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_{\Lambda}, \ \mathcal{L}_{\Lambda}^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_{x}^{*}(\rho_{\Lambda}) = \sigma_{\Lambda}^{1/2} \sigma_{x^{c}}^{-1/2} \rho_{x^{c}} \sigma_{x^{c}}^{-1/2} \sigma_{\Lambda}^{1/2} = \sigma_{x} \otimes \rho_{x^{c}}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_{x} \otimes \rho_{x^{c}} - \rho_{\Lambda}).$$

THEOREM

The **heat-bath dynamics**, with tensor product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

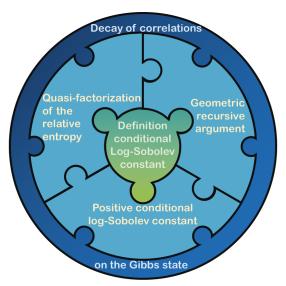
$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_{\Lambda}, \ \mathcal{L}_{\Lambda}^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_x^*(\rho_{\Lambda}) = \sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$, we have

$$\mathcal{L}_{\Lambda}^{*}(
ho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_{x} \otimes
ho_{x^{c}} -
ho_{\Lambda}).$$



ASSUMPTION

$$\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x.$$

CONDITIONAL LOG-SOBOLEV CONSTANT

For $x \in \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}_{Λ}^* in x by

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

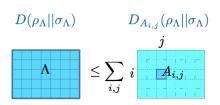
where σ_{Λ} is the fixed point of the evolution, and $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$ is the conditional relative entropy.

General quasi-factorization for σ a tensor product

Let
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following

inequality holds:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda}).$$



LEMMA (Positivity of the conditional log-Sobolev constant)

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) \geq \frac{1}{2}.$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

Positive log-Sobolev constant

$$\alpha(\mathcal{L}_{\Lambda}^*) \geq \frac{1}{2}.$$

Conclusions

In this talk, we have:

- Introduced some notions on quantum dissipative evolutions and logarithmic Sobolev inequalities.
- Presented a strategy to prove positivity for logarithmic Sobolev inequalities.
- Applied that strategy to a particular setting.

References

A. Capel, A. Lucia, D. Pérez-García.

Superadditivity of quantum relative entropy for general states
IEEE Transactions on Information Theory, 64 (7), 4758-4765, 2018.

A. Capel, A. Lucia, D. Pérez-García. Quantum conditional relative entropy and quasi-factorization of the relative entropy

J. Phys. A: Math. and Theor., 51, 484001, 2018

I. Bardet, A. Capel, A. Lucia, D. Pérez-García, C. Rouzé. On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems

J. Math. Phys., 62, 061901, 2021.