A strengthened data processing inequality for the Belavkin-Staszewski relative entropy

Ángela Capel Technische Universität München

Joint work with Andreas Bluhm (U. Copenhagen)

> Beyond IID 8 13th November 2020

Relative entropy

Given $\sigma > 0$, $\rho > 0$ states on a matrix algebra \mathcal{M} , their **relative entropy** is defined as:

$$D(\sigma||\rho) := \operatorname{tr}[\sigma(\log \sigma - \log \rho)].$$

Belavkin-Staszewski relative entropy

Given $\sigma > 0, \rho > 0$ states on a matrix algebra \mathcal{M} , their **BS-entropy** is defined as:

$$D_{\mathrm{BS}}(\sigma||\rho) := \mathrm{tr} \Big[\sigma \log \Big(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \Big) \Big].$$

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every $\sigma > 0, \rho > 0$:

$$D_{\mathrm{BS}}(\sigma||\rho) \ge D(\sigma||\rho).$$

Quantum channel: $\mathcal{T}: \mathcal{M} \to \mathcal{N}$ CPTP map.

Data processing inequality

$$D(\sigma||\rho) \ge D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)).$$

Conditions for equality, Petz '86

$$D(\sigma||\rho) = D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \Leftrightarrow \sigma = \mathcal{P}_{\mathcal{T}}^{\rho} \circ \mathcal{T}(\sigma), \text{ for } \mathcal{P}_{\mathcal{T}}^{\rho} \text{ a recovery map.}$$

Petz recovery map: $\mathcal{R}^{\rho}_{\mathcal{T}}(\cdot) := \rho^{1/2} \mathcal{T}^* \left(\mathcal{T}(\rho)^{-1/2} (\cdot) \mathcal{T}(\rho)^{-1/2} \right) \rho^{1/2}$.

Operational meaning of $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho))$

- Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
- Partial trace: Conditional relative entropy (C.-Lucia-Pérez García, '18).

DPI for relative entropy: $D(\sigma||\rho) - D(\mathcal{T}(\sigma)||\mathcal{T}(\rho)) \ge 0$.

Problem

Can we find a lower bound for the DPI in terms of $\mathcal{R}^{\rho}_{\mathcal{T}} \circ \mathcal{T}(\sigma)$?

Answer: It is not possible (Brandao et al. '15, Fawzi² '17).

(Carlen-Vershynina '17) $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ conditional expectation, $\sigma_{\mathcal{N}} := \mathcal{E}(\sigma)$ and $\rho_{\mathcal{N}} := \mathcal{E}(\rho)$:

$$D(\sigma \| \rho) - D(\sigma_{\mathcal{N}} \| \rho_{\mathcal{N}}) \ge \left(\frac{\pi}{8}\right)^4 \|L_{\rho} R_{\sigma^{-1}}\|_{\infty}^{-2} \|\mathcal{R}_{\varepsilon}^{\sigma}(\rho_{\mathcal{N}}) - \rho\|_{1}^{4}.$$

(Carlen-Vershynina '18) Extension to standard f-divergences.

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS entropy which provides an explicit expression of recovery for σ ?

STRENGTHENED DPI FOR BS ENTROPY

Can we provide a lower bound for the DPI for the BS entropy in terms of a (hypothetical) BS recovery condition?

Equivalent conditions for equality on DPI

$$\rho_{\mathcal{T}} := \mathcal{T}(\rho), \, \sigma_{\mathcal{T}} := \mathcal{T}(\sigma)$$

Equivalent conditions for equality on DPI (Bluhm-C. '20)

Let \mathcal{M} and \mathcal{N} be matrix algebras, $\mathcal{T}: \mathcal{M} \to \mathcal{N}$ a quantum channel, $\sigma > 0$, $\rho > 0$ two quantum states on \mathcal{M} . The following are equivalent:

- $D_{BS}(\sigma \| \rho) = D_{BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}).$

BS RECOVERY CONDITION

$$\mathcal{B}_{\mathcal{T}}^{\sigma}(\cdot) := \sigma \mathcal{T}^*(\mathcal{T}(\sigma)^{-1}(\cdot)).$$

STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. '20)

Let \mathcal{M} and \mathcal{N} be matrix algebras, $\mathcal{T}: \mathcal{M} \to \mathcal{N}$ a quantum channel, $\sigma > 0$, $\rho > 0$ two quantum states on \mathcal{M} . Then,

$$D_{\rm BS}(\sigma \| \rho) - D_{\rm BS}(\sigma_{\mathcal{T}} \| \rho_{\mathcal{T}}) \ge \left(\frac{\pi}{8}\right)^4 \|\Gamma\|_{\infty}^{-4} \|\sigma^{-1}\|_{\infty}^{-2} \|\rho - \sigma \mathcal{T}^* \left(\sigma_{\mathcal{T}}^{-1} \rho_{\mathcal{T}}\right)\|_{2}^{4}.$$

Comparison results for the relative entropy and the BS-entropy

Relative entropy	BS-entropy
$\operatorname{tr}[\sigma(\log\sigma-\log\rho)]$	$\operatorname{tr} \bigl[\sigma \log \left(\sigma^{1/2} \rho^{-1} \sigma^{1/2} \right) \bigr]$
$\rho = \rho^{1/2} \mathcal{T}^* \left(\mathcal{T}(\rho)^{-1/2} \mathcal{T}(\sigma) \mathcal{T}(\rho)^{-1/2} \right) \rho^{1/2}$	$\sigma = \rho \mathcal{T}^* \left(\mathcal{T}(\rho)^{-1} \mathcal{T}(\sigma) \right)$
$\left(\frac{\pi}{8}\right)^4 \ L_{\rho}R_{\sigma^{-1}}\ _{\infty}^{-2} \ \mathcal{R}_{\mathcal{E}}^{\sigma}(\rho_{\mathcal{N}}) - \rho\ _{1}^{4}$	$\left(\frac{\pi}{8}\right)^4 \ \Gamma\ _{\infty}^{-4} \ \sigma^{-1}\ _{\infty}^{-2} \ \rho - \mathcal{B}_{\mathcal{T}}^{\sigma} \circ \mathcal{T}(\rho)\ _{2}^{4}$
Extension to standard f-divergences	Extension to maximal f-divergences

THANK YOU FOR YOUR ATTENTION!