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OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

= Open quantum many-body systems.

@ Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup {73}, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.
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pr == pr =T (pa) = €A (pa) =5 o

RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lp: — oall; < poly(|A])e™".
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Relative entropy: D(p||c) := tr[p(log p — logo)]

The MLSI constant of £} is defined as:

" .o —tr[LA(pa)(log pa —logoa)]
L)) = f
al£h) = fuf 2D(palloa)

If lim inf a(L}) > O:
A 7.4

D(ptlloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:

o — oally < /2D (palloa) e~ Rt < /2Tog (1 Jomm) e 2R,

For thermal states, omin ~ exp(|A]).

MLSI = Rapid mixing. J

Using the spectral gap (Kastoryano-Temme ’13):

lot = oally < V/1/0min e MR,
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Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).
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CONDITIONAL MLSI CONSTANT

The MLSI constant of £} is defined by

" .o —tr[LA(pa)(log pa —logoa)]
L)) = f
al£h) = ff 2D (pal|oa)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

. o —tr[Lh(pa)(log pa — logoa )]
L) = f
an(£d) = inf 2D a(pallon)
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pa,on € D(HaBc), where {(capc) depends only on 04pc and measures how far
oac 1s from o4 ® oc.
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EXAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcfa '18)  Li(pa) = Z (02 ® pze — pr)
xEAN

Da(palloa) := D(palloa) = D(pae|loze)

or = oq, @

TEA
D(palloa) <
@ < ZDZ(pAHUA)
zEA
aniey= o HEGHEE S Z —tr[L3 (pa)(log pa —logon)]
a zEA 20‘/\(5;)
1
Ny | o
— 2inf aA(L;)Z r[L5(pa)(log pa — log oa)]
TEA zEA
@ .- (= tr[L2(pa) (log pa — log oa)])
- Qileljf\a/\(ﬁgg) alpa)tlog pa g oA

(3N
@ < (—tr[LA(pa)(log pa — logan)]).
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—B
Let oa = ﬁ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 _—1/2 ~1/2 _1/2
Ly " (pa) == Z (a'A/ ch/ Pmco'xc/ O‘A/ pr)
TEA

DAVIES GENERATOR

The Davies generator is given by:
LR(X) =14[Hp, X]+ D _LD(X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

£ =3 (ESx0) - x),

TEA

where the conditional expectations do not depend on system-bath couplings.



MODIFIE ITHMIC
O®000000000

PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,

lpe = oally < v/210g(1/omin) e *F2".



MODIFIED LOGARITH)
0®000000000

PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,
o1 — oally < v/ZToB(T fomim) e (R,

Using the spectral gap A(L}):

lpe = oally < V/1/omn e MR,



MODIFIE
0®000000000

PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,

lpe = oally < v/210g(1/omin) e *F2".

Using the spectral gap A(L}):

loe = oally < v/Tfomm e MR,
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Let L7 be the heat-bath or Davies generator in 1D. Then, £5"”* has a
positive spectral gap that is independent of the system size, for every temperature.
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PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,
lpe = oally < v/210g(1/omin) e *F2".

Using the spectral gap A(L}):
>3

loe = oally < V/T/omme

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £5"”* has a
positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,

Beigi-Datta-Rouzé ’18)

Let L’f;* be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.
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PREVIOUS RESULTS

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

1/2

_ _ _ _ 1
HUA1/2 ® UBI/2UABUA ® ‘731/2 - ]IABH <K< 2
oo

In particular, Gibbs states at high enough temperature satisfy this.




MODIFIED LOGARITHMIC SOBOLEV INEQUALITY
0O0@00000000

PREVIOUS RESULTS

ASSUMPTION 1

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

_ _ _ _ 1
HUA1/2 ® UBI/2UABUA1/2 ® ‘731/2 - ]IABH <K< 3
oo

In particular, Gibbs states at high enough temperature satisfy this.

A\,

ASSUMPTION 2
For any B C A, B = B; U Ba, it holds:
Dg(palloa) < f(oBa) (DB, (palloa) + D, (palloa)) -

In particular, tensor products satisfy this (with f = 1).

.




MODIFIED LOGARITHMIC SOBOLEV INEQUALITY
0O0@00000000

PREVIOUS RESULTS

ASSUMPTION 1

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

_ _ _ _ 1
HUA1/2 ® UBI/2UABUA1/2 ® ‘731/2 - ]IABH <K< 3
oo

In particular, Gibbs states at high enough temperature satisfy this.

A\,

ASSUMPTION 2
For any B C A, B = B; U Ba, it holds:
Dg(palloa) < f(oBa) (DB, (palloa) + D, (palloa)) -

In particular, tensor products satisfy this (with f = 1).

.

THEOREM (Bardet-C.-Lucia-Pérez Garcia-Rouzé ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive log-Sobolev constant.
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MLSI rOR SCHMIDT (C.-Rouzé-Stilck Franga ’

Let Ha be a local commuting Hamiltonian with 8 < . and such that one of the
following conditions holds:

@ H, is classical.
@ H, is a nearest neighbour Hamiltonian.
@ Ais 1D.

Then, there exists a local quantum Markov semigroup with fixed point oa, the Gibbs
state of Ha, such that it has a positive MLSI constant which is independent of the
system size.
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PREVIOUS RESULTS

MLSI FOR SCHMIDT (C.-Rouzé-Stilck Franga ’20)

Let Ha be a local commuting Hamiltonian with 8 < . and such that one of the
following conditions holds:

@ H, is classical.
@ H, is a nearest neighbour Hamiltonian.
@ Ais 1D.

Then, there exists a local quantum Markov semigroup with fixed point oa, the Gibbs
state of Ha, such that it has a positive MLSI constant which is independent of the
system size.

The dynamics considered in this result is given by Schmidt generators.
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MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f;* be a Davies generator with unique fixed point oa given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£Y*) = Q(In(|A]) ™).
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MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f\);* be a Davies generator with unique fixed point oa given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£Y*) = Q(In(|A]) ™).

Rapid mixing:

sup |[|pt —oall; < poly(|A])e

PAESA

For a(L£}) a MLSI constant:

lor — oally < v/210g(1/gmm) e * 52

RAPID MIXING

In the setting above, £f;* has rapid mixing.
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Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallEA(pa)) -

D(pasclloasc) Das(pasclloasc Dpc(pasclloasc)

UABC
A C AHC
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PROOF: CONDITIONAL RELATIVE ENTROPIES —+ QUASI—FACTORIZATION

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,oasc € Sapc. The following holds
D(pagclloasc) < &(oac) [Das(pasclloapc) + Dec(papc|loasc)],

where
1

§(oac) =

1-— 2“021/2 ®ag?oacor ? ®og"? - ]lAcH

|

oo

D(pasclloasc) Das(pasclloasc) Dpc(pasclloasc)

OABC

AMBlc|<E(Bd) [fapB o + 4Bl ¢
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PROOF: QUASI-FACTORIZATION

By By
— —
9090090000000000000
N _ ~ ~
Ay Ao

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1

&(oacpe) = 7

1— QHUAC ®agi/2 O AcBe 0261/2 ®agi/

2
—]lAch

Aiy1

—
900000000000000000
S
9A A; DA,

A
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PROOF: QUASI-FACTORIZATION

B, By

99090000000 00000000
| S — ~ _

Ay As

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1

&(oacBe) =
1— 2”0’251/2 ®O’;i/2 O AcBe 0261/2 ®agi/2 — L gcpe

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)

Since o is a QMC between A; <> 9(A;) <> (A; U9OA;)¢, then:

Da(palloa) €D Da,(palloa).
3

Aiy1

= t—
IA ]@]UAi(aai)f ® T(9a;) R (A;004,)¢ 9 0000100100 0 00000000
—
94 A 94,
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PROOF: DECAY OF CORRELATIONS

By By

P N— ——— A
90000000000000000
A Ay

QUASI-FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds

D(pallona) < &(oacBe) Z [Da,(palloa) + D, (palloa)] s
where 1
&(opcpe) =

—1/2

1-— ZHUAC ®a§i/2 O AcBe a;cl/r‘) ®a§i/

2
—]lAch

0000002000 00000000 000000000000000
~ —~ A A — A v ~ ~ —
C )i D Cy By Dy X
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B By

P N— ——— A
90000000000000000
E > 8 5
A Ay

QUASI-FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds

D(pallona) < &(oacBe) Z [Da,(palloa) + D, (palloa)] s

where

1
&(oacpe) =
—1/2 —1/2 —-1/2 —1/2
1—2H0'Ac/ ®UBC/ O.ACBCUAC/ ®0'BC/ — 1 gcpe
0000002000 00000000 000000000000000
| —— N N ——— N _ ~ — —
c E D ¢ E Dy X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernéndez, '21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(]' ®0'21(7XZ — ]lszoo < 5(|Y|)
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PROOF: DECAY OF CORRELATIONS

B By

P N— ——— A
90000000000000000
E > 8 5
A Ay

QUASI-FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds
D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,
i
where 1
&(oacpe) =

—1/2

=i/ =i/ =i
1—2”0’Ac ®UBC/ aAcho'Ac/ ®0'BC/

2
—]lAch

0000002000 00000000 000000000000000
~ —~ A A — A 7 S~ ~— —
c E D. ¢, E Dy X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernéndez, '21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(]' ®0'21(7XZ — ]lszoo < 5(|Y|)

As a consequence, £(o gcpe) is uniformly bounded as long as # segments = O(|A|/In [A]).
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PROOF: GEOMETRIC RECURSIVE ARGUMENT

By By
/—/% /—/%
09090090000 000000000

S S
1 1y

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallEA(pa)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

Da(palloa) < DX(palloa)

© >
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PROOF: GEOMETRIC RECURSIVE ARGUMENT

By By
— —
09090090000 000000000

S S
1 1y

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallEA(pa)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

Da(palloa) < DX(palloa)

Therefore, by this and @ , we have:

D(palloa) < g(aAch)Z [DAi (pallona) + D, (PAHUA)} :

i

and thus a(ﬁf;*) >

> oy mn {oa (), am ()}

for

L —tr [LIZ;*(pA)(lnpA —In O'A)]
= R T DR, (o))
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Proor: PositivE CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallE4, (pa)) < 4ka, > D(pallEj (pa))
JEA;




MODIFIED LOG:
000000000

Proor: PositivE CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallE4, (pa)) < 4ka, > D(pallEj (pa))
JEA;

REDUCTION FROM CMLSI TO GAP

1
kAiO(m,

where A < 1 is a constant related to the spectral gap by the detectability lemma.
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Proor: PositivE CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallE4, (pa)) < 4ka; Y D(pall E; (pa))
JEA;

REDUCTION FROM CMLSI TO GAP

1
kAiO(m,

where A < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), ka, = O(In|A|) for 4; = O(In|A]).

CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:
Dijxy - Djx*
ac(Ly) = égga(ﬁj ®Idg) > 0.
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