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Introduction and motivation Modified logarithmic Sobolev inequality

Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup {T ∗t }t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified logarithmic Sobolev inequality

Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

For thermal states, σmin ∼ exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Quantum spin systems
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ ξ(σABC) [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] ,

for ρΛ, σΛ ∈ D(HABC), where ξ(σABC) depends only on σABC and measures how far
σAC is from σA ⊗ σC .
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Example: Tensor product fixed point

(C.-Lucia-Pérez Garćıa ’18) L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ)

Dx(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρxc‖σxc)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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Dynamics

Let σΛ = e−βHΛ

tr[e−βHΛ ]
be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The heat-bath generator is defined as:

LH;∗
Λ (ρΛ) :=

∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)

Davies generator

The Davies generator is given by:

LDΛ (X) := i[HΛ, X] +
∑
x∈Λ

LDx (X) ,

where the LDx are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

Schmidt generator

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

LSΛ(X) =
∑
x∈Λ

(
ESx (X)−X

)
,

where the conditional expectations do not depend on system-bath couplings.
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Previous results

Let us recall: For α(L∗Λ) a MLSI constant,

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗
Λ) t.

Using the spectral gap λ(L∗Λ):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.

Spectral gap for Davies and heat-bath (Kastoryano-Brandao, ’16)

Let LH,D;∗
Λ be the heat-bath or Davies generator in 1D. Then, LH,D;∗

Λ has a
positive spectral gap that is independent of the system size, for every temperature.

MLSI for heat-bath with tensor product fixed point (C.-Lucia-Pérez Garćıa,
Beigi-Datta-Rouzé ’18)

Let LH;∗
Λ be the heat-bath generator with tensor product fixed point. Then, it has a

positive MLSI constant.
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Previous results

Assumption 1

In a tripartite Hilbert space HA ⊗HC ⊗HB , A and B not connected, we have∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
≤ K <

1

2
.

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any B ⊂ Λ, B = B1 ∪B2, it holds:

DB(ρΛ||σΛ) ≤ f(σB∂)
(
DB1 (ρΛ||σΛ) +DB2 (ρΛ||σΛ)

)
.

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez Garćıa-Rouzé ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive log-Sobolev constant.
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Previous results

MLSI for Schmidt (C.-Rouzé-Stilck França ’20)

Let HΛ be a local commuting Hamiltonian with β < βc and such that one of the
following conditions holds:

1 HΛ is classical.

2 HΛ is a nearest neighbour Hamiltonian.

3 Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σΛ, the Gibbs
state of HΛ, such that it has a positive MLSI constant which is independent of the
system size.

The dynamics considered in this result is given by Schmidt generators.
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Main result

MLSI for 1D Davies generators, (Bardet-C.-Gao-Lucia-Pérez Garćıa-Rouzé, ’21)

Let LD;∗
Λ be a Davies generator with unique fixed point σΛ given by the Gibbs state

of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LD;∗

Λ satisfies a positive MLSI α(LD;∗
Λ ) = Ω(ln(|Λ|)−1).

Rapid mixing:

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

For α(L∗Λ) a MLSI constant:

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗
Λ) t.

Rapid mixing

In the setting above, LD;∗
Λ has rapid mixing.
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Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc) ,
DE
A(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2

A ⊗ σ−1/2
C σAC σ

−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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Quasi-factorization for quantum Markov chains (Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Since σΛ is a QMC between Ai ↔ ∂(Ai)↔ (Ai ∪ ∂Ai)c, then:

DA(ρΛ||σΛ) ≤
∑
i

DAi (ρΛ||σΛ).

σΛ =
⊕
j∈J

σAi(∂ai)Lj
⊗ σ(∂ai)

R
j (Ai∪∂Ai)c
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Proof: Decay of correlations

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds
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Decay of correlations, (Bluhm-C.-Pérez Hernández, ’21)

Let σXY Z be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
` 7→ δ(`) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞
≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as # segments = O(|Λ|/ ln |Λ|).
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Let σXY Z be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
` 7→ δ(`) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞
≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as # segments = O(|Λ|/ ln |Λ|).



Introduction and motivation Modified logarithmic Sobolev inequality

Proof: Geometric recursive argument

Let us recall: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc) ,
DE
A(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Comparison between conditional relative entropies (Bardet-C.-Rouzé, ’20)

DA(ρΛ‖σΛ) ≤ DE
A(ρΛ‖σΛ)

Therefore, by this and + , we have:

D(ρΛ||σΛ) ≤ ξ(σAcBc)
∑
i

[
DE
Ai(ρΛ‖σΛ) +DE

Bi(ρΛ‖σΛ)
]
,

and thus
α(LH;∗

Λ ) ≥ K

ξ(σAcBc)
min

{
αAi(L

H;∗
Λ ), αBi(L

H;∗
Λ )

}
,

for

αAi(L
H;∗
Λ ) = sup

ρΛ∈SΛ

− tr
[
LH;∗
Ai

(ρΛ)(ln ρΛ − lnσΛ)
]

D(ρΛ‖E∗Ai(ρΛ))
.
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Proof: Positive CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, ’21)

D(ρΛ‖E∗Ai(ρΛ)) ≤ 4kAi
∑
j∈Ai

D(ρΛ‖E∗j (ρΛ))

Reduction from CMLSI to Gap

kAi ∝
1

lnλ
,

where λ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), kAi = O(ln |Λ|) for Ai = O(ln |Λ|).
CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:

αc(LD;∗
j ) := inf

k∈N
α(LD;∗

j ⊗ Idk) > 0 .
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Conclusions

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For LD;∗
Λ , there is a positive MLSI constant α(LD;∗

Λ ) = Ω(ln |Λ|−1).
Therefore, LD;∗

Λ has rapid mixing.

In this talk:

Use of results of quasi-factorization and decay of correlations to prove MLSI.

Proof of MLSI for a relevant physical system in 1D.

Open problems:

Can the MLSI be independent of the system size?

Extension to more dimensions.
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