Entropy decay for Davies semigroups of a one dimensional quantum lattice

Ángela Capel (Technische Universität München)

Joint work with: Ivan Bardet (Inria, Paris)

Li Gao (T. U. München)

Angelo Lucia (U. Complutense Madrid)

David Pérez-García (U. Complutense Madrid)

Cambyse Rouzé (T. U. München)

Beyond IID in Information Theory, 28 September 2021

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

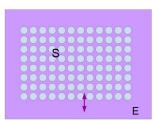
No experiment can be executed at zero temperature or be completely shielded from noise.

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

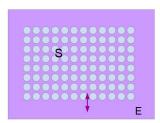


PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



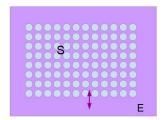
- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

QUANTUM MARKOV SEMIGROUPS

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

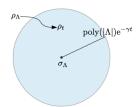
$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Rapid Mixing

0000000

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$



QUANTUM MARKOV SEMIGROUPS

QUANTUM MARKOV SEMIGROUPS

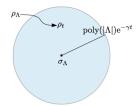
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$



Relative entropy: $D(\rho || \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim_{\Lambda \nearrow \mathbb{Z}^d} \inf \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) < D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha (\mathcal{L}_{\Lambda}^*) t},$$

Relative entropy: $D(\rho || \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t}.$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha (\mathcal{L}_{\Lambda}^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_\Lambda\right\|_1 \leq \sqrt{2D(\rho_\Lambda||\sigma_\Lambda)} \, e^{-\alpha(\mathcal{L}_\Lambda^*) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_\Lambda^*) \, t}.$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

MLSI ⇒ Rapid mixing

Relative entropy: $D(\rho \| \sigma) := \operatorname{tr}[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda}^*)t},$$

and with Pinsker's inequality, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(L_{\Lambda}^*)t}.$$

Relative entropy: $D(\rho || \sigma) := \operatorname{tr}[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda}^*)t},$$

and with Pinsker's inequality, we have:

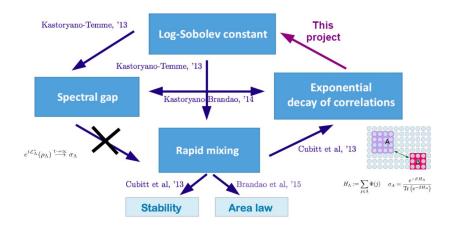
$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

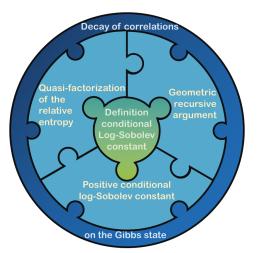
Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_{\Lambda}^*) \, t}.$$



STRATEGY

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



00000000

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined by

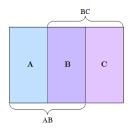
$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Quasi-factorization of the relative entropy



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

$$D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right] ,$$

for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{D}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_{A} \otimes \sigma_{C}$.

Example: Tensor product fixed point

(C.-Lucia-Pérez García '18)
$$\mathcal{L}_{\Lambda}^*(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda})$$

$$D_x(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| \sigma_{\Lambda}) - D(\rho_{x^c} \| \sigma_{x^c})$$

$$\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x,$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq$$

$$\leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\alpha_{\Lambda}(\mathcal{L}_x^*) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_x^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_x(\rho_{\Lambda}||\sigma_{\Lambda})}$$

$$\frac{\sum_{\mathbf{x} \in \Lambda} \frac{\operatorname{tr}[\mathcal{L}(\mathbf{x}) | \operatorname{the}_{\mathbf{x}} - \operatorname{log}_{\mathbf{x}}]}{2 \mathcal{H}(\mathbf{x}) | \mathbf{x}|}}{2 \mathcal{H}(\mathbf{x}) | \mathbf{x}|} \leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2 \alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x\in\Lambda}\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}\sum_{x\in\Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log\rho_{\Lambda} - \log\sigma_{\Lambda})]$$

$$= \frac{1}{2\inf \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The Davies generator is given by:

$$\mathcal{L}_{\Lambda}^{D}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}_{x}^{D}(X)$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\mathrm{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The **Schmidt generator** (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S}(X) = \sum_{x \in \Lambda} \left(E_{x}^{S}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\mathrm{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S}(X) = \sum_{x} \left(E_{x}^{S}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D;*}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D;*}$ has a positive spectral gap that is independent of the system size, for every temperature

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D;*}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D;*}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI for heat-bath with tensor product fixed point (C.-Lucia-Pérez García Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H;*}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D;*}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D;*}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García, Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H;*}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\| \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB} \right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right)$$

In particular, tensor products satisfy this (with f = 1).

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|\sigma_A^{-1/2}\otimes\sigma_B^{-1/2}\sigma_{AB}\sigma_A^{-1/2}\otimes\sigma_B^{-1/2}-\mathbbm{1}_{AB}\right\|_\infty\leq K<\frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this. $\,$

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \leq f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the **heat-bath** dynamics has a positive log-Sobolev constant.

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\| \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB} \right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \leq f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the **heat-bath** dynamics has a positive log-Sobolev constant.

MLSI FOR SCHMIDT (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- \bullet H_{Λ} is classical.
- $\ 2\ H_{\Lambda}$ is a nearest neighbour Hamiltonian.
- \bullet Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

The dynamics considered in this result is given by **Schmidt generators**.

MLSI FOR SCHMIDT (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- \bullet H_{Λ} is classical.
- $\ 2\ H_{\Lambda}$ is a nearest neighbour Hamiltonian.
- \bullet Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

The dynamics considered in this result is given by **Schmidt generators**.

Main result

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '21)

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '21)

Let $\mathcal{L}_{\Lambda}^{D,*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D,*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D,*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

Main result

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '21)

Let $\mathcal{L}_{\Lambda}^{D,*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D,*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D,*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \text{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda}^*)$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Rapid Mixing

In the setting above, $\mathcal{L}_{\Lambda}^{D,*}$ has rapid mixing.

Main result

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '21)

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_{t} - \sigma_{\Lambda} \right\|_{1} \leq \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda}^*)$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Rapid Mixing

In the setting above, $\mathcal{L}_{\Lambda}^{D,*}$ has rapid mixing.

Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: $D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| \sigma_{\Lambda}) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| E_A^*(\rho_{\Lambda}))$.

Quasi-factorization (C.-Lucia-Pérez García '18

Let \mathcal{H}_{ABC} and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$$

where

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2\|\sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}\|}.$$

Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: $D_A(\rho_{\Lambda}\|\sigma_{\Lambda}) := D(\rho_{\Lambda}\|\sigma_{\Lambda}) - D(\rho_{A^c}\|\sigma_{A^c})$, $D_A^E(\rho_{\Lambda}\|\sigma_{\Lambda}) := D(\rho_{\Lambda}\|E_A^*(\rho_{\Lambda}))$.

QUASI-FACTORIZATION (C.-Lucia-Pérez García '18)

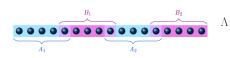
Let \mathcal{H}_{ABC} and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|}.$$

PROOF: QUASI-FACTORIZATION



 $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$ is the Gibbs state of a k-local, commuting Hamiltonian H_{Λ} .

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^c B^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2\left\|\sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}\right\|_{C^c}}.$$

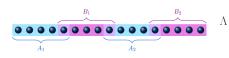
QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial (A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_i D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\sigma_{\Lambda} = \bigoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^C}$$

PROOF: QUASI-FACTORIZATION



 $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$ is the Gibbs state of a k-local, commuting Hamiltonian H_{Λ} .

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^c B^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

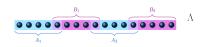
$\label{eq:QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)} QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)$

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial (A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then:

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_i D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}).$$

$$\sigma_{\Lambda} = \bigoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^c}$$

Proof: Decay of Correlations



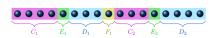
QUASI-FACTORIZATION

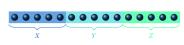
Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2\left\|\sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}\right\|_{\infty}}.$$



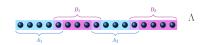


DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\|_{\infty} \le \delta(|Y|).$$

PROOF: DECAY OF CORRELATIONS



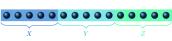
Quasi-factorization

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2\left\|\sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}\right\|_{\infty}}.$$



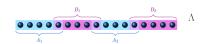
Decay of correlations, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\| \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments = $\mathcal{O}(|\underline{A}|/\ln |\underline{M}|)$

PROOF: DECAY OF CORRELATIONS



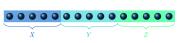
Quasi-factorization

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \, \sigma_{A^cB^c} \, \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbbm{1}_{A^cB^c} \right\|_{-1}^{2}}.$$



DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\| \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments $= \mathcal{O}(|\Lambda|/\ln|\Lambda|)$

Proof: Geometric recursive argument

Let us recall: $D_A(\rho_{\Lambda} || \sigma_{\Lambda}) := D(\rho_{\Lambda} || \sigma_{\Lambda}) - D(\rho_{A^c} || \sigma_{A^c})$, $D_{\Lambda}^{E}(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| E_{\Lambda}^{*}(\rho_{\Lambda}))$.

Comparison between conditional relative entropies (Bardet-C.-Rouzé, '20)

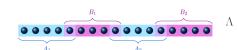
$$D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) \le D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda})$$

this and
$$+$$
 , we have:
$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum \left[D_{A_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

$$\alpha(\mathcal{L}_{\Lambda}^{H;*}) \ge \frac{K}{\xi(\sigma_{\Lambda^c R^c})} \min \left\{ \alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}), \alpha_{B_i}(\mathcal{L}_{\Lambda}^{H;*}) \right\},$$

$$\alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}) = \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}_{A_i}^{H;*}(\rho_{\Lambda}) (\ln \rho_{\Lambda} - \ln \sigma_{\Lambda})\right]}{D(\rho_{\Lambda} \|E_{A_i}^*(\rho_{\Lambda})\|_{\mathcal{A}_{\Lambda}})}.$$

Proof: Geometric recursive argument



Let us recall: $D_A(\rho_{\Lambda} || \sigma_{\Lambda}) := D(\rho_{\Lambda} || \sigma_{\Lambda}) - D(\rho_{A^c} || \sigma_{A^c})$, $D_{\Lambda}^{E}(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| E_{\Lambda}^{*}(\rho_{\Lambda}))$.

Comparison between conditional relative entropies (Bardet-C.-Rouzé, '20)

$$D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) \le D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda})$$

Therefore, by this and

this and
$$+$$
 , we have:
$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_{i} \left[D_{A_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

and thus $\alpha(\mathcal{L}_{\Lambda}^{H;*}) \geq \frac{K}{\mathcal{E}(\sigma_{A^cB^c})} \min \left\{ \alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}), \alpha_{B_i}(\mathcal{L}_{\Lambda}^{H;*}) \right\},$

for

$$\alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}) = \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}_{A_i}^{H;*}(\rho_{\Lambda})(\ln \rho_{\Lambda} - \ln \sigma_{\Lambda})\right]}{D(\rho_{\Lambda} \|E_{A_i}^*(\rho_{\Lambda}))}.$$

Proof: Positive CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} || E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} || E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

PROOF: POSITIVE CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} || E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} || E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

PROOF: POSITIVE CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} \| E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} \| E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$\alpha_c(\mathcal{L}_i^{D;*}) := \inf_{i \in \mathbb{N}} \alpha(\mathcal{L}_i^{D;*} \otimes \mathrm{Id}_k) > 0$$

PROOF: POSITIVE CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} \| E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} \| E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$\alpha_c(\mathcal{L}_j^{D;*}) := \inf_{k \in \mathbb{N}} \alpha(\mathcal{L}_j^{D;*} \otimes \mathrm{Id}_k) > 0.$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

CONCLUSION

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

• Use of results of quasi-factorization and decay of correlations to prove MLSI.

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

• Can the MLSI be independent of the system size?

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

- Can the MLSI be independent of the system size?
- Extension to more dimensions

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D;*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D;*}$ has rapid mixing.

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

- Can the MLSI be independent of the system size?
- Extension to more dimensions.