Entropy decay for Davies semigroups of a one dimensional quantum lattice

Ángela Capel (Universität Tübingen)

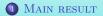
Joint work with: Ivan Bardet (Inria, Paris) Li Gao (U. Houston) Angelo Lucia (U. Complutense Madrid) David Pérez-García (U. Complutense Madrid) Cambyse Rouzé (T. U. München)

arXiv: 2112.00593 & 2112.00601

Perimeter Institute Quantum Information Seminar, 26 January 2022

1 INTRODUCTION AND MOTIVATION

2 Mixing time and log-Sobolev inequalities



INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
MAIN TOPIC OF THIS	TALK		

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
MAIN TOPIC OF THIS	TALK		

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
MAIN TOPIC OF THIS	TALK		

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

INTRODUCTION AND MOTIVATION			
000000	000000	0000	00000000
OPEN QUANTUM SY	STEMS		

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

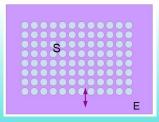
No experiment can be executed at zero temperature or be completely shielded from noise.

INTRODUCTION AND MOTIVATION		
000000		
Open quantum sy	STEMS	

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

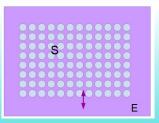


INTRODUCTION AND MOTIVATION		
000000		
OPEN QUANTUM SY	(STEMS	

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



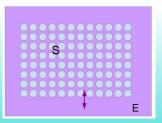
- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

INTRODUCTION AND MOTIVATION			
000000	0000000	0000	0000000
Open quantum sy	STEMS		

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

INTRODUCTION AND MOTIVATION			
000000	0000000	0000	00000000
Notation			

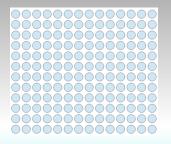


Figure: A quantum spin lattice system.

- Finite lattice $\Lambda \subset \mathbb{Z}^d$.
- To every site $x \in \Lambda$ we associate \mathcal{H}_x $(= \mathbb{C}^D)$.
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.
- The set of bounded linear endomorphisms on \mathcal{H}_{Λ} is denoted by $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda})$.
- The set of density matrices is denoted by $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \ge 0 \text{ and } tr[\rho_{\Lambda}] = 1 \}.$

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities 0000000	Examples 0000	Main result 00000000
Evolution of a s	YSTEM		

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow \text{Reversible}$

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities 0000000	Examples 0000	Main result 00000000
Evolution of a s	YSTEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
EVOLUTION OF A	A SYSTEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto \mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
Evolution of a	SYSTEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\begin{array}{ll} \rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \ \sigma \ \text{with trivial evolution} \\ \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \quad \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) &= \quad \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes 1$

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples	Main result
	0000000	0000	00000000
EVOLUTION OF A SYS	STEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\begin{array}{ll} \rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \ \sigma \ \text{with trivial evolution} \\ \hat{\mathcal{T}} : & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \quad \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ \hat{\mathcal{T}}(\rho \otimes \sigma) &= \quad \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

• Completely positive.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples	Main result
	0000000	0000	00000000
EVOLUTION OF A SYS	STEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\begin{array}{ll} \rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \ \sigma \ \text{with trivial evolution} \\ \hat{\mathcal{T}} : & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \quad \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) &= \quad \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

• Completely positive.

~ quantum channel

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
EVOLUTION OF A SYS	STEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\begin{array}{ll} \rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \ \sigma \ \text{with trivial evolution} \\ \hat{\mathcal{T}} : & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \quad \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) &= \quad \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

• Completely positive.

\mathcal{T} quantum channel

For every $t \ge 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
EVOLUTION OF A SYS	STEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\begin{array}{ll} \rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \ \sigma \ \text{with trivial evolution} \\ \hat{\mathcal{T}} : & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \quad \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) &= \quad \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

• Completely positive.

\mathcal{T} quantum channel

For every $t \ge 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

Continuous-time description: Markovian approximation.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
EVOLUTION OF A SYS	STEM		

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

 $\mathcal{T}:\rho\mapsto\mathcal{T}(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\begin{array}{ll} \rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \, \sigma \text{ with trivial evolution} \\ \hat{\mathcal{T}} : & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \quad \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) \quad = \quad \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$

• Completely positive.

\mathcal{T} quantum channel

For every $t \ge 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

Continuous-time description: Markovian approximation.

Introduction and motivation			
0000000	000000	0000	00000000
QUANTUM MARKO	V SEMIGROUPS		

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$
.

• $T_0^* = 1$.

INTRODUCTION AND MOTIVATION			
0000000	000000	0000	00000000
QUANTUM MARKON	V SEMICROUPS		

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$T_0^* = 1$$

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}.$$

INTRODUCTION AND MOTIVATION			
0000000	000000	0000	00000000
QUANTUM MARKON	V SEMICROUPS		

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_{0}^{*} = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

For $\rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \ \ \mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = -i[H_{\Lambda}, \rho_{\Lambda}] + \sum_{k=1} L^*_k(\rho_{\Lambda})$

INTRODUCTION AND MOTIVATION			
0000000	000000	0000	00000000
QUANTUM MARKON	V SEMICROUPS		

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_{0}^{*} = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

For $\rho_\Lambda \in \mathcal{S}_\Lambda$, $\mathcal{L}_\Lambda^*(\rho_\Lambda) = -i[H_\Lambda, \rho_\Lambda] + \sum_{k \in \Lambda} L_k^*(\rho_\Lambda)$.

Introduction and motivation			
0000000	0000000	0000	00000000
DISSIPATIVE QUANT	UM SYSTEMS		

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

Reversibility

We also assume that the quantum Markov process studied is **reversible**, i.e., satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\left\langle f,g\right\rangle _{\sigma}=\mathrm{tr}\Big[f\,\sigma^{1/2}\,g\,\sigma^{1/2}\Big]\;.$$

INTRODUCTION AND MOTIVATION			
0000000	000000	0000	00000000
DISSIPATIVE QUANTU	JM SYSTEMS		

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

REVERSIBILITY

We also assume that the quantum Markov process studied is **reversible**, i.e., satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\left\langle f,g\right\rangle _{\sigma}=\mathrm{tr}\Big[f\,\sigma^{1/2}\,g\,\sigma^{1/2}\Big]~.$$

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$ho_{\Lambda} \stackrel{t}{\longrightarrow}
ho_{t} := \mathcal{T}_{t}^{*}(
ho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(
ho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

INTRODUCTION AND MOTIVATION			
0000000	000000	0000	00000000
DISSIPATIVE QUANTU	JM SYSTEMS		

Primitive QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

REVERSIBILITY

We also assume that the quantum Markov process studied is **reversible**, i.e., satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\left\langle f,g\right\rangle _{\sigma}=\mathrm{tr}\Big[f\,\sigma^{1/2}\,g\,\sigma^{1/2}\Big]~.$$

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Introduction and motivation			
000000	0000000	0000	00000000
RAPID MIXING			

Mixing time

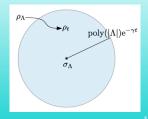
We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\right\|_{1} \le \varepsilon\right\}$$

Rapid mixing

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Introduction and motivation			
000000	0000000	0000	00000000
RAPID MIXING			

Mixing time

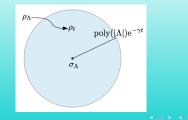
We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \le \varepsilon\right\}.$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Manager and			
000000	000000	0000	0000000
	Mixing time and log-Sobolev inequalities		

Modified log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

Manager and Ca			
000000	000000	0000	00000000
	Mixing time and log-Sobolev inequalities		

Modified log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

Relative entropy of ρ_t and σ_{Λ} :

 $D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$

000000	000000	0000	00000000		
	MIXING TIME AND LOG-SOBOLEV INEQUALITIES				

Modified log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

 $\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$

	MIXING TIME AND LOG-SOBOLEV INEQUALITIES		
000000	•000000	0000	00000000
Modified log-Sob	OLEV INEQUALITY (MLSI)		

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$

Lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

 $2\alpha D(\rho_t || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$

000000	●000000	0000	00000000		
	Mixing time and log-Sobolev inequalities				

MODIFIED LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t (\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$

Lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

 $2\alpha D(\rho_t || \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities		Main result 00000000
		0000	
3.5	a		

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

 $D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \, \alpha(\mathcal{L}^*_\Lambda) \, t},$

	Mixing time and log-Sobolev inequalities		
000000	000000	0000	00000000
3.6	~		

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

 $\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$

	Mixing time and log-Sobolev inequalities		
000000	000000	0000	00000000
3.5	~		

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

	Mixing time and log-Sobolev inequalities		
000000	000000	0000	00000000
3.5	0		

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

 $MLSI \Rightarrow Rapid mixing.$

	Mixing time and log-Sobolev inequalities		
000000	000000	0000	00000000
3.5	0		

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13)

$$\left\|
ho_t - \sigma_\Lambda
ight\|_1 \leq \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_\Lambda^*) \, t}.$$

	Mixing time and log-Sobolev inequalities		
000000	000000	0000	00000000
3.5	0		

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

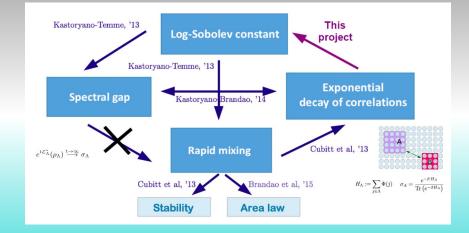
For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_\Lambda\|_1 \leq \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_\Lambda) t}.$$

	Mixing time and log-Sobolev inequalities	
	000000	
QUANTUM SPIN SYS	STEMS	



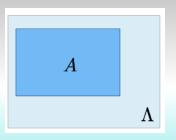
Exp. decay of correlations:

 $\sup_{\|O_A\|=\|O_B\|=1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]| \le K e^{-\gamma d(A,B)}$

	Mixing time and log-Sobolev inequalities		
000000	0000000	0000	00000000
OBJECTIVE			

What do we want to prove?

 $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|\Lambda|) > 0.$



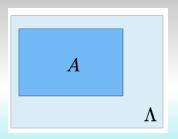
Can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|A|) \ \alpha(\mathcal{L}^*_{\Lambda}) > 0 \ ?$

	Mixing time and log-Sobolev inequalities		
0000000	0000000	0000	00000000
OBJECTIVE			

What do we want to prove?

 $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|\Lambda|) > 0.$



Can we prove something like

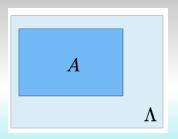
 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(|A|) \; \alpha(\mathcal{L}^*_{\Lambda}) > 0 \; ?$

No, but we can prove

	Mixing time and log-Sobolev inequalities		
000000	0000000	0000	00000000
OBJECTIVE			

What do we want to prove?

 $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_{\Lambda}) \ge \Psi(|\Lambda|) > 0.$



Can we prove something like

 $\alpha(\mathcal{L}^*_{\Lambda}) \geq \Psi(|A|) \; \alpha(\mathcal{L}^*_{\Lambda}) > 0 \; ?$

No, but we can prove

$$lpha(\mathcal{L}^*_\Lambda) \geq \Psi(|A|) \ lpha_\Lambda(\mathcal{L}^*_A) > 0 \ .$$

	Mixing time and log-Sobolev inequalities	
	0000000	
Conditional MLSI	CONSTANT	

MLSI CONSTANT

The **MLSI constant** of
$$\mathcal{L}^*_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}^*_k$$
 is defined by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The conditional MLSI constant of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

	MIXING TIME AND LOG-SOBOLEV INEQUALITIES		
000000	0000000	0000	00000000
Conditional MLSI	CONSTANT		

MLSI CONSTANT

The **MLSI constant** of
$$\mathcal{L}^*_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}^*_k$$
 is defined by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Conditional MLSI constant

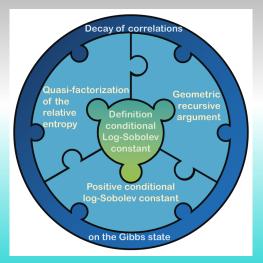
The **conditional MLSI constant** of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

-▲□▶▲@▶▲≧▶▲≧▶ = ∽੧<♡

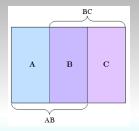
	Mixing time and log-Sobolev inequalities		
000000	0000000	0000	00000000
Strategy			

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



	MIXING TIME AND LOG-SOBOLEV INEQUALITIES		
000000	000000	0000	00000000

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

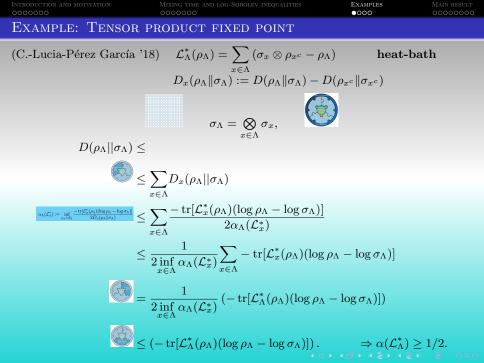


QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

 $D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right] \,,$

for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{D}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.



		EXAMPLES	
000000	0000000	0000	00000000
-			

DYNAMICS

Let
$$\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}\left[e^{-\beta H_{\Lambda}}\right]}$$
 be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The **heat-bath generator** is defined as:

$$\mathcal{L}^{H;*}_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

		Examples	
000000	0000000	0000	00000000

DYNAMICS

Let
$$\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}\left[e^{-\beta H_{\Lambda}}\right]}$$
 be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}^{H;*}_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}^{D}_{\Lambda}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}^{D}_{x}(X) \,,$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

		Examples	
000000	0000000	0000	00000000

DYNAMICS

Let
$$\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}\left[e^{-\beta H_{\Lambda}}\right]}$$
 be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}^{H;*}_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

DAVIES GENERATOR

The **Davies generator** is given by:

$$\mathcal{L}^{D}_{\Lambda}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}^{D}_{x}(X) \,,$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

Schmidt generator

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}^{S}_{\Lambda}(X) = \sum_{x \in \Lambda} \left(E^{S}_{x}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

		Examples	
000000	0000000	0000	00000000

Dynamics

Let
$$\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}\left[e^{-\beta H_{\Lambda}}\right]}$$
 be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}^{H;*}_{\Lambda}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

DAVIES GENERATOR

The **Davies generator** is given by:

$$\mathcal{L}^{D}_{\Lambda}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}^{D}_{x}(X) \,,$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

Schmidt generator

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}^{S}_{\Lambda}(X) = \sum_{x \in \Lambda} \left(E^{S}_{x}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

		Examples	
000000	000000	0000	00000000
Previous results			

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}^*_{\Lambda})$:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}^*_{\Lambda}) \, t}.$$

		Examples	
0000000	000000	0000	00000000
Previous results			

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}^*_{\Lambda})$:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}^*_{\Lambda}) \, t}.$$

Spectral gap for Davies and heat-bath (Kastoryano-Brandao, '16)

Let $\mathcal{L}^{H,D;*}_{\Lambda}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}^{H,D;*}_{\Lambda}$ has a positive spectral gap that is independent of the system size, for every temperature.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
Previous results			

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}^*_{\Lambda})$:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}^*_{\Lambda}) \, t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}^{H,D;*}_{\Lambda}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}^{H,D;*}_{\Lambda}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García, Beigi-Datta-Rouzé '18)

Let $\mathcal{L}^{H;*}_{\Lambda}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
Previous results			

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}^*_{\Lambda})$:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}^*_{\Lambda}) \, t}.$$

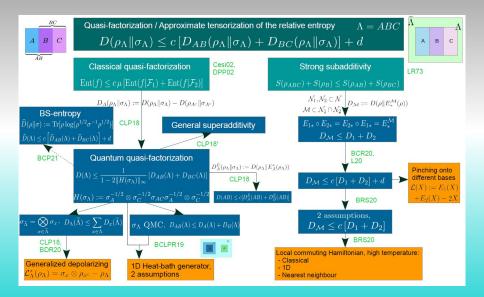
SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}^{H,D;*}_{\Lambda}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}^{H,D;*}_{\Lambda}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García, Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H_{i}*}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



			Main result
0000000	0000000	0000	●0000000
Main result			

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

			Main result
0000000	000000	0000	●0000000
Main result			

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a **MLSI constant**:

 $\left\|\rho_t - \sigma_\Lambda\right\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_\Lambda^*) t}.$

			Main result
000000	0000000	0000	0000000
Main result			

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a **MLSI constant**:

$$\|\rho_t - \sigma_\Lambda\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_\Lambda^*) t}$$

RAPID MIXING

In the setting above, $\mathcal{L}^{D;*}_{\Lambda}$ has rapid mixing.

			Main result
000000	0000000	0000	0000000
Main result			

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}^*_{\Lambda})$ a **MLSI constant**:

$$\|\rho_t - \sigma_\Lambda\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_\Lambda^*)t}$$

RAPID MIXING

In the setting above, $\mathcal{L}^{D;*}_{\Lambda}$ has rapid mixing.

0000000	

IXING TIME AND LOG-SOBOLEV INEQUALITIES

EXAMPLES

Main result 0●0000000

PROOF: CONDITIONAL RELATIVE ENTROPIES + QUASI-FACTORIZATION

Conditional relative entropies: $D_X(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| \sigma_\Lambda) - D(\rho_{X^c} \| \sigma_{X^c})$, $D_X^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_X^*(\rho_\Lambda))$.

Heat-bath cond. expectation: $E_X^*(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{X^c}^{-1/2} \operatorname{tr}_X[\,\cdot\,] \, \sigma_{X^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n$.

QUASI-FACTORIZATION (C.-Lucia-Pérez García '18)

Let \mathcal{H}_{XYZ} and $\rho_{XYZ}, \sigma_{XYZ} \in \mathcal{S}_{XYZ}$. The following holds

 $D(\rho_{XYZ}||\sigma_{XYZ}) \le \xi(\sigma_{XZ}) \left[D_{XY}(\rho_{XYZ}||\sigma_{XYZ}) + D_{YZ}(\rho_{XYZ}||\sigma_{XYZ}) \right],$

where

$$\xi(\sigma_{XZ}) = \frac{1}{1 - 2 \left\| \sigma_X^{-1/2} \otimes \sigma_Z^{-1/2} \sigma_{XZ} \sigma_X^{-1/2} \otimes \sigma_Z^{-1/2} - \mathbb{1}_{XZ} \right\|_{\infty}}$$

0000000	

Mixing time and log-Sobolev inequalities

Examples

Main result

PROOF: CONDITIONAL RELATIVE ENTROPIES + QUASI-FACTORIZATION

Conditional relative entropies: $D_X(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| \sigma_\Lambda) - D(\rho_{X^c} \| \sigma_{X^c})$, $D_X^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_X^*(\rho_\Lambda))$.

 $\textbf{Heat-bath cond. expectation:} \ E^*_X(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{X^c}^{-1/2} \operatorname{tr}_X[\,\cdot\,] \, \sigma_{X^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \, .$

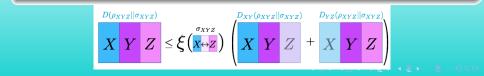
QUASI-FACTORIZATION (C.-Lucia-Pérez García '18)

Let \mathcal{H}_{XYZ} and $\rho_{XYZ}, \sigma_{XYZ} \in \mathcal{S}_{XYZ}$. The following holds

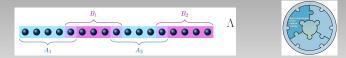
 $D(\rho_{XYZ}||\sigma_{XYZ}) \le \xi(\sigma_{XZ}) \left[D_{XY}(\rho_{XYZ}||\sigma_{XYZ}) + D_{YZ}(\rho_{XYZ}||\sigma_{XYZ}) \right],$

where

$$\xi(\sigma_{XZ}) = \frac{1}{1 - 2 \left\| \sigma_X^{-1/2} \otimes \sigma_Z^{-1/2} \sigma_{XZ} \sigma_X^{-1/2} \otimes \sigma_Z^{-1/2} - \mathbb{1}_{XZ} \right\|_{\infty}}$$



INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
PROOF: QUASI-FACT	ORIZATION		



 $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}(\mathrm{e}^{-\beta H_{\Lambda}})} \text{ is the Gibbs state of a } k\text{-local, commuting Hamiltonian } H_{\Lambda}.$

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^{c}B^{c}}) \left[D_{A}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^{c}B^{c}}) = \frac{1}{1 - 2 \left\| \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} \sigma_{A^{c}B^{c}} \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} - \mathbb{1}_{A^{c}B^{c}} \right\|_{\infty}}$$

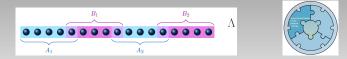
QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial(A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then:

$$D_A(\rho_\Lambda || \sigma_\Lambda) \leq \sum_i D_{A_i}(\rho_\Lambda || \sigma_\Lambda).$$

 $\sigma_{\Lambda} = igoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R (A_i \cup \partial A_i)^c}$

			Main result
000000	0000000	0000	0000000
PROOF: QUASI-FAC	TORIZATION		



 $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}(\mathrm{e}^{-\beta H_{\Lambda}})} \text{ is the Gibbs state of a } k\text{-local, commuting Hamiltonian } H_{\Lambda}.$

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^{c}B^{c}}) \left[D_{A}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

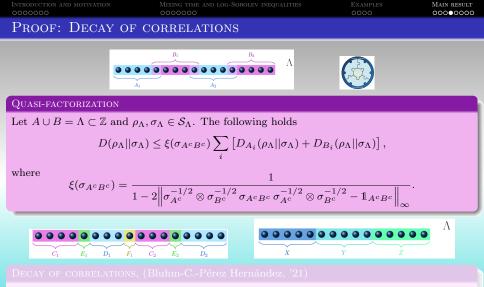
$$\xi(\sigma_{A^{c}B^{c}}) = \frac{1}{1 - 2 \left\| \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} \sigma_{A^{c}B^{c}} \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} - \mathbb{1}_{A^{c}B^{c}} \right\|_{\infty}}$$

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial(A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then:

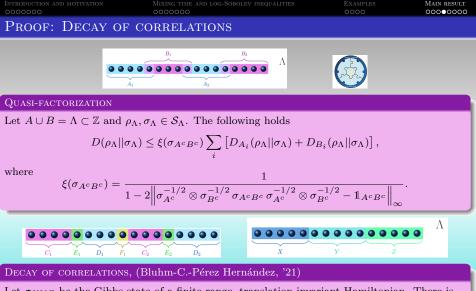
$$D_A(\rho_\Lambda || \sigma_\Lambda) \leq \sum_i D_{A_i}(\rho_\Lambda || \sigma_\Lambda).$$

$$\sigma_{\Lambda} = \bigoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^C}$$



Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

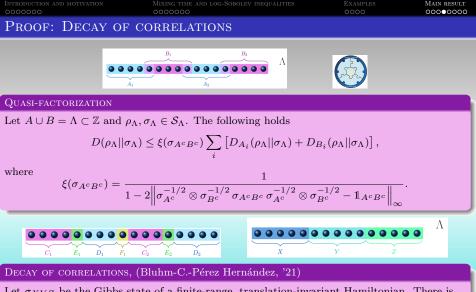
$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\|_{\infty} \le \delta(|Y|).$$



Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ} \Big\|_{\infty} \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as \pm segments $\pm O(|\Delta|/\ln |\Lambda|)_{O,0,c}$



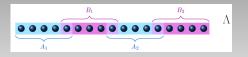
Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ} \Big\|_{\infty} \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments = $\mathcal{O}(|\Lambda|/\ln|\Lambda|)$.

DROOP, CROMETER	C DECUDQUE ADCUMENT	
		00000000
		Main result

PROOF: GEOMETRIC RECURSIVE ARGUMENT



Let us recall: $D_A(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| \sigma_\Lambda) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_A^*(\rho_\Lambda))$.

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

 $D_A(\rho_\Lambda \| \sigma_\Lambda) \le D_A^E(\rho_\Lambda \| \sigma_\Lambda)$

Therefore, by this and

, we have:

$$D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \xi(\sigma_{A^c B^c}) \sum_{i} \left[D^E_{A_i}(\rho_{\Lambda} || \sigma_{\Lambda}) + D^E_{B_i}(\rho_{\Lambda} || \sigma_{\Lambda}) \right]$$

and thus

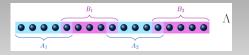
$$-\alpha(\mathcal{L}_{\Lambda}^{H;*}) \geq K \min\left\{\alpha_{A_{i}}(\mathcal{L}_{\Lambda}^{H;*}), \alpha_{B_{i}}(\mathcal{L}_{\Lambda}^{H;*})\right\},$$

for

$$\alpha_{A_{1}}(\mathcal{L}_{\Lambda}^{H,*}) = \inf_{\rho_{\Lambda} \in S_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}_{A_{1}}^{H,*}(\rho_{\Lambda})(\ln \rho_{\Lambda} - \ln \sigma_{\Lambda}) \right]}{D(\rho_{\Lambda} \| E_{A_{1}}^{*}(\rho_{\Lambda}))} ,$$

PROOF CEOMETR	C DECUDENCE ADCUMENT		
000000	0000000	0000	00000000
			Main result

PROOF: GEOMETRIC RECURSIVE ARGUMENT



Let us recall: $D_A(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| \sigma_\Lambda) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_A^*(\rho_\Lambda))$.

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

 $D_A(\rho_\Lambda \| \sigma_\Lambda) \le D_A^E(\rho_\Lambda \| \sigma_\Lambda)$

Therefore, by this and

, we have:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^{c}B^{c}}) \sum_{i} \left[D_{A_{i}}^{E}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_{i}}^{E}(\rho_{\Lambda}||\sigma_{\Lambda}) \right]$$

and thus

$$\alpha(\mathcal{L}_{\Lambda}^{H;*}) \geq K \min\left\{\alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}), \alpha_{B_i}(\mathcal{L}_{\Lambda}^{H;*})\right\},\,$$

for

$$\alpha_{A_i}(\mathcal{L}^{H;*}_{\Lambda}) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}^{H;*}_{A_i}(\rho_{\Lambda})(\ln \rho_{\Lambda} - \ln \sigma_{\Lambda}) \right]}{D(\rho_{\Lambda} \| E^*_{A_i}(\rho_{\Lambda}))} .$$

INTRODUCTION AND MOTIVATION	MIXING TIME AND LOG-SOBOLEV INEQUALITIES	Examples 0000	Main result 00000000
PROOF: POSITIVE	CMLSI		
REDUCTION OF CONDIT	TIONAL RELATIVE ENTROPIES (Gao-]	Rouzé, '21)	
L	$\mathcal{D}(\rho_{\Lambda} \ E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} \mathcal{D}(\rho_{\Lambda} \ E_j^*)$	$(ho_{\Lambda}))$	
REDUCTION FROM CM	LSI TO GAP		
	$k_{A_i} \propto \frac{1}{\ln \lambda} ,$		
where $\lambda < 1$ is a consta	nt related to the spectral cap by th	a detectability	lommo

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

0000000	0000000	0000	000000000
PROOF: POSIT	TIVE CMLSI		
REDUCTION OF C	CONDITIONAL RELATIVE ENTROP	IES (Gao-Rouzé, '21)	
	$D(\rho_{\Lambda} \ E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A}$	$\sum_{i} D(ho_{\Lambda} \ E_{j}^{*}(ho_{\Lambda}))$	
REDUCTION FROM	M CMLSI TO GAP		

MAIN RESULT

$$k_{A_i} \propto \frac{1}{\ln \lambda},$$

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

000000	000000	0000	000000000
PROOF: POSITIVE C	MLSI		
REDUCTION OF CONDITIC	NAL RELATIVE ENTROP	IES (Gao-Rouze, 21)	
$D(\mu$	$p_{\Lambda} \ E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i}$	$D(ho_\Lambda \ E_j^*(ho_\Lambda))$	

MAIN RESULT

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda},$$

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$lpha_c(\mathcal{L}_j^{D;*}) := \inf_{k \in \mathbb{N}} lpha(\mathcal{L}_j^{D;*} \otimes \mathrm{Id}_k) > 0.$$

000000	0000000	0000	000000000
PROOF: POSITIV	e CMLSI		
_			
REDUCTION OF CON	DITIONAL RELATIVE ENTR	OPIES (Gao-Rouzé, '21)	
	$D(\rho_{\Lambda} \ E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i}$	$\sum_{i \in A_i} D(\rho_\Lambda \ E_j^*(\rho_\Lambda))$	
REDUCTION FROM C	MLSI TO GAP		

MAIN RESULT

Reduction from CMLSI to Gap

$$k_{A_i} \propto \frac{1}{\ln \lambda},$$

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$\alpha_c(\mathcal{L}_j^{D;*}) := \inf_{k \in \mathbb{N}} \alpha(\mathcal{L}_j^{D;*} \otimes \mathrm{Id}_k) > 0.$$

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 00000000
Last step			

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 000000€0
LAST STEP			

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

CONCLUSION

For $\mathcal{L}^{D;*}_{\Lambda}$, there is a positive MLSI constant $\alpha(\mathcal{L}^{D;*}_{\Lambda}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}^{D;*}_{\Lambda}$ has rapid mixing.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 0000000
LAST STEP			

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

CONCLUSION

For $\mathcal{L}^{D;*}_{\Lambda}$, there is a positive MLSI constant $\alpha(\mathcal{L}^{D;*}_{\Lambda}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}^{D;*}_{\Lambda}$ has rapid mixing.

INTRODUCTION AND MOTIVATION	Mixing time and log-Sobolev inequalities	Examples 0000	Main result 0000000
LAST STEP			

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

CONCLUSION

For $\mathcal{L}^{D;*}_{\Lambda}$, there is a positive MLSI constant $\alpha(\mathcal{L}^{D;*}_{\Lambda}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}^{D;*}_{\Lambda}$ has rapid mixing.

		Main result
		0000000
Conclusions		

• Introduction of MLSI as a tool to prove rapid mixing.

		Main result
		0000000
Conclusions		

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.

			Main result
000000	0000000	0000	0000000
Conclusions			

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

			Main result
000000	000000	0000	0000000
Conclusions			

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

			Main result
000000	000000	0000	0000000
Conclusions			

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

• Can the MLSI be independent of the system size?

		Main result
		0000000
Conclusions		

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

			Main result
000000	000000	0000	0000000
Conclusions			

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!

		Main result
		0000000
Conclusions		

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!