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Main topic of this talk

Field of study

Dissipative evolutions of quantum many-body systems

Main topic

Velocity of convergence of certain quantum dissipative evolutions to
their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which imply the
existence of a positive log-Sobolev constant.
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Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Notation

Figure: A quantum spin lattice system.

Finite lattice Λ ⊂⊂ Zd.
To every site x ∈ Λ we associate Hx (= CD).

The global Hilbert space associated to Λ is HΛ =
⊗

x∈ΛHx.

The set of bounded linear endomorphisms on HΛ is denoted by BΛ := B(HΛ).

The set of density matrices is denoted by
SΛ := S(HΛ) = {ρΛ ∈ BΛ : ρΛ ≥ 0 and tr[ρΛ] = 1}.
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Evolution of a system

Isolated system.

Physical evolution: ρ 7→ UρU∗  Reversible

Dissipative quantum system (non-reversible evolution)

T : ρ 7→ T (ρ)

States to states ⇒ Linear, positive and trace preserving.

ρ⊗ σ ∈ S(H⊗H′), σ with trivial evolution

T̂ : S(H⊗H′) → S(H⊗H′)
T̂ (ρ⊗ σ) = T (ρ)⊗ σ

⇒ T̂ = T ⊗ 1

Completely positive.

T quantum channel

For every t ≥ 0, the corresponding time slice is a realizable evolution Tt (quantum
channel).

Continuous-time description: Markovian approximation.
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup {T ∗t }t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

Semigroup:

T ∗t ◦ T ∗s = T ∗t+s.
T ∗0 = 1.

d

dt
T ∗t = T ∗t ◦ L∗Λ = L∗Λ ◦ T ∗t .

QMS generator

The infinitesimal generator L∗Λ of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

T ∗t = etL
∗
Λ ⇔ L∗Λ =

d

dt
T ∗t |t=0.

For ρΛ ∈ SΛ, L∗Λ(ρΛ) = −i[HΛ, ρΛ] +
∑
k∈Λ

L∗k(ρΛ) .
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Dissipative quantum systems

Primitive QMS

We assume that {T ∗t }t≥0 has a unique full-rank invariant state which we denote by
σΛ.

Reversibility

We also assume that the quantum Markov process studied is reversible, i.e., satisfies
the detailed balance condition:

〈f,L(g)〉σ = 〈L(f), g〉σ,

for every f, g ∈ BΛ and Hermitian, where

〈f, g〉σ = tr
[
f σ1/2 g σ1/2

]
.

Notation: ρt := T ∗t (ρ).

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ
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Rapid mixing

Mixing time

We define the mixing time of {T ∗t } by

τ(ε) = min

{
t > 0 : sup

ρΛ∈SΛ

‖T ∗t (ρ)− T ∗∞(ρ)‖1 ≤ ε
}

.

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified log-Sobolev inequality (MLSI)

Recall: ρt := T ∗t (ρ).

Master equation:
∂tρt = L∗Λ(ρt).

Relative entropy of ρt and σΛ:

D(ρt||σΛ) = tr[ρt(log ρt − log σΛ)].

Differentiating:
∂tD(ρt||σΛ) = tr[L∗Λ(ρt)(log ρt − log σΛ)].

Lower bound for the derivative of D(ρt||σΛ) in terms of itself:

2αD(ρt||σΛ) ≤ − tr[L∗Λ(ρt)(log ρt − log σΛ)].
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Modified logarithmic Sobolev inequality

Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

For thermal states, σmin ∼ 1/exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗
Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗
Λ) t ≤

√
2 log(1/σmin) e−α(L∗

Λ) t.

For thermal states, σmin ∼ 1/exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.
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Quantum spin systems

Exp. decay of correlations:
sup

‖OA‖=‖OB‖=1

|tr[OA ⊗OB(σAB − σA ⊗ σB)]| ≤ K e−γd(A,B) .



Introduction and motivation Mixing time and log-Sobolev inequalities Examples Main result

Objective

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .
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Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ =
∑
k∈Λ

L∗k is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ ξ(σABC) [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] ,

for ρΛ, σΛ ∈ D(HABC), where ξ(σABC) depends only on σABC and measures how far
σAC is from σA ⊗ σC .
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Example: Tensor product fixed point

(C.-Lucia-Pérez Garćıa ’18) L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ) heat-bath

Dx(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρxc‖σxc)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) . ⇒ α(L∗Λ) ≥ 1/2.
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Dynamics

Let σΛ = e−βHΛ

tr[e−βHΛ ]
be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The heat-bath generator is defined as:

LH;∗
Λ (ρΛ) :=

∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)

Davies generator

The Davies generator is given by:

LDΛ (X) := i[HΛ, X] +
∑
x∈Λ

LDx (X) ,

where the LDx are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

Schmidt generator

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

LSΛ(X) =
∑
x∈Λ

(
ESx (X)−X

)
,

where the conditional expectations do not depend on system-bath couplings.
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Previous results

Let us recall: For α(L∗Λ) a MLSI constant,

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗
Λ) t.

Using the spectral gap λ(L∗Λ):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗

Λ) t.

Spectral gap for Davies and heat-bath (Kastoryano-Brandao, ’16)

Let LH,D;∗
Λ be the heat-bath or Davies generator in 1D. Then, LH,D;∗

Λ has a
positive spectral gap that is independent of the system size, for every temperature.

MLSI for heat-bath with tensor product fixed point (C.-Lucia-Pérez Garćıa,
Beigi-Datta-Rouzé ’18)

Let LH;∗
Λ be the heat-bath generator with tensor product fixed point. Then, it has a

positive MLSI constant.
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Quasi-factorization of the relative entropy
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Main result

MLSI for 1D Davies generators, (Bardet-C.-Gao-Lucia-Pérez Garćıa-Rouzé, ’21)

Let LD;∗
Λ be a Davies generator with unique fixed point σΛ given by the Gibbs state

of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LD;∗

Λ satisfies a positive MLSI α(LD;∗
Λ ) = Ω(ln(|Λ|)−1).

Rapid mixing:

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.

For α(L∗Λ) a MLSI constant:

‖ρt − σΛ‖1 ≤
√

2 log(1/σmin) e−α(L∗
Λ) t.

Rapid mixing

In the setting above, LD;∗
Λ has rapid mixing.
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Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: DX(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρXc‖σXc) ,
DE
X(ρΛ‖σΛ) := D(ρΛ‖E∗X(ρΛ)) .

Heat-bath cond. expectation: E∗X(·) := lim
n→∞

(
σ

1/2
Λ σ

−1/2
Xc trX [ · ]σ−1/2

Xc σ
1/2
Λ

)n
.

Quasi-factorization (C.-Lucia-Pérez Garćıa ’18)

Let HXY Z and ρXY Z , σXY Z ∈ SXY Z . The following holds

D(ρXY Z ||σXY Z) ≤ ξ(σXZ) [DXY (ρXY Z ||σXY Z) +DY Z(ρXY Z ||σXY Z)] ,

where

ξ(σXZ) =
1

1− 2
∥∥∥σ−1/2

X ⊗ σ−1/2
Z σXZ σ

−1/2
X ⊗ σ−1/2

Z − 1XZ
∥∥∥
∞

.
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Proof: Quasi-factorization

σΛ = e−βHΛ

tr(e−βHΛ )
is the Gibbs state of a k-local, commuting Hamiltonian HΛ.

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc ) [DA(ρΛ||σΛ) +DB(ρΛ||σΛ)] ,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

.

Quasi-factorization for quantum Markov chains (Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Since σΛ is a QMC between Ai ↔ ∂(Ai)↔ (Ai ∪ ∂Ai)c, then:

DA(ρΛ||σΛ) ≤
∑
i

DAi (ρΛ||σΛ).

σΛ =
⊕
j∈J

σAi(∂ai)Lj
⊗ σ(∂ai)

R
j (Ai∪∂Ai)c
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Proof: Decay of correlations

Quasi-factorization

Let A ∪B = Λ ⊂ Z and ρΛ, σΛ ∈ SΛ. The following holds

D(ρΛ||σΛ) ≤ ξ(σAcBc )
∑
i

[
DAi (ρΛ||σΛ) +DBi (ρΛ||σΛ)

]
,

where
ξ(σAcBc ) =

1

1− 2
∥∥∥σ−1/2
Ac ⊗ σ−1/2

Bc σAcBc σ
−1/2
Ac ⊗ σ−1/2

Bc − 1AcBc
∥∥∥
∞

.

Decay of correlations, (Bluhm-C.-Pérez Hernández, ’21)

Let σXY Z be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
` 7→ δ(`) with exponential decay such that:∥∥∥σ−1

X ⊗ σ−1
Z σXZ − 1XZ

∥∥∥
∞
≤ δ(|Y |).

As a consequence, ξ(σAcBc ) is uniformly bounded as long as # segments = O(|Λ|/ ln |Λ|).
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Proof: Geometric recursive argument

Let us recall: DA(ρΛ‖σΛ) := D(ρΛ‖σΛ)−D(ρAc‖σAc) ,
DE
A(ρΛ‖σΛ) := D(ρΛ‖E∗A(ρΛ)) .

Comparison between conditional relative entropies (Bardet-C.-Rouzé, ’20)

DA(ρΛ‖σΛ) ≤ DE
A(ρΛ‖σΛ)

Therefore, by this and + , we have:
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Proof: Positive CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, ’21)

D(ρΛ‖E∗Ai(ρΛ)) ≤ 4kAi
∑
j∈Ai

D(ρΛ‖E∗j (ρΛ))

Reduction from CMLSI to Gap

kAi ∝
1

lnλ
,

where λ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), kAi = O(ln |Λ|) for Ai = O(ln |Λ|).
CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:

αc(LD;∗
j ) := inf

k∈N
α(LD;∗

j ⊗ Idk) > 0 .
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Last step

Heat-bath cond. expectation: EH;∗
A (·) := lim

n→∞

(
σ

1/2
Λ σ

−1/2
Ac trA[ · ]σ−1/2

Ac σ
1/2
Λ

)n
.

Davies cond. expectation: ED;∗
A (·) := lim

t→∞
etL

D;∗
A (·) .

Davies and heat-bath dynamics (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For LD;∗
Λ , there is a positive MLSI constant α(LD;∗

Λ ) = Ω(ln |Λ|−1).
Therefore, LD;∗

Λ has rapid mixing.
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The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For LD;∗
Λ , there is a positive MLSI constant α(LD;∗

Λ ) = Ω(ln |Λ|−1).
Therefore, LD;∗

Λ has rapid mixing.



Introduction and motivation Mixing time and log-Sobolev inequalities Examples Main result

Conclusions

In this talk:

Introduction of MLSI as a tool to prove rapid mixing.

Use of results of quasi-factorization and decay of correlations to prove MLSI.

Proof of MLSI for a relevant physical system in 1D.

Open problems:

Can the MLSI be independent of the system size?

Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!
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