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FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to
their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the
existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

= Open quantum many-body systems.

o Dynamics of S is dissipative!

o The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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NOTATION

Figure: A quantum spin lattice system.

o Finite lattice A CcC Z.

o To every site x € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®IGA H.

The set of bounded linear endomorphisms on #a is denoted by Ba := B(Ha).

(]

o The set of density matrices is denoted by
Sa :=8(Ha) = {pa € Ba : pa >0 and tr[pa] = 1}.
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EVOLUTION OF A SYSTEM

Isolated system.

Physical evolution: p — UpU™* ~» Reversible

Dissipative quantum system (non-reversible evolution)
T:p—T(p)
o States to states = Linear, positive and trace preserving.
pRc € S(H®H), o with trivial evolution
T: SHOH) — SHOH) X
A =>T=7T31
Tlp®o) = T(p)®o

o Completely positive.
T quantum channel

For every t > 0, the corresponding time slice is a realizable evolution Tz (quantum

channel).
Continuous-time description: Markovian approximation.
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QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup {7;"},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
o o Ty = Tk
o 7y =1.

d * * * * *
gﬁ =T, oLy =LroT.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

K k) * d *
7; :etﬁA <:>£A:E7—t |t:0~

For pa € Sa, Li(pa) = —i[Ha, pa] + > Li(pn)
keA
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DISSIPATIVE QUANTUM SYSTEMS

PrIMITIVE QMS

We assume that {7;"},., has a unique full-rank invariant state which we denote by
oA.

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible, i.e., satisfies
the detailed balance condition:

(£, £(9))o = (L(f); 9) o

for every f,g € Ba and Hermitian, where

(f,9), =tr [f 01/2901/2} :

Notation: p; := T (p).

pa = pe =T (pa) = 3 (pa) =5 oa
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RAPID MIXING

MIXING TIME
We define the mixing time of {7;"} by

o) = min{t >0: sup [T(0) = Ta(o)l, < }

PAESA

RAPID MIXING
We say that £} satisfies rapid mixing if

sup |lpe — oall, < poly(|A])e™".
PAESA

p.
7

y =

OA
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Recall: p; := T (p).

Master equation:
Otpr = Lx(pt)-

Relative entropy of p; and ox:

D(pt|loa) = tr[p(log pt — log aa)].

Differentiating:
9:D(pellon) = tr[Lh (pe)(log pr — log aa)].

Lower bound for the derivative of D(pt||oa) in terms of itself:

2aD(pil|on) < — tr[L4 (pe) (log pr — log o).
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Relative entropy: D(p||o) := tr[p(log p — logo)]

MLSI CONSTANT
The MLSI constant of £} is defined as:

" .o —tr[LA(pa)(log pa —logoa)]
LA) = f
a(£a) S 2D(palloa)

If lim inf a(L}) > O:
A/rzd

D(pelloa) < D(palloa)e 2R,
and with Pinsker’s inequality, we have:

lloe = oally < v/2D(palloa) e~ Rt < /2108 (1 omm) e~ ER)",

For thermal states, omin ~ 1/exp(|A]).

MLSI = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

lloe — oall, < /T/Gmm e AR,



MIXING TIME AND LOG-SOBOLEV INEQUALITIES
00e0000

QUANTUM SPIN SYSTEMS

Kastoryano-Temme, '13 This
Log-Sobolev constant T
Kastoryano-Temme, '13

Exponential
decay of correlations

eBHA

Cubitt et al, ’11/ \Brzmdao et al, ’15 Hy:=Y ®() oa= T (e
ia ¥ (e=PHa)

Stability Area law

Exp. decay of correlations:

sup tr[Oa ® Op(0ap — 04 @ 0B)]| < K e 1A
[[Oall=ll0OBl=1



What do we want to prove?

lim inf a(L}) > ¥(|A]) > 0.
A zd




What do we want to prove?

lim inf a(L}) > ¥(|A]) > 0.
A zd

A

Can we prove something like

a(LR) =2 V([A]) a(£h) > 07



What do we want to prove?

lim inf a(L}) > ¥(|A]) > 0.
A zd

A

Can we prove something like

a(LR) =2 V([A]) a(£h) > 07

No, but we can prove

a(LR) = Y(|A]) aa(Lh) > 0.
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MLSIT CONSTANT
The MLSI constant of £} = > £, is defined by

keA
* .o —tr[L(pa)(log pa —logon)]
LY) = f
olla) = Jof, 2D (pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

x o —tr[La(pa)(log pa —logoy)]
Ly) = f
an(£3) = il 2D (pallon)
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STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

on the Gibbs state
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ORIZATION OF THE RELA

A B C

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pr,on € D(Hapc), where £(caBc) depends only on 04pc and measures how far
oac 1s from o4 ® oc.
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ExXAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcia '18)  Li(pa) = Z (02 ® pze — pA) heat-bath
TEA
Dz (palloa) := D(pallon) = D(pac|loae)

O\ = ® Oz,

TEA
D(palloa) <
-
A
< S Da(pallon)
zEA
sy Z —tr[L (pa)(log pa — logoa)]
204 (L)

IA

IA

TEA

1
<= _ * .
= 2inf aA(Li)ZEZA tr[£3 (pa)(log pa — log o)

= Siaran(cs)
2jaf ealte)

—tr[L3(pa)(log pa — logon)])

K4
IN

(= tr[LA(pa)(log pa —logoa)]) . = a(L3) 2 1/2.



—BH)
Let OAN = trTeiWA]

be the Gibbs state of finite-range, commuting Hamiltonian.
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HEAT-BATH GENERATOR.
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H; 1/2 _—1/2 —1/2 1/2
Ly " (pa) == Z (a'A/ amc/ pzco'wc/ O‘A/ pr)
zEA



EXAMPLES
o] lele]

DyNAMICS

Let opa = ‘[’ ] be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 —1/2 —1/2 1/2
A *(pA) = Z ( A/ Oge / PwCO'xc/ UA/ 7PA)
TEA

DAVIES GENERATOR

The Davies generator is given by:
LR(X) =14[Hp, X]+ D _LD(X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.




EXAMPLES
o] lele]

Let opa = eiﬂi be the Gibbs state of finite-range, commuting Hamiltonian.
r[e EHA]

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 _—1/2 ~1/2 _1/2
Ly " (pa) == Z (O'A/ crrc/ Pmcc"xc/ O'A/ pr)
TEA

DAVIES GENERATOR.

The Davies generator is given by:

LR(X) :=i[Ha, X]+ Y LD(X),
TEA

where the £ are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:
fx) =3 (BEx)-x),
TEA

where the conditional expectations do not depend on system-bath couplings.
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PREVIOUS RESULTS

Let us recall: For a(£}) a MLSI constant,

loe = oally < /2T0g(T/omm) e~ 4%,

Using the spectral gap A\(L}):

~MER) ¢

e —oally < V1/omine

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £5"”* has a
positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,

Beigi-Datta-Rouzé '18)

Let ﬁf** be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.
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QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dag(palloa) + Dec(palloa)] +d

Classical quasi-factorization C = Strong subadditivity

Ent(f) < e [Ent(f|F1) + Ent(f]F2)] S(pagc) + S(pp) < S(pas) + S(prc)

D= D(p|EM(p))

General superadditivity By, 0 By, = By, 0 By, = B!
- Dy < D1+ Dy

— CLP18'

Pinching onto
- different bases

L(X) = Ei(X)
+E>(X) = 2X

DE(palloa) == Dipal| B4 (pa))

2 assumptions,

D < c[D; + Ds]

Local 0 Hamiltonian, high
‘Generallzed depolarizing 1D Heat-bath generator, 2 t;:ll;asslcal
L7(pa) = 02 ® pae — pa 2 assumptions Nearet
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MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f;* be a Davies generator with unique fixed point o given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£5) = Q(In(|A]) ™).
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MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let Ef;* be a Davies generator with unique fixed point o given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£5) = Q(In(|A]) ™).

Rapid mixing:

sup |lpt — oall; < poly(|Al)e
PAESA

For a(L}) a MLSI constant:

llpr — oally < v/210g(1/mm) e~ * 52
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MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f;* be a Davies generator with unique fixed point o given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£5) = Q(In(|A]) ™).

Rapid mixing:

sup |lpt — oall; < poly(|Al)e

PAESA

For a(L}) a MLSI constant:

ot — oally < v/210g(1/min) e <A

RAPID MIXING

In the setting above, £1* has rapid mixing.
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PROOF: CONDITIONAL RELATIVE ENTROPIES —+ QUASI—FACTORIZATION

XY Z
Conditional relative entropies: Dx (pa|loa) := (pA||aA) D(pxc|loxe)
D)E<(PA||UA) = D(palEx (pn)) - .,
Heat-bath cond. expectation: E% () ( M2/ trx[']a}i/Qa/l\/Q)
n
D(pxyzl|loxyz) Dxy(pxyzlloxy: Dyz(pxyzlloxyz

<€L:; Z + X”
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XY Z

Conditional relative entropies: Dx (palloa) := D(palloa) — D(pxcl|loxe) ,
DX (palloa) = D(pall Ex (p2)) -
1/2_—1/2

Heat-bath cond. expectation: EX () := lim (O’A Oxe trX[~]a;(i/2011\/2)

\/-\/\

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hxyz and pxyz,0xyz € Sxyz. The following holds
D(pxvzl|loxyz) < &(oxz) [Dxy(pxyvzl|loxyz) + Dyz(pxyzl|loxyz)],

where
1

1—2”0}1/2(805 Oxz0x S R0

<£&i”2 @Ez );

§loxz) =

o
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PROOF: QUASI-FACTORIZATION

B B

—— ~ ~

99090000000 00000000
N >~ N =

—~ v
A Ay
e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpallon) + Dp(palloa)],

where 1

&(oacpe) = =V

1— 2HUA° ®O’;i/2 O AcBe 0'261/2 ®o’§i/

2
—]lAch

Aipt

—

900000000000000000

P ——
A, Ai DA
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PROOF: QUASI-FACTORIZATION

B B

/4\7'\ ~ ~

99090000000 00000000
N o >~ N « =

A Ay

_ e BHp
oA = tr(c_ﬁHA)

is the Gibbs state of a k-local, commuting Hamiltonian H}y .
QUASI-FACTORIZATION

Let AUB = A C Z and pp,op € Sp. The following holds

D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1
&(oacpe) =
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QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)
Since o is a QMC between A; <> 9(A;) <> (A; U9OA;)¢, then:

Da(palloa) €D Da,(palloa).
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QUASI—F‘ACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,

i

where 1
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DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(l ®O’§10XZ — ]lszoo < 5(|Y|)

As a consequence, £(o acpe) is uniformly bounded as long as # segments = O(|A|/In |A]).



MAIN RESULT

[e]e]e]e] lelele)

OOOOOOOOOOOOOOOOO

~ ~

Ay As

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(ps)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

Da(palloa) < DX(palloa)
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Let us recall: DA(/)AHUA) = D(pAHUA) = D(pAc”O'Ac) s
DX (palloa) := D(pal|E4(pa)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

Da(palloa) < DX(pallon)

@ /@ B\
Therefore, by this and + N4 , we have:

D(palloa) < &(gacpe) > [DE,-, (palloa) + D5, (PAHUA)] ,
and ths a(£5) > K min {an, (57,0, (£57)}
for
—tr [ﬁff*(pA)(ln pr — In O’A)]
aa, (L") = inf :
l PAESA D(pallE, (pa))
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REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallE4, (pa)) < 4ka; Y D(pall E; (pa))

JEA;

REDUCTION FROM CMLSI TO GAP

1
kAiO(m,

where A < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando '16), ka, = O(In|A|) for A; = O(In |A|).

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:
Dijxy - Djx*
ac(L;") = érelgoz(ﬁj ®Idg) > 0.
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Davies cond. expectation: EY™ () := tlim etfa (1) .
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