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MAIN TOPIC OF THIS TALK

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to
their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the
existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal

equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

= Open quantum many-body systems.

o Dynamics of S is dissipative!

o The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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NOTATION

Consider an initial state on the system. How is its evolution given?

Figure: A quantum spin lattice system.

Finite lattice A CC Z%.

o To every site © € A we associate Hy (= (CD).

o The global Hilbert space associated to A is Ha = ®z€A H..

The set of bounded linear endomorphisms on Ha is denoted by Ba := B(Ha).

(]

©

©

The set of density matrices is denoted by
Sa :=8(Ha) = {pa € Ba : pa >0 and tr[pa] = 1}.
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PoOSTULATE 1
Given an isolated physical system, there is a complex Hilbert space H associated to
it, which is known as the state space of the system.

Moreover, the physical system is completely described by its state vector, which is a
unitary vector in the state space.

POSTULATE 2

Given an isolated physical system, its evolution is described by a unitary
transformation in the Hilbert space.
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Dissipative quantum system (non-reversible evolution)

T:p—T(p)

@ States to states = Linear, positive and trace preserving
pRc € S(H®H), o with trivial evolution
T: SHOMH) — SHOH) X
- =T=T®1
Tp®o) = T(p)®o
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p — UpU™ ~» Reversible

Dissipative quantum system (non-reversible evolution)

T:p—T(p)

@ States to states = Linear, positive and trace preserving
pRc € S(H®H), o with trivial evolution
T . ’ ’ .
7o SMeH) - SHOH) | 4+ o4

Tlpoo) = T ®c

o Completely positive.
7 quantum channel (CPTP map)
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OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment + System form a closed system.

State for the environment: |) (¥| 5
p=p® 1Y) (Wlg = U(p® ) (Ylg) U = trelU (0@ |9) (Ylg) U] =5

quantum channel

T: SH) — SH)
p = P
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Continuous-time description: For every ¢t > 0, the corresponding time slice
is a realizable evolution 7; (quantum channel).

The effect of the environment on the system is almost irrelevant, but still
important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation
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QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup {7;"},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
o o Ty = Tk
o 7y =1.

d * * * * *
gﬁ =T, oLy =LroT.

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

K k) * d *
7; :etﬁA <:>£A:E7—t |t:0~

For pan € Sa, Li(pa) = —i[Ha, pa]l + > Li(pa)
kEA
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DISSIPATIVE QUANTUM SYSTEMS

PrIMITIVE QMS

We assume that {7;"},., has a unique full-rank invariant state which we denote by
oA.

REVERSIBILITY

We also assume that the quantum Markov process studied is reversible, i.e., satisfies
the detailed balance condition:

(£, £(9))o = (L(f); 9) o

for every f,g € Ba and Hermitian, where

(f,9), =tr [f 01/2901/2} :

Notation: p; := T (p).

pa = pe =T (pa) = 3 (pa) =5 oa



INTRODUCTION AND MOTIVATION
0000000000800

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main objective:




AND M
0000000000800

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main objective:

One problem: Appearance of noise.



AND M
0000000000800

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Main objective:

One problem: Appearance of noise.
Some kinds of noise can be modelled using quantum dissipative
evolutions.
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL7

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor
(protecting the system from noisy evolutions).

Interesting problems:
o Computational power
o Conditions against noise

o Time to obtain certain states
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RAPID MIXING

MIXING TIME
We define the mixing time of {7;"} by

o) = min{t >0: sup [T(0) = Ta(o)l, < }

PAESA

RAPID MIXING

We say that £} satisfies rapid mixing if

sup |lpe — oall, < poly(|A])e™".
PAESA

p.
N —p

© poly(JAl)e™

OA
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Relative entropy: of p: and ox:

D(ptlloa) = tr[pi(log pr — log oa)].
Recall: p, :=T; (p).

Master equation:
Orpe = L7 (pr)-

Relative entropy of p: and ox:

D(pt||loa) = tr[pi(log pr — logon)].

Differentiating:
0eD(pt||loa) = tr[LA(pt)(log pe — logon)].

Lower bound for the derivative of D(p¢||oa) in terms of itself:

20D (pt|loa) < —tr[LA (pe)(log pr —log oa)].
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Relative entropy: D(p||o) := tr[p(log p — logo)]

MLSI CONSTANT
The MLSI constant of £} is defined as:

. .« —tr[LA(pa)(log pa —logon)]
LA) = f
a(£a) = fof 2D(pallon)

If lim inf a(L}) > 0:
A7
D(ptllon) < D(pallon)e 50",
and with Pinsker’s inequality (%Hp — o2 < D(pl|o) for ||A], := tr[\A|]), we have:
loe — oally < v/ZD(onllon) e3¢ < \/TTog(Tamm) e~ 2EH)*,

For thermal states, omin ~ 1/exp(|A]).

MLSI = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

lpe = oally < v/1/0min e D)L,
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QUANTUM SPIN SYSTEMS

Kastoryano-Temme, '13 This
Log-Sobolev constant T
Kastoryano-Temme, '13

Exponential
decay of correlations

eBHA

Cubitt et al, ’11/ \Brzmdao et al, ’15 Hy:=Y ®() oa= T (e
ia ¥ (e=PHa)

Stability Area law

Exp. decay of correlations:

sup tr[Oa ® Op(0ap — 04 @ 0B)]| < K e 1A
[[Oall=ll0OBl=1
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What do we want to prove?

lim inf a(L}) > ¥(|A]) > 0.
A zd

A

Can we prove something like

a(LR) =2 V([A]) a(£h) > 07

No, but we can prove

a(LR) = (Al aa(Lh) > 0.
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CONDITIONAL MLSI CONSTANT

MLSIT CONSTANT
The MLSI constant of £} = > £, is defined by

keA
* .o —tr[L(pa)(log pa —logon)]
LY) = f
olla) = Jof, 2D (pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

x o —tr[La(pa)(log pa —logoy)]
Ly) = f
an(£3) = il 2D (pallon)




OBOLEV INEQUALITIES

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

on the Gibbs state
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ORIZATION OF THE RELA

A B C

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pr,on € D(Hapc), where £(caBc) depends only on 04pc and measures how far
oac 1s from o4 ® oc.



ExaMPLE: TENSOR P

(C.-Lucia-Pérez Garcia '18)  Li(pa) = Z (02 ® pze — pA) heat-bath
TEA
Dz (palloa) := D(pallon) = D(pac|loae)

or= Q o, @

zEA
D(palloa) <

AN
A

IA

S Dalpallon)

zEA

—tr[L3(pa)(log pa —logon)]
S Z 207 (L3)

o — (3 (pa) (log o — log )]
el = il e Al

TzEA
5 2~ (L3 (o) (log p — log o)

= 2inf ap (L3
o) &

[ 1

2jgf ealtd)

—tr[LA(pa)(log pa —logon)])

Fia
'
A

< (= tr[£A(pa)(log pa —logoa)]).
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A] be the Gibbs state of finite-range, commuting Hamiltonian.
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DyNAMICS

Let opa = ‘[’ ] be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 —1/2 —1/2 1/2
A *(pA) = Z ( A/ Oge / PwCO'xc/ UA/ 7PA)
TEA

DAVIES GENERATOR

The Davies generator is given by:
LR(X) =14[Hp, X]+ D _LD(X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.
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Let opa = eiﬂi be the Gibbs state of finite-range, commuting Hamiltonian.
r[e EHA]

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 _—1/2 ~1/2 _1/2
Ly " (pa) == Z (O'A/ crrc/ Pmcc"xc/ O'A/ pr)
TEA

DAVIES GENERATOR.

The Davies generator is given by:

LR(X) :=i[Ha, X]+ Y LD(X),
TEA

where the £ are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:
fx) =3 (BEx)-x),
TEA

where the conditional expectations do not depend on system-bath couplings.
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PREVIOUS RESULTS

Let us recall: For a(£}) a MLSI constant,

loe = oally < /2T0g(T/omm) e~ 4%,

Using the spectral gap A\(L}):

~MER) ¢

e —oally < V1/omine

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £5"”* has a
positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,

Beigi-Datta-Rouzé '18)

Let ﬁf** be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.
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QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dag(palloa) + Dec(palloa)] +d

Classical quasi-factorization C = Strong subadditivity

Ent(f) < e [Ent(f|F1) + Ent(f]F2)] S(pagc) + S(pp) < S(pas) + S(prc)

D= D(p|EM(p))

General superadditivity By, 0 By, = By, 0 By, = B!
- Dy < D1+ Dy

— CLP18'

Pinching onto
- different bases

L(X) = Ei(X)
+E>(X) = 2X

DE(palloa) == Dipal| B4 (pa))

2 assumptions,

D < c[D; + Ds]

Local 0 Hamiltonian, high
‘Generallzed depolarizing 1D Heat-bath generator, 2 t;:ll;asslcal
L7(pa) = 02 ® pae — pa 2 assumptions Nearet
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T RECENT RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f;* be a Davies generator with unique fixed point o given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£5) = Q(In(|A]) ™).

Rapid mixing:

sup |lpt — oall; < poly(|Al)e

PAESA
For a(L}) a MLSI constant:

ot — oally < v/210g(1/min) e <A

RAPID MIXING

In the setting above, £1* has rapid mixing.
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Conditional relative entropies: Da(palloa) := D(palloa) — D(paclloac) ,

DX (palloa) := D(pallE4(pa)) -
Heat-bath cond. expectation: F () := lim 0,1\/20;/2 tra[-]o,e’ "oy
n— o0

—1/2 1/2)"

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,ocasc € Sapc. The following holds
D(pasclloasc) < &(oac) [Das(pasclloapc) + Dec(pasc|loasc)],

where
1

§(oac) =
1— 2Ha/§1/2 ®oo P oaca ] *@ag!? - ILACH

oo

D(panclloanc) Dap(pasclioasc Dac(pasclioanc)

OABC

AlBlc <E(A0) |falBlc + 4Bl c
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CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

o We have introduced log-Sobolev constants as a tool to prove rapid mixing.

e We have shown that some results of quasi-factorization and decay of correlations
imply positivity of log-Sobolev constants.
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OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
o In the last result, can the MLSI be independent of the system size?

o Extension to more dimensions.

o Any dimension at high temperature, with ”small interactions”.
e 2D, quantum double models.

e Improve results of quasi-factorization for the relative entropy: More systems?

o New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Das(pllo) = tx [plog (o' *0 /)] .
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Let Hapc and papc,ocasc € Sapc. The following holds
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oA = m is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + De(palloa)l,

where 1

&(oacpe) = =V

1— 2HUA° ®O’;i/2 O AcBe 0'261/2 ®o’§i/

2
—]lAch

Aipt

—

900000000000000000

P ——
A, Ai DA



Proof of main result
O@0000

PROOF: QUASI-FACTORIZATION

B B

/4\7'\ ~ ~

99090000000 00000000
N o >~ N « =

A Ay

_ e BHp
oA = tr(c_ﬁHA)

is the Gibbs state of a k-local, commuting Hamiltonian H}y .
QUASI-FACTORIZATION

Let AUB = A C Z and pp,op € Sp. The following holds

D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1
&(oacpe) =

1— ZHUZCUQ ®a;i/2 O AcBe 0'261/2 ®U’;i/2 — L gcpe

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)
Since o is a QMC between A; <> 9(A;) <> (A; U9OA;)¢, then:

Da(palloa) €D Da,(palloa).

Aipt
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PROOF: DECAY OF CORRELATIONS
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QUASI-FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oacpe) Z [Da,(palloa) + D, (palloa)] s
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PROOF: DECAY OF CORRELATIONS

B By
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A L‘i

QUASI—F‘ACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,

i

where 1
&(oacpe) =
1/2 —-1/2 —-1/2 —-1/2
1—2HUAC/ ®UBC/ O AcBe UAC/ ®UBC/ — 1 gcpe
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DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(l ®O’§10XZ — ]lszoo < 5(|Y|)
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QUASI-FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds

D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,

i

where 1
&(0acBe) =
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DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(l ®O’§10XZ — ]lszoo < 5(|Y|)

As a consequence, £(o acpe) is uniformly bounded as long as # segments = O(|A|/In |A]).
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B By
— A
20000000000000000
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Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, 20)

Da(palloa) < DX (palloa)

Therefore, by this and 1 . 54 , we have:

D(palloa) < &(0ace) Y | [Dfi (pallon) + D, (PAHUA)} :
and thus a(ﬁf;*) S

oneymin {aa (E8 ) am, ()}

for

i —tr [Efz*(pA)(ln pa — In O'A)]
A lla™) = Sup D A TER (on)
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Proor: PositivE CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé,

D(pallE4, (pa)) < 4ka; Y D(pall E; (pa))

JEA;

REDUCTION FROM CMLSI TO GAP

1
kAiO(m,

where A < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando '16), ka, = O(In|A|) for A; = O(In |A|).

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:
Dijxy - Djx*
ac(L;") = érelgoz(ﬁj ®Idg) > 0.
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