Entropy decay for 1D quantum Gibbs samplers

Ángela Capel (ICMAT-UAM, Madrid)

Joint work with Ivan Bardet (INRIA, Paris), Nilanjana Datta (U. Cambridge), Angelo Lucia (Caltech), Cambyse Rouzé (T. U. München) and David Pérez-García (U. Complutense de Madrid).

Caltech, IQI Seminar, 16th April 2019

BASED ON:

 A. Capel, A. Lucia and D. Pérez-García, Superadditivity of Quantum Relative Entropy for General States, *IEEE Trans. on Inf. Theory*, 64 (7) (2018), 4758–4765.

A. Capel, A. Lucia and D. Pérez-García, Quantum Conditional Relative Entropy and Quasi-Factorization of the Relative Entropy, J. Phys. A: Math. Theor., 51 (2018), 484001.

I. Bardet, A. Capel, N. Datta, A. Lucia, D. Pérez-García and C. Rouzé, Entropy decay for 1D quantum Gibbs samplers, in preparation.

Q. information theory \longleftrightarrow **Q.** many-body physics

Communication channels \longleftrightarrow Physical interactions

Q. information theory \longleftrightarrow **Q. many-body physics** Communication channels \longleftrightarrow Physical interactions

Tools and ideas \longrightarrow Solve problems

Q. information theory \longleftrightarrow Q. many-body physics

$\mbox{Communication channels} \longleftrightarrow \mbox{Physical interactions}$

Tools and ideas \longrightarrow Solve problems

Storage and transmision \leftarrow Models of information

Q. information theory \longleftrightarrow **Q.** many-body physics

 $\mbox{Communication channels} \longleftrightarrow \mbox{Physical interactions}$

Tools and ideas \longrightarrow Solve problems

Storage and transmision \leftarrow Models of information

MAIN TOPIC OF MY THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

MAIN TOPIC OF MY THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

MAIN TOPIC OF MY THESIS

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

2 QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

- Conditional relative entropy
- QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

1. Quantum dissipative systems

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

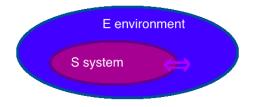


Figure: An open quantum many-body system.

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

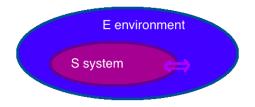


Figure: An open quantum many-body system.

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

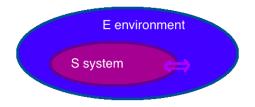


Figure: An open quantum many-body system.

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

QUANTUM DISSIPATIVE SYSTEMS QUASI-FACTORIZATION OF THE RELATIVE ENTROPY LOG-SOBOLEV CONSTANT

NOTATION

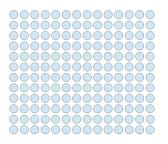


Figure: A quantum spin lattice system.

- Finite lattice $\Lambda \subset \mathbb{Z}^d$.
- To every site $x \in \Lambda$ we associate \mathcal{H}_x (= \mathbb{C}^D).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.
- The set of bounded linear endomorphisms on \mathcal{H}_{Λ} is denoted by $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda}).$
- The set of density matrices is denoted by $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \ge 0 \text{ and } tr[\rho_{\Lambda}] = 1 \}.$

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow \text{Reversible}$

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $T: \rho \mapsto T(\rho)$

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution) $T: \rho \mapsto T(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow$ Reversible

 ${\bf Dissipative \ quantum \ system \ (non-reversible \ evolution)}$

 $T:\rho\mapsto T(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving.

 $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution

 $\begin{array}{rccc} \hat{T}: & \mathcal{S}(\mathcal{H}\otimes\mathcal{H}') & \to & \mathcal{S}(\mathcal{H}\otimes\mathcal{H}') \\ & \hat{T}(\rho\otimes\sigma) & = & T(\rho)\otimes\sigma \end{array} \Rightarrow \hat{T} = T\otimes\mathbb{1}$

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $T:\rho\mapsto T(\rho)$

• States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution $\hat{T}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{T}(\rho \otimes \sigma) = \quad T(\rho) \otimes \sigma \Rightarrow \hat{T} = T \otimes \mathbb{1}$

• Completely positive.

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $T:\rho\mapsto T(\rho)$

- States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution $\hat{T}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{T}(\rho \otimes \sigma) = \quad T(\rho) \otimes \sigma \Rightarrow \hat{T} = T \otimes \mathbb{1}$
- Completely positive.

T quantum channel

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow$ Reversible

Dissipative quantum system (non-reversible evolution)

 $T:\rho\mapsto T(\rho)$

- States to states \Rightarrow Linear, positive and trace preserving. $\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma$ with trivial evolution $\hat{T}: \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \rightarrow \quad \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$ $\hat{T}(\rho \otimes \sigma) = \quad T(\rho) \otimes \sigma \Rightarrow \hat{T} = T \otimes \mathbb{1}$
- Completely positive.

T quantum channel

Open systems \Rightarrow Environment and system interact.

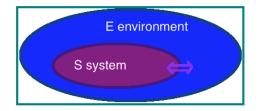


Figure: Environment + System form a closed system.

Open systems \Rightarrow Environment and system interact.

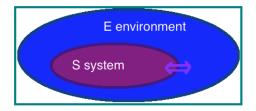


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \mathrm{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

Open systems \Rightarrow Environment and system interact.

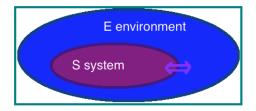


Figure: Environment + System form a closed system.

State for the environment: $\left|\psi\right\rangle\left\langle\psi\right|_{E}$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \mathrm{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

$$\begin{array}{cccc} T: & \mathcal{S}(\mathcal{H}) & \to & \mathcal{S}(\mathcal{H}) \\ & \rho & \mapsto & \tilde{\rho} \end{array} \quad \text{quantum channel} \end{array}$$

Open systems \Rightarrow Environment and system interact.

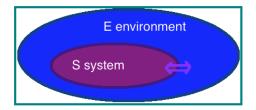


Figure: Environment + System form a closed system.

State for the environment: $|\psi\rangle \langle \psi|_E$

 $\rho \mapsto \rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E} \mapsto U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*} \mapsto \operatorname{tr}_{E}[U\left(\rho \otimes \left|\psi\right\rangle \left\langle\psi\right|_{E}\right) U^{*}] = \tilde{\rho}$

$$\begin{array}{cccc} T: & \mathcal{S}(\mathcal{H}) & \to & \mathcal{S}(\mathcal{H}) \\ & \rho & \mapsto & \tilde{\rho} \end{array} \quad \text{quantum channel} \end{array}$$

MARKOVIAN APPROXIMATION

Continuous-time description: For every $t \ge 0$, the corresponding time slice is a realizable evolution T_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

MARKOVIAN APPROXIMATION

Continuous-time description: For every $t \ge 0$, the corresponding time slice is a realizable evolution T_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve \Rightarrow Weak-coupling limit **Continuous-time description:** For every $t \ge 0$, the corresponding time slice is a realizable evolution T_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

\Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Continuous-time description: For every $t \ge 0$, the corresponding time slice is a realizable evolution T_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation

Continuous-time description: For every $t \ge 0$, the corresponding time slice is a realizable evolution T_t (quantum channel).

The effect of the environment on the system is almost irrelevant, but still important.

Assumption: The environment does not evolve

 \Rightarrow Weak-coupling limit

Environment holds no memory + Future evolution only depends on the present.

Markovian approximation

DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

• $\mathcal{T}_0^* = \mathbb{1}$.

DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

Notation: $\rho_t := \mathcal{T}_t^*(\rho).$

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Ángela Capel (ICMAT-UAM, Madrid)

Entropy decay for 1D quantum Gibbs samplers

DISSIPATIVE QUANTUM SYSTEMS

Dissipative quantum systems

A dissipative quantum system is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$$

•
$$\mathcal{T}_0^* = 1$$
.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_\Lambda^* = \mathcal{L}_\Lambda^* \circ \mathcal{T}_t^*.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}^*_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t^* = e^{t\mathcal{L}_\Lambda^*} \Leftrightarrow \mathcal{L}_\Lambda^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=0}.$$

Notation: $\rho_t := \mathcal{T}_t^*(\rho)$.

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states

• ...

QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective \Rightarrow Resource to exploit

New area:

Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process works in favor (protecting the system from noisy evolutions).

Interesting problems:

- Computational power
- Conditions against noise
- Time to obtain certain states

• ...

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \le \varepsilon\right\}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if $\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \leq \operatorname{poly}(|\Lambda|)e^{-\varepsilon_{\Lambda}}$

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \le \varepsilon\right\}.$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

Problem

Find examples of rapid mixing!

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min\left\{t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \le \varepsilon\right\}.$$

RAPID MIXING

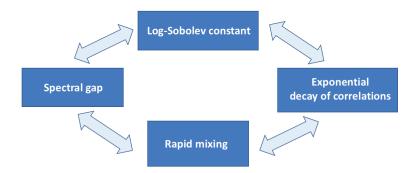
We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\Gamma_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

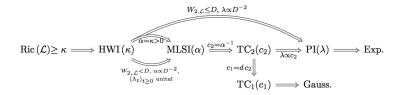
Problem

Find examples of rapid mixing!

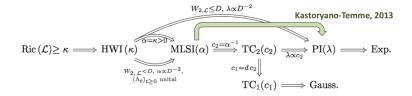
CLASSICAL SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

 $\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_\Lambda)].$$

LOG-SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Deriving:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$
(1)

Log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho).$

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Deriving:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$
(1)

We want to find a lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$
(2)

Log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho).$

Liouville's equation:

$$\partial_t \rho_t = \mathcal{L}^*_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Deriving:

$$\partial_t D(\rho_t || \sigma_\Lambda) = \operatorname{tr}[\mathcal{L}^*_\Lambda(\rho_t)(\log \rho_t - \log \sigma_\Lambda)].$$
(1)

We want to find a lower bound for the derivative of $D(\rho_t || \sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$
(2)

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \le D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha (\mathcal{L}_{\Lambda}^*) t},$$

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

LOG-SOBOLEV CONSTANT

The **log-Sobolev constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\alpha(\mathcal{L}^*_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}.$$

Log-Sobolev constant \Rightarrow Rapid mixing.

Problem

Find positive log-Sobolev constants!

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

MAIN PROBLEM OF MY THESIS

Develop a strategy to find positive log Sobolev constants.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

MAIN PROBLEM OF MY THESIS

Develop a strategy to find positive log Sobolev constants.

Concrete problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Positive log-Sobolev constant of a size-fixed region.

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Positive log-Sobolev constant of a size-fixed region.

Positive log-Sobolev constant.

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Positive log-Sobolev constant of a size-fixed region.

∜

Positive log-Sobolev constant.

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let $\mathcal{L}^{*}_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of $\mathcal{L}^{*}_{\Lambda}$ by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Conditional log-Sobolev constant

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state $\sigma_{\Lambda}, A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

LOG-SOBOLEV CONSTANT

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state σ_{Λ} . We define the **log-Sobolev constant** of \mathcal{L}^*_{Λ} by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL LOG-SOBOLEV CONSTANT

Let $\mathcal{L}^*_{\Lambda} : \mathcal{S}_{\Lambda} \to \mathcal{S}_{\Lambda}$ be a primitive reversible Lindbladian with stationary state $\sigma_{\Lambda}, A \subseteq \Lambda$. We define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} on A by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

(1) Quasi-factorization of the relative entropy (in terms of a conditional relative entropy).

+

(2) Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

(1) Quasi-factorization of the relative entropy (in terms of a conditional relative entropy).

+

(2) Recursive geometric argument. Lower bound for the log-Sobolev constant in terms of a conditional

log-Sobolev constant in terms of log-Sobolev constant.

+

(3) Positive (and size-independent) conditional log-Sobolev constant.

(1) Quasi-factorization of the relative entropy (in terms of a conditional relative entropy).

+

(2) Recursive geometric argument.

Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

+

(3) Positive (and size-independent) conditional log-Sobolev constant.

Positive log-Sobolev constant.

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

(1) Quasi-factorization of the relative entropy (in terms of a conditional relative entropy).

+

(2) Recursive geometric argument.

Lower bound for the log-Sobolev constant in terms of a conditional log-Sobolev constant.

+

(3) Positive (and size-independent) conditional log-Sobolev constant.

∜

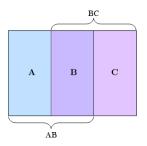
Positive log-Sobolev constant.

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

2. QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Conditional relative entropy Quasi-factorization of the relative entropy

STATEMENT OF THE PROBLEM



Problem

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$

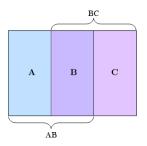
QUANTUM RELATIVE ENTROPY

$$D(\rho || \sigma) = \operatorname{tr} \left[\rho(\log \rho - \log \sigma) \right]$$

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

Conditional relative entropy Quasi-factorization of the relative entropy

STATEMENT OF THE PROBLEM



Problem

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$. Can we prove something like

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right] ?$

QUANTUM RELATIVE ENTROPY

$$D(\rho || \sigma) = \operatorname{tr} \left[\rho(\log \rho - \log \sigma) \right]$$

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

Problem

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

ere $h = \frac{d\mu}{d\bar{\mu}}.$

Problem

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \, \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

here $h = \frac{d\mu}{d\bar{\mu}}.$

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

w

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

Problem

 $D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right]$

CLASSICAL CASE, Dai Pra et al. '02

$$\operatorname{Ent}_{\mu}(f) \leq \frac{1}{1 - 4 \|h - 1\|_{\infty}} \, \mu \left[\operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{1}) + \operatorname{Ent}_{\mu}(f \mid \mathcal{F}_{2}) \right],$$

where $h = \frac{d\mu}{d\bar{\mu}}.$

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:

wł

$$\operatorname{Ent}_{\mu}(f) = \mu(f \log f) - \mu(f) \log \mu(f).$$

Conditional entropy:

$$\operatorname{Ent}_{\mu}(f \mid \mathcal{G}) = \mu(f \log f \mid \mathcal{G}) - \mu(f \mid \mathcal{G}) \log \mu(f \mid \mathcal{G}).$$

Relative Entropy

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in S_{\Lambda}$. The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

PROPERTIES OF THE RELATIVE ENTROPY

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **O Continuity.** $\rho_{AB} \mapsto D(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$.
- Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

Relative Entropy

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in S_{\Lambda}$. The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **O Continuity.** $\rho_{AB} \mapsto D(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$.
- Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

Relative Entropy

QUANTUM RELATIVE ENTROPY

Let $\rho_{\Lambda}, \sigma_{\Lambda} \in S_{\Lambda}$. The **quantum relative entropy** of ρ_{Λ} and σ_{Λ} is defined by:

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) = \operatorname{tr} \left[\rho_{\Lambda}(\log \rho_{\Lambda} - \log \sigma_{\Lambda})\right].$$

Properties of the relative entropy

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$. The following properties hold:

- **O Continuity.** $\rho_{AB} \mapsto D(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Additivity. $D(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B)$.
- Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

CHARACTERIZATION OF THE RE, Wilming et al. '17, Matsumoto '10

If $f: \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$ satisfies 1-4, then f is the relative entropy.

CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$. We define a **conditional relative entropy** in A as a function

$$D_A(\cdot||\cdot): \mathcal{S}_{AB} \times \mathcal{S}_{AB} \to \mathbb{R}_0^+$$

verifying the following properties for every $\rho_{AB}, \sigma_{AB} \in S_{AB}$:

- **O Continuity:** The map $\rho_{AB} \mapsto D_A(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Non-negativity: $D_A(\rho_{AB}||\sigma_{AB}) \ge 0$ and

(2.1) $D_A(\rho_{AB}||\sigma_{AB})=0$ if, and only if, $\rho_{AB} = \sigma_{AB}^{1/2} \sigma_B^{-1/2} \rho_B \sigma_B^{-1/2} \sigma_{AB}^{1/2}$.

- **3** Semi-superadditivity: $D_A(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A)$ and
 - (3.1) Semi-additivity: if $\rho_{AB} = \rho_A \otimes \rho_B$, $D_A(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A)$.

• Semi-motonicity: For every quantum channel \mathcal{T} ,

 $D_A(\mathcal{T}(\rho_{AB})||\mathcal{T}(\sigma_{AB})) + D_B((\operatorname{tr}_A \circ \mathcal{T})(\rho_{AB})||(\operatorname{tr}_A \circ \mathcal{T})(\sigma_{AB}))$ $\leq D_A(\rho_{AB}||\sigma_{AB}) + D_B(\operatorname{tr}_A(\rho_{AB})||\operatorname{tr}_A(\sigma_{AB})).$

Remark

Consider for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$

$$D_{A,B}^+(\rho_{AB}||\sigma_{AB}) = D_A(\rho_{AB}||\sigma_{AB}) + D_B(\rho_{AB}||\sigma_{AB}).$$

Then, $D_{A,B}^+$ verifies the following properties:

- Continuity: $\rho_{AB} \mapsto D^+_{A,B}(\rho_{AB} || \sigma_{AB})$ is continuous.
- **2** Additivity: $D_{A,B}^+(\rho_A \otimes \rho_B || \sigma_A \otimes \sigma_B) = D(\rho_A || \sigma_A) + D(\rho_B || \sigma_B).$
- **3** Superadditivity: $D_{A,B}^+(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE (C-Lucia-Pérez García, '18)

The only possible conditional relative entropy is given by:

$$D_A(\rho_{AB}||\sigma_{AB}) = D(\rho_{AB}||\sigma_{AB}) - D(\rho_B||\sigma_B)$$

for every $\rho_{AB}, \sigma_{AB} \in \mathcal{S}_{AB}$.

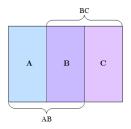


Figure: Choice of indices in $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$.

Result of **quasi-factorization** of the relative entropy, for every $\rho_{ABC}, \sigma_{ABC} \in S_{ABC}$:

 $D(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$

where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.

QUASI-FACTORIZATION FOR THE CRE (C-Lucia-Pérez García, '18)

Let $\mathcal{H}_{ABC} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ and $\rho_{ABC}, \sigma_{ABC} \in \mathcal{S}_{ABC}$. Then, the following inequality holds

$$D(\rho_{ABC}||\sigma_{ABC}) \leq \frac{1}{1-2\|H(\sigma_{AC})\|_{\infty}} \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$H(\sigma_{AC}) = \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC}.$$

Note that $H(\sigma_{AC}) = 0$ if σ_{AC} is a tensor product between A and C.

$\begin{aligned} (1 - 2 \|H(\sigma_{AC})\|_{\infty}) D(\rho_{ABC} || \sigma_{ABC}) &\leq \\ D_{AB}(\rho_{ABC} || \sigma_{ABC}) + D_{BC}(\rho_{ABC} || \sigma_{ABC}) &= \\ &= 2D(\rho_{ABC} || \sigma_{ABC}) - D(\rho_{C} || \sigma_{C}) - D(\rho_{A} || \sigma_{A}). \end{aligned}$

 \Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

 \Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

$$(1 - 2||H(\sigma_{AC})||_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \leq D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) = 2D(\rho_{ABC}||\sigma_{ABC}) - D(\rho_{C}||\sigma_{C}) - D(\rho_{A}||\sigma_{A}).$$

\Leftrightarrow

 $(1+2\|H(\sigma_{AC})\|_{\infty})D(\rho_{ABC}||\sigma_{ABC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

\Leftrightarrow

 $(1+2||H(\sigma_{AC})||_{\infty})D(\rho_{AC}||\sigma_{AC}) \ge D(\rho_A||\sigma_A) + D(\rho_C||\sigma_C).$

This result is equivalent to:

$(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) \, .$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

This result is equivalent to:

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) \, .$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

This result is equivalent to:

 $(1+2\|H(\sigma_{AB})\|_{\infty})D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B) \, .$

Recall:

• Superadditivity. $D(\rho_{AB}||\sigma_A \otimes \sigma_B) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$

Due to:

• Monotonicity. $D(\rho_{AB}||\sigma_{AB}) \ge D(T(\rho_{AB})||T(\sigma_{AB}))$ for every quantum channel T.

we have

$$2D(\rho_{AB}||\sigma_{AB}) \ge D(\rho_A||\sigma_A) + D(\rho_B||\sigma_B).$$

QUANTUM DISSIPATIVE SYSTEMS QUASI-FACTORIZATION OF THE RELATIVE ENTROPY LOG-SOBOLEV CONSTANT

CONDITIONAL RELATIVE ENTROPY QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

RELATION WITH THE CLASSICAL CASE

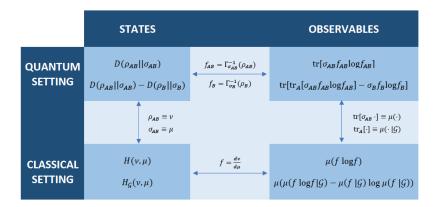


Figure: Identification between classical and quantum quantities when the states considered are classical.

3. Log-Sobolev constant

QUANTUM DISSIPATIVE SYSTEMS QUASI-FACTORIZATION OF THE RELATIVE ENTROPY LOG-SOBOLEV CONSTANT

QUANTUM SPIN LATTICES

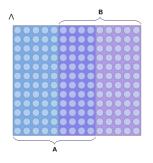


Figure: A quantum spin lattice system Λ and $A, B \subseteq \Lambda$ such that $A \cup B = \Lambda$.

Problem

For a certain \mathcal{L}^*_{Λ} , can we prove $\alpha(\mathcal{L}^*_{\Lambda}) > 0$ using the result of quasi-factorization of the relative entropy?

THEOREM (C-Lucia-Pérez García, '18)

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}_x^* := \mathbb{E}_x^* - \mathbb{1}_\Lambda, \ \mathcal{L}_\Lambda^* = \sum_{x \in \Lambda} \mathcal{L}_x^*$$

Since

$$\mathbb{E}_x^*(\rho_\Lambda) = \sigma_\Lambda^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_\Lambda^{1/2} = \sigma_x \otimes \rho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have

$$\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$$

THEOREM (C-Lucia-Pérez García, '18)

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathbb{E}^*_x(
ho_\Lambda)=\sigma_\Lambda^{1/2}\sigma_{x^c}^{-1/2}
ho_{x^c}\sigma_{x^c}^{-1/2}\sigma_\Lambda^{1/2}=\sigma_x\otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have $\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$

General quasi-factorization for σ a tensor product

Let
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds:
$$D(\rho_{\Lambda} || \sigma_{\Lambda}) < \sum D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$$

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

THEOREM (C-Lucia-Pérez García, '18)

The **heat-bath dynamics**, with product fixed point, has a positive log-Sobolev constant.

Consider the local and global Lindbladians

$$\mathcal{L}^*_x := \mathbb{E}^*_x - \mathbb{1}_\Lambda, \ \mathcal{L}^*_\Lambda = \sum_{x \in \Lambda} \mathcal{L}^*_x$$

Since

$$\mathbb{E}^*_x(
ho_\Lambda)=\sigma_\Lambda^{1/2}\sigma_{x^c}^{-1/2}
ho_{x^c}\sigma_{x^c}^{-1/2}\sigma_\Lambda^{1/2}=\sigma_x\otimes
ho_{x^c}$$

for every $\rho_{\Lambda} \in S_{\Lambda}$, we have $\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda}).$

General quasi-factorization for σ a tensor product

Let
$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
 and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$ such that $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x$. The following inequality holds:
$$D(\rho_{\Lambda} || \sigma_{\Lambda}) \leq \sum D_x(\rho_{\Lambda} || \sigma_{\Lambda}).$$

 $x \in \Lambda$

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

LOG-SOBOLEV CONSTANT

CONDITIONAL LOG-SOBOLEV CONSTANT

For $x \in \Lambda$, we define the **conditional log-Sobolev constant** of \mathcal{L}^*_{Λ} in x by

$$\alpha_{\Lambda}(\mathcal{L}_{x}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})},$$

where σ_{Λ} is the fixed point of the evolution, and $D_x(\rho_{\Lambda}||\sigma_{\Lambda})$ is the conditional relative entropy.

Lemma

$$\alpha_{\Lambda}(\mathcal{L}_x^*) \geq \frac{1}{2}.$$

QUANTUM DISSIPATIVE SYSTEMS QUASI-FACTORIZATION OF THE RELATIVE ENTROPY LOG-SOBOLEV CONSTANT

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_{x \in \Lambda} D_{x}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

Positive log-Sobolev constant

$$\alpha(\mathcal{L}^*_{\Lambda}) \geq \frac{1}{2}.$$

Examples of positive log-Sobolev constants

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|h(\sigma_{AB})\right\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, classical Gibbs states satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

 $D_B(\rho_\Lambda || \sigma_\Lambda) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_\Lambda || \sigma_\Lambda) + D_{B_2}(\rho_\Lambda || \sigma_\Lambda) \right).$

Examples of positive log-Sobolev constants

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|h(\sigma_{AB})\right\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, classical Gibbs states satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

 $D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \leq f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$

THEOREM (Bardet-C-Datta-Lucia-Pérez García-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

Examples of positive log-Sobolev constants

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|h(\sigma_{AB})\right\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, classical Gibbs states satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

 $D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \leq f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$

THEOREM (Bardet-C-Datta-Lucia-Pérez García-Rouzé, '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath dynamics has a positive log-Sobolev constant.

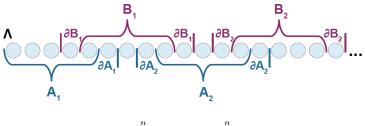
QUANTUM DISSIPATIVE SYSTEMS QUASI-FACTORIZATION OF THE RELATIVE ENTROPY LOG-SOBOLEV CONSTANT

Sketch of the proof

^

Ángela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers

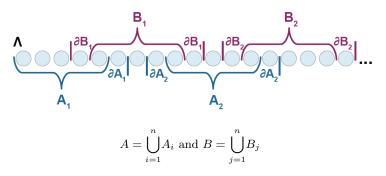
Sketch of the proof



$$A = \bigcup_{i=1}^{n} A_i$$
 and $B = \bigcup_{j=1}^{n} B_j$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \frac{1}{1-2\|h(\sigma_{A^{c}B^{c}})\|_{\infty}} \left[D_{A}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$
$$h(\sigma_{A^{c}B^{c}}) := \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} \sigma_{A^{c}B^{c}} \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} - \mathbb{1}_{A^{c}B^{c}}.$$

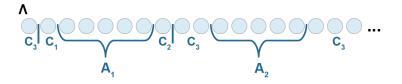
SKETCH OF THE PROOF



$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \frac{1}{1-2||h(\sigma_{A^{c}B^{c}})||_{\infty}} \left[D_{A}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$
$$h(\sigma_{A^{c}B^{c}}) := \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} \sigma_{A^{c}B^{c}} \sigma_{A^{c}}^{-1/2} \otimes \sigma_{B^{c}}^{-1/2} - \mathbb{1}_{A^{c}B^{c}}.$$

Quantum dissipative systems Quasi-factorization of the relative entropy Log-Sobolev constant

STEP 2



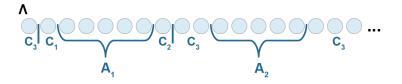
$$D_A(\rho_\Lambda || \sigma_\Lambda) \le \sum_{i=1}^n D_{A_i}(\rho_\Lambda || \sigma_\Lambda)$$

 σ_{Λ} is a QMC between $A_1 \leftrightarrow \partial A_1 \leftrightarrow \Lambda \setminus (A_1 \cup \partial A_1)$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A_1(\partial a_1)_i^L} \otimes \sigma_{(\partial a_1)_i^R \Lambda \setminus (A_1 \cup \partial A_1)}$$

Quantum dissipative systems Quasi-factorization of the relative entropy Log-Sobolev constant

STEP 2



$$D_A(
ho_\Lambda||\sigma_\Lambda) \leq \sum_{i=1}^n D_{A_i}(
ho_\Lambda||\sigma_\Lambda)$$

 σ_{Λ} is a QMC between $A_1 \leftrightarrow \partial A_1 \leftrightarrow \Lambda \setminus (A_1 \cup \partial A_1)$

$$\sigma_{\Lambda} = \bigoplus_{i \in I} \sigma_{A_1(\partial a_1)_i^L} \otimes \sigma_{(\partial a_1)_i^R \Lambda \setminus (A_1 \cup \partial A_1)}$$

STEP 3

Assumption
$$1 \Rightarrow \alpha(\mathcal{L}^*_{\Lambda}) \ge \tilde{K} \min_{i \in \{1, \dots, n\}} \left\{ \alpha_{\Lambda}(\mathcal{L}^*_{A_i}), \alpha_{\Lambda}(\mathcal{L}^*_{B_i}) \right\}$$

STEP 4

Assumption $2 \Rightarrow \alpha_{\Lambda}(\mathcal{L}_{A_i}^*) \ge g(\sigma_{A_i\partial}) > 0.$

STEP 3

Assumption
$$1 \Rightarrow \alpha(\mathcal{L}^*_{\Lambda}) \ge \tilde{K} \min_{i \in \{1, \dots, n\}} \left\{ \alpha_{\Lambda}(\mathcal{L}^*_{A_i}), \alpha_{\Lambda}(\mathcal{L}^*_{B_i}) \right\}$$

STEP 4

Assumption $2 \Rightarrow \alpha_{\Lambda}(\mathcal{L}_{A_i}^*) \ge g(\sigma_{A_i\partial}) > 0.$

OPEN PROBLEMS

Problem 1

Can we use any of the quasi-factorization results to prove log-Sobolev constants in a more general setting?

Problem 2

Does this hold for greater dimension?

PROBLEM 3

Is there a better definition for conditional relative entropy?

