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Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup {T ∗t }t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified logarithmic Sobolev inequality

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗Λ) t ≤
√

2 log(1/σmin) e−α(L∗Λ) t.

For thermal states, σ−1
min ∼ exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗Λ) t.
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Classical spin systems

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant

of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.

⇓

Positive log-Sobolev constant.
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Objective

What do we want to prove?

lim inf
Λ↗Zd

α(L∗Λ) ≥ Ψ(|Λ|) > 0.

Can we prove something like

α(L∗Λ) ≥ Ψ(|A|) α(L∗A) > 0 ?

No, but we can prove

α(L∗Λ) ≥ Ψ(|A|) αΛ(L∗A) > 0 .
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Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Quasi-factorization for the relative entropy

DA(ρABC ||σABC) := D(ρABC ||σABC)−D(ρBC ||σBC)

Quasi-factorization for the CRE (C.-Lucia-Pérez Garćıa ’18)

Let HABC and ρABC , σABC ∈ SABC . The following holds

D(ρABC ||σABC) ≤ ξ(σAC) [DAB(ρABC ||σABC) +DBC(ρABC ||σABC)] ,

where

ξ(σAC) =
1

1− 2
∥∥∥σ−1/2
A ⊗ σ−1/2

C σAC σ
−1/2
A ⊗ σ−1/2

C − 1AC
∥∥∥
∞

.
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General superadditivity for the relative entropy

(1− 2‖H(σAC)‖∞)D(ρABC ||σABC) ≤ DAB(ρABC ||σABC) +DBC(ρABC ||σABC)

= 2D(ρABC ||σABC)−D(ρC ||σC)−D(ρA||σA).

⇔

(1 + 2‖H(σAC)‖∞)D(ρABC ||σABC) ≥ D(ρA||σA) +D(ρC ||σC).

⇔

(1 + 2‖H(σAC)‖∞)D(ρAC ||σAC) ≥ D(ρA||σA) +D(ρC ||σC).

The previous result is equivalent to (C.-Lucia-Pérez Garćıa ’18):

(1 + 2‖H(σAB)‖∞)D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB) .

Recall:

Superadditivity. D(ρAB ||σA ⊗ σB) ≥ D(ρA||σA) +D(ρB ||σB).

Due to:

Monotonicity. D(ρAB ||σAB) ≥ D(T (ρAB)||T (σAB)) for every quantum channel T .

we have

2D(ρAB ||σAB) ≥ D(ρA||σA) +D(ρB ||σB).
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Heat-bath with tensor product fixed point

Consider the local and global Lindbladians

L∗x := E∗x − 1Λ, L∗Λ =
∑
x∈Λ

L∗x

Since
E∗x(ρΛ) = σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have
L∗Λ(ρΛ) =

∑
x∈Λ

(σx ⊗ ρxc − ρΛ).

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

Let HΛ =
⊗
x∈Λ
Hx and ρΛ, σΛ ∈ SΛ such that σΛ =

⊗
x∈Λ

σx. The following inequality holds:

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ).

Theorem (C.-Lucia-Pérez garćıa ’18, Beigi-Datta-Rouzé ’20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

Previous results:

(Müller-Hermes et al. ’15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).

(Temme et al. ’14.) For this semigroup MLSI> 0, but the lower bound is not universal.
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−1/2
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1/2
Λ = σx ⊗ ρxc

for every ρΛ ∈ SΛ, we have
L∗Λ(ρΛ) =

∑
x∈Λ

(σx ⊗ ρxc − ρΛ).

Generalized depolarizing semigroup.

General quasi-factorization for σ a tensor product

Let HΛ =
⊗
x∈Λ
Hx and ρΛ, σΛ ∈ SΛ such that σΛ =
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x∈Λ

σx. The following inequality holds:

D(ρΛ||σΛ) ≤
∑
x∈Λ

Dx(ρΛ||σΛ).

Theorem (C.-Lucia-Pérez garćıa ’18, Beigi-Datta-Rouzé ’20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

Previous results:

(Müller-Hermes et al. ’15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).

(Temme et al. ’14.) For this semigroup MLSI> 0, but the lower bound is not universal.
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Heat-bath dynamics in 1D

σΛ = e−βH

tr(e−βH)
is the Gibbs state of a k-local, commuting Hamiltonian H.

Consider, for every ρΛ ∈ SΛ, the Lindbladian

L∗Λ(ρΛ) =
∑
x∈Λ
L∗x(ρΛ) =

∑
x∈Λ

(
σ

1/2
Λ σ

−1/2
xc ρxcσ

−1/2
xc σ

1/2
Λ − ρΛ

)
.

Quasi-factorization for quantum Markov chains (Bardet-C.-Lucia-Pérez Garćıa-Rouzé’19)

Let HABCD = HA ⊗HB ⊗HC ⊗HD, where C shields A from B and D, and let
ρABCD, σABCD ∈ SABCD. Assume that σABCD is a QMC between A↔ C ↔ BD. Then,
the following inequality holds:

DAB(ρABCD||σABCD) ≤ DA(ρABCD||σABCD) +DB(ρABCD||σABCD).

σΛ =
⊕
i∈I

σA(∂c)Li
⊗ σ(∂c)Ri BD
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Heat-bath dynamics in 1D

Assumption 1

In a tripartite Hilbert space HA ⊗HC ⊗HB , A and B not connected, we have∥∥∥σ−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB
∥∥∥
∞
≤ K <

1

2
.

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any B ⊂ Λ, B = B1 ∪B2, it holds:

DB(ρΛ||σΛ) ≤ f(σB∂)
(
DB1

(ρΛ||σΛ) +DB2
(ρΛ||σΛ)

)
.

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez Garćıa-Rouzé ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive log-Sobolev constant.

Previous results:

(Kastoryano-Brandao ’15) In 1D, for a k-local commuting Hamiltonian, the heat-bath
dynamics is always gapped.
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BS-entropy

D̂(ρAB ||σAB) := tr
[
ρAB log

(
ρ

1/2
AB σ

−1
AB ρ

1/2
AB

)]
, D̂A(ρAB ||σAB) := D̂(ρAB ||σAB)−D̂(ρB ||σB) .

H(σAB) := σ
−1/2
A ⊗ σ−1/2

B σABσ
−1/2
A ⊗ σ−1/2

B − 1AB .

Theorem (Bluhm-C.-Pérez Hernández ’21)

Let HAB = HA ⊗HB and ρAB , σAB ∈ SAB . The following inequality holds whenever
‖H(σAB)‖∞ < 1/2:

D̂(ρAB ||σAB) ≤ M̃(σAB)
[
D̂A(ρAB ||σAB) + D̂B(ρAB ||σAB)

]
+ L̃(ρAB , σAB) ,

where

M̃(σAB) :=
1

1− 2‖H(σAB)‖∞
,

and

L̃(ρAB , σAB) ≤ f
(∥∥∥[ρ1/2

A , σ
−1/2
A

]∥∥∥
∞
,
∥∥∥[ρ1/2

B , σ
−1/2
B

]∥∥∥
∞

)
.

Note that if σAB = σA ⊗ σB , we have M̃(σAB) = 1, and if ρ
1/2
A σ

−1/2
A and ρ

1/2
B σ

−1/2
B are

normal (in particular, if [ρA, σA] = [ρB , σB ] = 0), then L̃(ρAB , σAB) = 0.
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BS-entropy

If L̃(ρAB , σAB) = 0 in general, the previous result would be equivalent to superadditivity for
the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the relative
entropy (Wilming et at. ’17, Matsumoto ’10).

We plot D̂(ρAB ||σA ⊗ σB) against D̂(ρA||σA) + D̂(ρB ||σB) for

ρAB :=
ηA ⊗ ηB + ελAB

tr[ηA ⊗ ηB + ελAB ]
.
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Quasi-factorization / Approximate tensorization

DEA(ρΛ‖σΛ) := D(ρΛ‖σ
1/2
Λ σ

−1/2
Ac ρAcσ

−1/2
Ac σ

1/2
Λ ) .
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Generalization of strong subadditivity

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai ’73)
takes the form

D

(
ρABC

∥∥∥ρB ⊗ 1AC

dHAC

)
≤ D

(
ρABC

∥∥∥ρAB ⊗ 1C

dHC

)
+D

(
ρABC

∥∥∥ρBC ⊗ 1A

dHA

)
.

For M⊂ N1,N2 ⊂ N , if EM, E1, E2 are the conditional expectations onto M,N1,N2,

respectively, we have

D(ρ‖EM∗ (ρ)) ≤ D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ)) ⇔ E1∗ ◦ E2∗ = E2∗ ◦ E1∗ = EM∗ .

Define EA∗ := lim
t→∞

etL
∗
A . Then,

D(ρ‖EA∪B∗(ρ)) ≤ D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ)) ⇔ EA∗ ◦ EB∗ = EB∗ ◦ EA∗ = EA∪B∗ .

In general, we present conditions in (Bardet-C.-Rouzé ’20) for which

D(ρ‖EA∪B∗(ρ)) ≤ c [D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ))] + d
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MLSI for Pinching onto different bases

{∣∣∣e(1)
k

〉}
,
{∣∣∣e(2)

k

〉}
orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1`.

For i ∈ {1, 2}, Ei denotes the Pinching map onto span
{∣∣∣e(i)k 〉〈e(i)k ∣∣∣} and EM = 1

`
Tr[·].

Denote:

ε := `max
k,k′

∣∣∣∣∣∣∣〈e(1)
k

∣∣e(2)
k′

〉∣∣∣2 − 1

`

∣∣∣∣ .
Then,

D(ρ‖`−11) ≤
1

1− 2ε
(D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))) ,

and subsequently

L(X) := E1(X) + E2(X)− 2X .
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MLSI for quantum spin systems

MLSI, informal (C.-Rouzé-Stilck França ’20)

Let HΛ be a local commuting Hamiltonian such that one of the following conditions
holds:

1 HΛ is classical for β < βc.

2 HΛ is a nearest neighbour Hamiltonian for β < βc.

3 Λ is 1D and β < βc.

Then, there exists a local quantum Markov semigroup with fixed point σΛ, the Gibbs
state of HΛ, such that it has a positive MLSI constant which is independent of the
system size.

∀ρΛ ∈ SΛ, D(ρt‖σΛ) ≤ e−αtD(ρΛ‖σΛ) .

It constitutes the first unconditional proof of MLSI for quantum lattice systems at
high temperature.
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Approximate tensorization of the relative entropy

Approximate tensorization (C.-Rouzé-Stilck França ’20)

Let L be a Gibbs sampler corresponding to a commuting potential. Assume further that the
family L satisfies qL1 → L∞ with parameters c ≥ 0 and ξ > 0, as well as Condition 2. Then,

for any C,D ∈ S̃ such that C,D ⊂ Λ ⊂⊂ Zd with 2c |C ∪D| exp
(
− d(C\D,D\C)

ξ

)
< 1, and all

ρ ∈ D(HΛ),

D(ω‖EC∪D∗(ω)) ≤
1

1− 2c |C ∪D| e−
d(C\D,D\C)

ξ

(
D(ω‖EC∗(ω)) +D(ω‖ED∗(ω))

)
,

with ω := EA∩Λ∗(ρ).

Here, we show that a condition on the fixed points of the generator and a condition of
decay of correlations imply

d = 0, c ∼ 1 + κ e− d(C\D,D\C) .
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Exponential decay of correlations

Operator correlation

For a quantum state ρABC ∈ B(HA ⊗HB ⊗HC), the operator correlation function is
defined by:

Corrρ(A : C) := sup
OA,OC

∣∣Tr[OA ⊗OC (ρAC − ρA ⊗ ρC)]
∣∣ ,

where the supremum is taken over all operator norm-one operators OA and OC supported on
subsystems A and C

Araki, ’69: Any infinite 1D quantum spin system with finite range and translation
invariant interactions satisfy exponential decay of correlations.

Kliesch et al., ’14: Extension to larger dimensions for high-enough temperature.



Introduction and motivation Approximate tensorization of the relative entropy Decay of Mutual Information Conclusions

Exponential decay of correlations

Operator correlation

For a quantum state ρABC ∈ B(HA ⊗HB ⊗HC), the operator correlation function is
defined by:

Corrρ(A : C) := sup
OA,OC

∣∣Tr[OA ⊗OC (ρAC − ρA ⊗ ρC)]
∣∣ ,

where the supremum is taken over all operator norm-one operators OA and OC supported on
subsystems A and C

Araki, ’69: Any infinite 1D quantum spin system with finite range and translation
invariant interactions satisfy exponential decay of correlations.

Kliesch et al., ’14: Extension to larger dimensions for high-enough temperature.



Introduction and motivation Approximate tensorization of the relative entropy Decay of Mutual Information Conclusions

Exponential decay of correlations

Operator correlation

For a quantum state ρABC ∈ B(HA ⊗HB ⊗HC), the operator correlation function is
defined by:

Corrρ(A : C) := sup
OA,OC

∣∣Tr[OA ⊗OC (ρAC − ρA ⊗ ρC)]
∣∣ ,

where the supremum is taken over all operator norm-one operators OA and OC supported on
subsystems A and C

Araki, ’69: Any infinite 1D quantum spin system with finite range and translation
invariant interactions satisfy exponential decay of correlations.

Kliesch et al., ’14: Extension to larger dimensions for high-enough temperature.



Introduction and motivation Approximate tensorization of the relative entropy Decay of Mutual Information Conclusions

Exponential decay of correlations

Analyticity after measurement

Given a lattice Λ and a local Hamiltonian H =
∑
X⊂Λ ΦX , its free energy is said to be

δ-analytic for all β ∈ [0, βc) if it is analytic in the open ball of radius δ round β and if there
exists a constant c such that for any N ≥ 0 with ‖N‖ = 1, the following holds∣∣∣log Tr

[
e−

∑
X⊂Λ zXΦX N

]∣∣∣ ≤ c|Λ| ,
for all zX such that |zX − β| ≤ δ.

Harrow-Mehraban-Soleimanifar, ’20: In any 1D quantum spin system, analyticity
after measurement implies exponential decay of correlations on any finite interval I = ABC.

C.-Rouzé-Stilck França, ’20: Analyticity after measurement holds for local commuting
Hamiltonians (1D or nearest neighbour) at high-enough temperature.
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Decay of mutual information

The most prominent measure of correlations is the mutual information, defined for
ρ ∈ B(HA ⊗HC) by

Iρ(A : C) := D(ρAC ||ρA ⊗ ρC) .
The following inequalities hold:

Iρ(A : C) ≥
1

2
‖ρAC − ρA ⊗ ρC‖21 ≥

1

2
Corrρ(A : C)2 .

Decay of mutual information
⇒
: Decay of correlations

Kastoryano-Eisert, ’13: The existence of a positive MLSI for a local, reversible, regular
Lindbladian implies exponential decay of the mutual information (depending polynomially on
the sistem size).

C.-Rouzé-Stilck França, ’20: Gibbs states of local commuting Hamiltonians (1D or
nearest neighbour) at high-enough temperature exhibit exponential decay of the mutual
information (depending polynomially on the sistem size).

Area laws

Consider I = AB:
Iρ(A : B) ≤ O(|∂A|) .

Wolf et al., ’08: Area laws for the mutual information.
Scalet et al., ’21: Area laws for geometric Rényi divergences.
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Decay of conditional mutual information

The conditional mutual information is defined for ρ ∈ B(HA ⊗HC) by

Iρ(A : C|B) := S(ρAB) + S(ρBC)− S(ρB)− S(ρABC) ,

where S(ρ) := −Tr[ρ log ρ] is the von Neumann entropy.

Uniform clustering: Decay of correlations on any finite interval I = ABC.

Kliesch et al., ’14: Exponential uniform clustering holds in any dimension for
high-enough temperature.

Kato-Brandao, ’19: Assuming exponential uniform clustering, in the setting of Araki,
there is subexponential decay of CMI in 1D.

Kuwahara-Kato-Brandao, ’20: For finite range interactions, there is exponential decay
of CMI at high-enough temperature for any dimension.
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Exponential decay of mutual information in 1D

Exponential uniform clustering

Let Φ be a local interaction on Z. We say that it is exponential uniform clustering if there is
an exponentially decaying function ` 7→ ε(`) such that for every finite interval I = ABC with
|B| ≥ `,

CorrσI (A : C) ≤ ε(`) where σI =
e−HI

TrI(e−HI )
.

Exponential decay of mutual information in 1D (Bluhm-C.-Pérez Hernández, ’21)

Given a local, finite range, non-commuting Hamiltonian in I = ABC and ρ its Gibbs state,
there is a positive function ` 7→ δ1(`), depending on the local interactions and ε(`), that
exhibits exponential decay and satisfying

Iρ(A : C) ≤ δ1(|B|) .

2 INGREDIENTS:

Geometric Rényi divergences (or BS-entropy).

Araki’s expansionals.
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Given a local, finite range, non-commuting Hamiltonian in I = ABC and ρ its Gibbs state,
there is a positive function ` 7→ δ1(`), depending on the local interactions and ε(`), that
exhibits exponential decay and satisfying

Iρ(A : C) ≤ δ1(|B|) .

2 INGREDIENTS:
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Geometric Rényi divergences (or BS-entropy).

Araki’s expansionals.



Introduction and motivation Approximate tensorization of the relative entropy Decay of Mutual Information Conclusions

Exponential decay of mutual information in 1D

Exponential uniform clustering

Let Φ be a local interaction on Z. We say that it is exponential uniform clustering if there is
an exponentially decaying function ` 7→ ε(`) such that for every finite interval I = ABC with
|B| ≥ `,

Corrρ(A : C) ≤ ε(`) where ρ =
e−HI

TrI(e−HI )
.

Exponential decay of mutual information in 1D (Bluhm-C.-Pérez Hernández, ’21)
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The proof: Geometric Rényi Divergences

Geometric Rényi Divergences

Let HAC := HA ⊗HC be a finite-dimensional Hilbert space. For 1 < α <∞, and ρAC , σAC
full-rank states, their α-geometric Rényi divergence is given by

D̂α(ρAC‖σAC) :=
1

α− 1
log Tr

[
σ

1/2
AC

(
σ
−1/2
AC ρACσ

−1/2
AC

)α
σ

1/2
AC

]
,

and their Belavkin-Staszewski relative entropy (shortened BS-entropy) is

D̂(ρAC ||σAC) := Tr
[
ρAC log

(
ρ

1/2
ACσ

−1
ACρ

1/2
AC

) ]
.

The two quantum relative entropies are related through

D(ρAC ||σAC) ≤ D̂(ρAC ||σAC),

Analogously to the mutual information for the relative entropy, we define the BS-mutual
information as

Îρ(A : C) := D̂(ρAC || ρA ⊗ ρC)

and the Rényi mutual information arising from the α-geometric Rényi divergence by

Îαρ (A : C) := D̂α(ρAC‖ρA ⊗ ρC) ,
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Geometric Rényi Divergences

Let HAC := HA ⊗HC be a finite-dimensional Hilbert space. For 1 < α <∞, and ρAC , σAC
full-rank states, their α-geometric Rényi divergence is given by
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The proof: Geometric Rényi Divergences

Bound for the BS-mutual information (Bluhm-C.-Pérez Hernández, ’21)

For α > 1,

Îαρ (A : C) ≤
∥∥∥ρ−1
A ⊗ ρ

−1
C ρAC − 1AC

∥∥∥ .
In particular,

Îρ(A : C) ≤
∥∥∥ρ−1
A ⊗ ρ

−1
C ρAC − 1AC

∥∥∥ .
If
∥∥∥ρ−1
A ⊗ ρ

−1
C ρAC − 1AC

∥∥∥ ≤ ε(`) ⇒ Decay of mutual information.

The following chain of inequalities holds:

1

2
Corr(A : C)2 ≤

1

2
‖ρAC − ρA ⊗ ρC‖21 ≤ Iρ(A : C)

≤ Îρ(A : C) ≤ Îαρ (A : C) ≤ ‖ρ−1
A ⊗ ρ

−1
C ρAC − 1AC‖.
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The proof: Araki’s expansionals

Araki’s expansionals

Let Λ ⊂ Z and HΛ =
∑
X⊂Λ ΦX a finite range, local, non-commuting Hamiltonian. For a

finite interval I = XY ⊂ Z, let us write

EX,Y := e−HXY eHX +HY .

Then, there is an absolute constant G such that:

(i) It holds:

‖EX,Y ‖ , ‖E−1
X,Y ‖ ≤ G(β) .

(ii) If we add two intervals X̃ and Ỹ adjacent to X and Y , respectively, then

‖E−1
X,Y − E

−1

X̃X,Y Ỹ
‖, ‖EX,Y − EX̃X,Y Ỹ ‖ ≤

G(β)`

(b`/rc+ 1)!
,

for any ` ∈ N such that ` ≤ |X| , |Y |.

These and similar techniques are used repeatedly throughout the proof.
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Local indistinguishability

Local indistinguishability (Bluhm-C.-Pérez Hernández, ’21)

Consider the previous setting and I = ABC ⊂ Z with |B| ≥ 2`. Assume exponential uniform
clustering:

CorrρI (A : C) ≤ ε(`) where ρI =
e−HI

TrI(e−HI )
.

Then, for every pair of observables QA ∈ AA and QC ∈ AC we have

|TrABC(ρABCQA)− TrAB(ρABQA)| ≤ ‖QA‖
4G3+`

(b`/rc+ 1)!
+ G4 ‖QA‖ ε(`)

|TrABC(ρABCQC)− TrBC(ρBCQC)| ≤ ‖QC‖
4G3+`

(b`/rc+ 1)!
+ G4 ‖QC‖ ε(`) .

Brandao-Kastoryano, ’19: Exponential uniform clustering implies local
indistinguishability in any dimension, for high-enough temperature. Proof based on quantum
belief propagation techniques.
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Scheme of implications
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Approximate factorization of Gibbs states

Bluhm-C., ’20: The two following conditions are equivalent for any quantum
channel T and any positive states ρ and σ:

ρ = σ T ∗
(
T (σ)−1T (ρ)

)
⇐⇒ D̂(ρ||σ) = D̂(T (ρ)||T (σ)) ,

where the map BσT (·) := σ T ∗
(
T (σ)−1(·)

)
is called BS recovery condition.

For HABC = HA ⊗HB ⊗HC , two positive states ρABC , σABC such that
σABC = ρAB ⊗ 1C/dC and a T := 1A/dA ⊗ TrA, we say that ρABC is a BS
recoverable state if

ρABC = ρABρ
−1
B ρBC .

In particular,

ρABC = ρABρ
−1
B ρBC ⇐⇒ D̂(ρABC ||ρAB) = D̂(ρBC ||ρB)

Local indistinguishability (Bluhm-C.-Pérez Hernández, ’21)

There exists a positive function ` 7−→ δ2(`), exhibiting superexponential decay, such
that for every three adjacent and finite intervals ABC,

‖ρABC − ρABρ−1
B ρBC‖1 ≤ δ2(|B|) .
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Conclusions

In the first part of the talk:

Review on results of quasi-factorization for the relative entropy.

Application of such results of approximate tensorization of the relative entropy
to prove MLSI.

Some results extend strong superadditivity and some others have various
applications in quantum information theory (superadditivity, uncertainty
relations, etc)

In the second part of the talk:

Use of geometric Rényi divergences and Araki’s expansionals to show exponential
decay of mutual information.

Superexponential decay of the distance of a Gibbs state from being
BS-recoverable.
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Use of geometric Rényi divergences and Araki’s expansionals to show exponential
decay of mutual information.

Superexponential decay of the distance of a Gibbs state from being
BS-recoverable.



Introduction and motivation Approximate tensorization of the relative entropy Decay of Mutual Information Conclusions

Conclusions

Open problems:

Improvement of Approximate Tensorization: (Gao-Rouzé ’21, Laracuente ’21)
use new techniques to obtain results of AT with no additive term, but the
multiplicative error term cannot be estimated for Gibbs states.

Better results of MLSI for Heat-bath/Davies dynamics.

Can we prove exponential uniform clustering in 1D for any temperature?

Are geometric Rényi divergences useful to find decays for the CMI?

THANK YOU FOR YOUR ATTENTION!
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use new techniques to obtain results of AT with no additive term, but the
multiplicative error term cannot be estimated for Gibbs states.

Better results of MLSI for Heat-bath/Davies dynamics.

Can we prove exponential uniform clustering in 1D for any temperature?
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use new techniques to obtain results of AT with no additive term, but the
multiplicative error term cannot be estimated for Gibbs states.

Better results of MLSI for Heat-bath/Davies dynamics.

Can we prove exponential uniform clustering in 1D for any temperature?
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