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OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

= Open quantum many-body systems.

o Dynamics of S is dissipative!

o The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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The MLSI constant of £} is defined as:

" .o —tr[LA(pa)(log pa —logon)]
L) = f
alLh)= mf, 2D (pallon)

If lim inf a(L}) > O:
A 7.4

D(pi|lon) < D(palloa)e 2ERE
and with Pinsker’s inequality, we have:

lloe — oall; < v/2D(palloa) e *FR*t < \/21og(1/omin) e~ A ¢,

For thermal states, o\ ~ exp(|Al).

MLSI = Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

lloe — oally < V/T/Gmn e AR,
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CLASSICAL SPIN SYSTEMS

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant
of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure.
4

Positive log-Sobolev constant.
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What do we want to prove?

lim inf a(£}) > ¥(|A]) > 0.
im Infa(£3) 2 ¥(AD

A

Can we prove something like

a(L3) = W(A]) a(Ly) > 07

No, but we can prove

a(L}) = U(|A]) aa(£y) >0 .



INTRODUCTION AND MOTIVATION
0000000

CONDITIONAL MLSI CONSTANT

The MLSI constant of £} is defined by

x o —tr[LA(pa)(log pa —logon)]
Ly) = f
al£h) = fnf 2D(pallon)




AND MOTIVATION

CONDITIONAL MLSI coNs

MLSI CONSTANT
The MLSI constant of £} is defined by

« .o —tr[L(pa)(log pa —logon)]
Ly) := f
al£h) = fnf 2D(pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

. o —tr[Lh(pa)(log pa —logoa )]
L) = f
an(£a) = il 2D (pallon)
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QUASI—FA TORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dap(palloa) + Dpc(palloa)] +d

Classical quasi-factorization 2 Strong subadditivity

Ent(f) < cpu[Bnt(f[F1) + Ent(f] )] S(pasc) +S(ps) < S(pas) + S(esc)

D(palloa) = D(paclloac)

General superadditivity

Quantum quasi-factorization

Da(pallon) ==

CLP18

= [DaB(A) + Dpc(A)]

— 4
2| H(oa)l
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QUASI—FACTORIZATION FOR THE RELATIVE ENTROPY

Da(paBclloaBc) := D(paBclloaBc) — D(pscllosc) i

QUASI-FACTORIZATION FOR THE CRE (C.-Lucia-Pérez Garcia ’18)

Let Hapco and papc,oaBc € Sapc. The following holds

D(pasclloase) < &(oac) [Das(papclloasc) + Dec(pasclloasc)l,
where
1

£(oac) = = = .
1-— ZHUAI/2 ®001/2 oAC 021/2 ®051/2 - IlACHOO

D(papclloasc) Dag(pasclloasc) Dpc(pasclloasc)

TABC

ANl c | <&(B0) |Falel o + | 4 BBl e
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2N
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2N

(14 2||H(cac)|loo)P(paclloac) > D(palloa) + D(pclloc).

The previous result is equivalent to (C.-Lucia-Pérez Garcia '18):

(1 +2(|H(0aB)lloo)P(paBlloaB) > D(palloa) + D(psllon) |

Recall:
o Superadditivity. D(pag|loa ® o) > D(palloca) + D(pgllos).-

Due to:
@ Monotonicity. D(pag|locas) > D(T(paB)||T(cap)) for every quantum channel 7'

we have

2D(paslloas) = D(palloa) + D(psllos).
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Quantum quasi-factorization

D(A) < T—5rzr——Dan(8) + Dc(A)]
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Quasi-factorization / Approximate tensorization of the relative entropy A=

D(palloa) < c[Dap(pallon) + Dec(palloa)] +d

Classical quasi-factorization Strong subadditivity

Ent(f) < e [Ent(f]F1) + Ent(f|F2)] S(pasc) + S(p) < S(pas) + S(psc)

Dalpallon) = D(palloa) = D(pacloac)

General superadditivity

_— CLP18'

Quantum quasi-factorization
i

DA) L ————
) < TG |

Dap(A) + Dpe(A)]
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GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Hao = @ Ha and pa,op € Sp such that op = ® oz. The following inequality holds:
z€A TEA

D(palloa) < D Da(palloa)
xEN

THEOREM (C.-Lucia-Pérez garcia ’18, Beigi-Datta-Rouzé '20)

The heat-bath dynamics, with tensor product fixed point, has MLSI(1/2).

Previous results:
o (Miiller-Hermes et al. '15) The depolarizing semigroup with f. p. 1/d has MLSI(1/2).
o (Temme et al. ’14.) For this semigroup MLSI> 0, but the lower bound is not universal.
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Quasi-factorization / Approximate tensorization of the relative entropy
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Classical quasi-factorization ) Strong subadditivity

Ent(f) < cp [Ent(f|F1) + Ent(f|F2)] S(papc) +S(pp) < S(pas) + S(psc)
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General superadditivity
iy

— CLP18'

CLP18

Quantum quasi-factorization
1

——r=——r— [DaB(4) + Dpc(A)
*ZHH(’T\)H\[ AB Bc(A)]

< D4(A) + Dp(A)

Generalized depolarizing
NN = G S — (o
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization Eisp%% Strong subadditivity
Ent(f) < cp[Bnt(f|F1) + Ent(f|F2)] S(pasc) +5(ps) < S(pas) + S(psc)

Da(palloa) ==

(palaa) = D(pacloa-)
CLP18

General superadditivity
A4

Quantum quasi-factorization
[DaB(A) + Dpc(A))

=1

CLP18
BDR20

Generalized depolarizing
AlpA) = 02 ® pre — pa

1D Heat-bath generator,
2 assumptions
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HEAT-BATH DYNAMICS IN 1D

—BH . . . . A
op = W is the Gibbs state of a k-local, commuting Hamiltonian H.

tr(e™

Consider, for every pp € Sp, the Lindbladian
. 1/2 — —1/2,1/2
Li(oa) = T L3n) = X (03070 pacord 2o/ = pa) .
zEA TEA

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)

Let Hapop = Ha ® Hp @ Ho ® Hp, where C shields A from B and D, and let
PABCD,0ABCD € SABcD- Assume that o apcop is a QMC between A <> C <> BD. Then,
the following inequality holds:

Dap(paBeplloaBep) £ Da(paeplloaBep) + De(paseplloasep)-

Dap(pascolloascn) Da(pascolloascn) Ds(pascolloanco

UA:%UA(ac)f’@U(ac)fBD . : S . 2| |+ :
1
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

2 1/2

_ _ _ _ 1
H"Al/2®031/ TABO 4 ®UBI/2*1ABH <K< 2
o0

In particular, Gibbs states at high enough temperature satisfy this.
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

_ _ _ _ 1
HUA1/2®UBI/2UABUA1/2®UBI/2*1ABH <K< 3
o0

In particular, Gibbs states at high enough temperature satisfy this.

ASSUMPTION 2
For any B C A, B = B; U Ba, it holds:

Dg(palloa) < f(oBa) (D, (palloa) + Dpy (pallon)) -
In particular, tensor products satisfy this (with f =1).
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

1

1/2®U;1/271ABH <K< -—.
S 2

—-1/2 —-1/2 -
Ha’A / Qop / OABO 4

In particular, Gibbs states at high enough temperature satisfy this.

ASSUMPTION 2
For any B C A, B = B; U Ba, it holds:

Dg(palloa) < f(oBa) (D, (palloa) + Dpy (pallon)) -
In particular, tensor products satisfy this (with f =1).

THEOREM (Bardet-C.-Lucia-Pérez Garcia-Rouzé ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive log-Sobolev constant.
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HEAT-BATH DYNAMICS IN 1D

ASSUMPTION 1

In a tripartite Hilbert space H4 ® Ho ® Hp, A and B not connected, we have

1

1/2®U;1/271ABH <K< -—.
S 2

—-1/2 —-1/2 -
Ha’A / Qop / OABO 4

In particular, Gibbs states at high enough temperature satisfy this.

ASSUMPTION 2
For any B C A, B = B; U Ba, it holds:

Dg(palloa) < f(oBa) (D, (palloa) + Dpy (pallon)) -
In particular, tensor products satisfy this (with f =1).

THEOREM (Bardet-C.-Lucia-Pérez Garcia-Rouzé ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive log-Sobolev constant.

Previous results:

o (Kastoryano-Brandao ’15) In 1D, for a k-local commuting Hamiltonian, the heat-bath
dynamics is always gapped.
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A=

D(palloa) < c[Dap(palloa) + Dec(palloa)] + d

Classical quasi-factorization Cesi02
DPP02

Ent(f) < cpu [Ent(f|F1) + Ent(f|F2)] S(papc) +S(pB) < S(paB) + S(psc)

Strong subadditivity LR73

BS-entropy
D(p|lo) := Te[plog(p"/?0~1p"/?)]

——————[DaB(A) + Dpe(A
=5 H("-\‘Hx[ 4B(A) + Dpc(A)]

BDR20

(ieneralized depolarizing 1D Heat-bath generator,
APA) = T2 ® ppe — pa 2 assumptions
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BS-ENTROPY

3 1/2 — 1/2 = = 3
D(paslloar) i=tr[paslog (p{7 o7k pi5)| . Dalpaslioas) = Dipaglioas)-Dipslios).

H(oap) := 021/2 ®0’§1/20'ABU;1/2 ®O’;1/2 —1aB.
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BS-ENTROPY

~ 1/2 1 1/2 ~ ~ ~
D(paBlloaB) == tr[PAB log (PA/B Oab PA/B)] , Da(paBlloas) := D(paglloas)—D(pBllos)-

1/2 —il %

H(oap) := 021/2@)0}; / OABO 4 ® o

—1/2
B/ —1ap.

THEOREM (Bluhm-C.-Pérez Herndndez ’21)

Let Hap =Ha ®Hp and pap,oaB € Sap - The following inequality holds whenever
IH(caB) o < 1/2:

D(paglloas) < M(cap) [5A(pAB||UAB) + ﬁB(pABHO'AB)] + L(paB,oaB),

where _ 1
M) = o ams
and
Lloamoan) < 1 ([[[od* 02| s |[[e* o5 .) -
Note that if o4 = 04 ® 05, we have M(O’AB) =1, and if p1/2 1/2 ond p1/2 —1/2

normal (in particular, if [pa,04] = [pB,oB] = 0), then L(pAB,O'AB) =0.
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BS-ENTROPY

If Z(p AB,0Ap) = 0 in general, the previous result would be equivalent to superadditivity for
the BS-entropy.
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BS-ENTROPY

If Z(p AB,04B) = 0 in general, the previous result would be equivalent to superadditivity for
the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the relative
entropy (Wilming et at. '17, Matsumoto ’10).
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BS-ENTROPY

If Z(p AB,04B) = 0 in general, the previous result would be equivalent to superadditivity for
the BS-entropy.

However, continuity, additivity, superadditivity and monotonicity characterize the relative
entropy (Wilming et at. '17, Matsumoto ’10).
We plot D(paglloa ® o) against D(palloa) + D(psllop) for

P nA @NB +EeXAB
trna ® np + eAaB]

EEFTm—r—
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization Cesi02
DPP02

Ent(f) < cpu[Ent(f|F1) + Ent(f[F)] S(pasc) +S(pp) < S(pas) + S(ppo)

Strong subadditivity

Quantum quasi-factorization

—————— [Dap(A) + Dp
e e

bx = Qoa Dy@A) < Y D:(R)

e

Generalized depolarizing
A(pa) = 00 ® pre — pa

1D Heat-bath generator,
2 assumptions
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization Cesi02
DPP02

Ent(f) < cpu[Ent(f|F1) + Ent(f[F)] S(pasc) +S(pp) < S(pas) + S(ppo)

Strong subadditivity

Quantum quasi-factorization
Di(palloa) == Dipal|E4(pa))

—————— [Dap(A) + Dp
e e

",\z@@“w ’7\1\'/V"7“ op QMC, Dap(A) < Da(A)+ Dp(A)

Generalized depolarizing
A(pa) = 00 ® pre — pa

1D Heat-bath generator,
2 assumptions

1/2 1/2
DE(pallon) := D(palloy *one’*pacoqe?apy/?).
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A = ABC

D(pallon) < c[Dag(palloa) + Dpc(palloa)] +d

Classical quasi-factorization

Ent(f) < cju[Ent(f|) + Ent(f| o)

By 0 By, = Epy 0 By,
Dy <Di+D>
Quantum quasi-factorization

< ——————[Dag(A) + Dpc(A)]
= 1*'3HH(17.\FHl[ aB(A) Bo(A))]

Generalized depolarizing
AN =t = —

1D Heat-bath generator,
2 assumptions
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)

takes the form
1a 1 1
¢ )l<b PABCHPAB ®—<]+D PABCHPBC ® =2 |.
d'HAc d'Hc d'HA

dl
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)
takes the form

1a 1 1
D PABCHPB ® )<p PABCHPAB ® —<)|+D PABCHPBC ® 2.
d'HAc d'Hc d'HA

For M C Ni,N3 C N, if EM  Ey, Ey are the conditional expectations onto M, N7, Na,

respectively, we have

D(pllEM(p)) < D(p||E1«(p)) + D(pl|E24(p)) & E1x 0 Eax = Eay 0 E1 = EM .
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)
takes the form

1a 1 1
D PABCHPB ® )<p PABCHPAB ® —<)|+D PABCHPBC ® 2.
d'HAc d'Hc d'HA

For M C Ni,N3 C N, if EM  Ey, Ey are the conditional expectations onto M, N7, Na,

respectively, we have

D(pllEM(p)) < D(p||E1«(p)) + D(pl|E24(p)) & E1x 0 Eax = Eay 0 E1 = EM .
Define E 4, := lim el Then,
t—o00

D(pl|[Eaur«(p)) < D(pl|Eax(p)) + D(pllEB«(p)) < Eaxo Epx = Epx 0 Eax = EauB« -
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GENERALIZATION OF STRONG SUBADDITIVITY

In terms of the relative entropy, the strong subadditivity of entropy (Lieb-Ruskai '73)
takes the form

1a 1 1
D PABCHPB ® )<p PABCHPAB ® —<)|+D PABCHPBC ® 2.
d'HAc d'Hc d'HA

For M C Ni,N3 C N, if EM  Ey, Ey are the conditional expectations onto M, N7, Na,

respectively, we have

D(pllEM(p)) < D(p||E1«(p)) + D(pl|E24(p)) & E1x 0 Eax = Eay 0 E1 = EM .
Define E 4, := lim el Then,
t—o00
D(pllEBaus«(p)) < D(pllEax(p)) + D(pllE«(p)) < Eax o Ep« = Ep« 0 Eax = Eaubx -

In general, we present conditions in (Bardet-C.-Rouzé ’20) for which

D(pllEaus«(p)) < c[D(pllEax(p)) + D(pl E«(p))] + d
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dag(palloa) + Dec(pallon)] +d

Classical quasi-factorization E?P‘CO% Strong subadditivity

Ent(f) < ¢ [Ent(f|F1) + Ent(f|F)] S(pasc) +S(pp) < S(pas) + S(pBc)

LR73

Dalpallon) = D(palloa) — D(pacloac) Dy = Dip| EM(p)

General superadditivity Es 0 By,
2 Dy < Dy + D>

—  CLP18

ropy
[plog(p"/ a1 p'/%) SR

Y

tum quasi-factorization

il
7”\[”\““\” Dpc(A)]
A)|loo

CLP18
BDR20

Generalized depolarizing 1D Heat-bath generator,
A(PA) = 02 ® pue — pa| 2 assumptions
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy N="ABE

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization Strong subadditivity

Ent(f) < cpu [Ent(f|F1) + Ent(f|F2)] S(papc) + S(ps) < S(pas) + S(ppc)

Dt i= D(p|[EM(p))
BS-entropy
15[/1\\0} = Tr[/zlog{/z”')n’l' /2 Ey.0FE5 =By 0FE), = E;M
Dm < D1+ D;

3 - BCR20
BCP21™._ tum quasi-factorization L20

1 D{pal|E(pa))
———————[Dap(A) + Dpc(A
ST [Dag(A) + Dpc(A)) >

CLP18
BDR20
Y
Generalized depolarizing
7\(/’1\) =03 Q pee — PA

1D Heat-bath generator,
2 assumptions

BCLPR19

Pinching onto

different bases
L(X) = Fy (X)

LB = B
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MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘el(cl)>} X {‘e](f)>} orthonormal bases.
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MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘el(cl)>} X {‘e](f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.
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MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘el(cl)>} X {‘e](f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.

For 7 € {1, 2}, E; denotes the Pinching map onto span {‘eg)> <e§j)

} and EM = %TrH.



APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY
0000000000000 0O000O00000e00000

MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘el(cl)>} X {‘e](f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.

For 7 € {1, 2}, E; denotes the Pinching map onto span {‘eg)> <e§j)

(A1) 4]

} and EM = %TrH.

Denote:

€ := fmax
k,k’




APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY
0000000000000 0O000O00000e00000

MLSI FOR PINCHING ONTO DIFFERENT BASES

{‘el(cl)>} X {‘e](f)>} orthonormal bases.

N1, N2 diagonal onto first and second basis, respectively. M = C1,.

For 7 € {1, 2}, E; denotes the Pinching map onto span {‘eg)> <e§j)

} and EM = %TrH.

Denote:
e = e (e e2)] - 3.
Then,
D) < - (D(pIEr () + Dl Eae o)

and subsequently
L(X) = E1(X) + Ea(X) — 2X .
has MLSI(1 — 2¢).
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A= ABC

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization Strong subadditivity

Ent(f) < cpu[Ent(f|F1) + Ent(f| )] S(papc) +5(ps) < S(pas) + S(psc)

D(paloa) = D(pacloac)

Mc v ’
General superadditivity By 0By = Ep 0 By =
Dy < D1+ Dy
\4 CLP18'

Quantum quasi-factorization

/26-11/2) SR

DX (pallon) :== Dipal| E4(pa))

1
D(A) £ —————[DaB(A) + Dpc(A)
)= H(on) [Dap(A) o (A)]

BRS20

Pinching onto

P different bases

L(X) = Ex(X)
IR = 2D

2 assumptions,

Dp < ¢[Dy + Dy

Generalized depolarizing 1D Heat-bath generator,
Alpa) = 02 ® pue — pa 2 assumptions
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QUASI—FACTORIZATION / APPROXIMATE TENSORIZATION

Quasi-factorization / Approximate tensorization of the relative entropy A=

D(palloa) < c[Dap(palloa) + Dec(palloa)] +d

Classical quasi-factorization , Strong subadditivity

Ent(f) < cp [Ent(f|F1) + Ent(f|F2)]

Dalpalloa) = D(paloa) = D(paclloac)
BS-entropy

IilpHn) = Tr[plog(p L1/ F Ervo By = Ep 0 Epu = E;.M

Dy £ D1+ Dy

Quantum quasi-factorization

1 D(pa|EX(pa))

Di(palloa)

[Das(A) + Dpc(A)]

2 assumptions,

Pinching onto
different bases

L(X) = Ea(X)
L) = DR

Local 0 t high
Generalized depolarizing 1D Heat-bath generator, g %assmal
Alpa) = 00 ® pae — pa 2 assumptions e
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QUANTUM SPIN SYSTEMS

iGlaubcr,

o
(aLi — Loo) Thm. 7:
High GBI Spectral gap
temperature Thm. 5, \[53] [53] -
m /. v
WThm. 5 Classical, [36] Thm. 5 (dLeo)
< 00




/ OF THE
0000000000000 0O00O0O000000000e0

MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck Franga ’20)

Let Ha be a local commuting Hamiltonian such that one of the following conditions
holds:

@ H, is classical for 8 < ..

@ Hj is a nearest neighbour Hamiltonian for 8 < ..

@ Ais 1D and B < f..

Then, there exists a local quantum Markov semigroup with fixed point oa, the Gibbs
state of Hx, such that it has a positive MLSI constant which is independent of the
system size.
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MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck Franga ’20)

Let Ha be a local commuting Hamiltonian such that one of the following conditions
holds:

@ H, is classical for 8 < ..
@ Hj is a nearest neighbour Hamiltonian for 8 < ..
@ Ais 1D and 8 < B..

Then, there exists a local quantum Markov semigroup with fixed point oa, the Gibbs
state of Hx, such that it has a positive MLSI constant which is independent of the
system size.

Vpa € Sa, D(pillon) < e D(pallon).
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MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck Franga ’20)

Let Ha be a local commuting Hamiltonian such that one of the following conditions
holds:

@ H, is classical for 8 < ..
@ Hj is a nearest neighbour Hamiltonian for 8 < ..
@ Ais 1D and 8 < B..

Then, there exists a local quantum Markov semigroup with fixed point oa, the Gibbs
state of Hx, such that it has a positive MLSI constant which is independent of the
system size.

Vpa € Sa, D(pillon) < e D(pallon).

It constitutes the first unconditional proof of MLSI for quantum lattice systems at
high temperature.
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APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY

AnA| 04

APPROXIMATE TENSORIZATION (C.-Rouzé-Stilck Franga ’20)

Let £ be a Gibbs sampler corresponding to a commuting potential. Assume further that the
family £ satisfies gLy — Lo with parameters ¢ > 0 and £ > 0, as well as Condition 2. Then,

for any C, D € § such that C, D C A CC 2% with 2¢|C'U D|exp(— LALLAD) < 1, and all
p € D(Ha),

Dl Ecups (@) < L (D@lBe. @) + D@lEoa (@)
1—2c|CUDlJe 3

with w := Eana«(p).

Here, we show that a condition on the fixed points of the generator and a condition of
decay of correlations imply

d=0,c~1+re d(C\D,D\O)
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EXPONENTIAL DECAY OF THE MUTUAL INFORMATION IN 1D

This
Log-Sobolev constant project

Kastoryano-Temme, ’13

Kastoryano-Temme, ’13

Exponential
decay of correlations

Spectral gap <Kutorym0 Brandao, '14

\J

R () 25 o Rapid mixing Cubitt et al, '13

Cubitt et al, ’ly \handao et al, '15 Ha ::,EZAQU) o4 = “e::;,)

Stability | Arealaw
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EXPONENTIAL DEC OF CORRELATIONS

I
000000000000000
T e VT

A B C
OPERATOR CORRELATION

For a quantum state papc € B(Ha ® Hp ® Hc), the operator correlation function is
defined by:
Corrp(A: C):= sup |Tr[OA ® Oc (pac — pa ® pc)]| ,
04,0¢
where the supremum is taken over all operator norm-one operators O 4 and O¢ supported on
subsystems A and C
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EXPONENTIAL DECAY OF CORRELATIONS

I

000000000000000
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A B C
OPERATOR CORRELATION

For a quantum state papc € B(Ha ® Hp ® Hc), the operator correlation function is
defined by:

Corrp,(A: C) := sup |Tr[O4s ® Oc (pac — pa ® pc)l|,
04,0¢c

where the supremum is taken over all operator norm-one operators O 4 and O¢ supported on
subsystems A and C

Araki, ’69: Any infinite 1D quantum spin system with finite range and translation
invariant interactions satisfy exponential decay of correlations.



DECAY OF MUTUAL INFO
O®@00000000000

EXPONENTIAL DECAY OF CORRELATIONS

I

000000000000000
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A B C
OPERATOR CORRELATION

For a quantum state papc € B(Ha ® Hp ® Hc), the operator correlation function is
defined by:

Corrp(A: C) := sup |Tr[OA ® Oc (pac — pa ® pc)H ,
04,0¢

where the supremum is taken over all operator norm-one operators O 4 and O¢ supported on
subsystems A and C

Araki, ’69: Any infinite 1D quantum spin system with finite range and translation
invariant interactions satisfy exponential decay of correlations.

Kliesch et al., ’14: Extension to larger dimensions for high-enough temperature.
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EXPONENTIAL DECAY OF CORRELATIONS

I

' A '

A B C
ANALYTICITY AFTER MEASUREMENT

Given a lattice A and a local Hamiltonian H = EXcA d x, its free energy is said to be
d-analytic for all B € [0, Bc) if it is analytic in the open ball of radius § round 8 and if there
exists a constant ¢ such that for any N > 0 with || N|| = 1, the following holds

‘log’l‘r [e* Txcazx®x NH < A,

for all zx such that |zx — 8| < 4.
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EXPONENTIAL DEC OF CORRELATIONS

I
' A '

A B C
ANALYTICITY AFTER MEASUREMENT

Given a lattice A and a local Hamiltonian H = EXcA d x, its free energy is said to be
d-analytic for all B € [0, Bc) if it is analytic in the open ball of radius § round 8 and if there
exists a constant ¢ such that for any N > 0 with || N|| = 1, the following holds

‘logTr [e* Txcazx®x NH < A,

for all zx such that |zx — 8| < 4.

Harrow-Mehraban-Soleimanifar, °20: In any 1D quantum spin system, analyticity
after measurement implies exponential decay of correlations on any finite interval I = ABC.
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EXPONENTIAL DEC OF CORRELATIONS

I
' A '

A B C
ANALYTICITY AFTER MEASUREMENT

Given a lattice A and a local Hamiltonian H = EXcA d x, its free energy is said to be
d-analytic for all B € [0, Bc) if it is analytic in the open ball of radius § round 8 and if there
exists a constant ¢ such that for any N > 0 with || N|| = 1, the following holds

’logTr [ef Yxcazx®x NH < c|A[,

for all zx such that |zx — 8| < 4.

Harrow-Mehraban-Soleimanifar, °20: In any 1D quantum spin system, analyticity
after measurement implies exponential decay of correlations on any finite interval I = ABC.

C.-Rouzé-Stilck Francga, ’20: Analyticity after measurement holds for local commuting
Hamiltonians (1D or nearest neighbour) at high-enough temperature.
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The most prominent measure of correlations is the mutual information, defined for
pEB(HA®Hc) by

I,(A: C):= D(pacllpa ® pc) -
The following inequalities hold:

Corr,(A : C)2.

N | =

1
I,(A:C) > §||PAC —pa®pcli>

Decay of mutual information z Decay of correlations

Kastoryano-Eisert, ’13: The existence of a positive MLSI for a local, reversible, regular
Lindbladian implies exponential decay of the mutual information (depending polynomially on
the sistem size).

C.-Rouzé-Stilck Francga, ’20: Gibbs states of local commuting Hamiltonians (1D or
nearest neighbour) at high-enough temperature exhibit exponential decay of the mutual
information (depending polynomially on the sistem size).

AREA LAWS

Consider I = AB:

I,(A: B) < O(|9A]).

Wolf et al., ’08: Area laws for the mutual information.
Scalet et al., ’21: Area laws for geometric Rényi divergences.
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where S(p) := — Tr[p log p] is the von Neumann entropy.
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DECAY OF CONDITIONAL MUTUAL INFORMATION

The conditional mutual information is defined for p € B(Ha ® Hc) by
I,(A: C|B) := S(paB) + S(pBc) — S(pB) = S(pasc)
where S(p) := — Tr[p log p] is the von Neumann entropy.

Uniform clustering: Decay of correlations on any finite interval I = ABC.

Kliesch et al., ’14: Exponential uniform clustering holds in any dimension for
high-enough temperature.

Kato-Brandao, ’19: Assuming exponential uniform clustering, in the setting of Araki,
there is subexponential decay of CMI in 1D.

Kuwahara-Kato-Brandao, ’20: For finite range interactions, there is exponential decay
of CMI at high-enough temperature for any dimension.
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GEOMETRIC RENYI DIVERGENCES

Let Hac := Ha ® He be a finite-dimensional Hilbert space. For 1 < a < 0o, and pa¢, cac
full-rank states, their a-geometric Rényi divergence is given by
= 1
Da(paclloac) :=
a—1

and their Belavkin-Staszewski relative entropy (shortened BS-entropy) is

D(paclloac) = Tr [pac log (piioairid) |

N e |

The two quantum relative entropies are related through

D(pac lloac) < D(paclloac),

Analogously to the mutual information for the relative entropy, we define the BS-mutual
information as

Ip(A: C) := D(pac |l pa ® pc)
and the Rényi mutual information arising from the a-geometric Rényi divergence by

I?(A: C) = Da(pacllpa ® pc),
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BOUND FOR THE BS-MUTUAL INFORMATION (Bluhm-C.-Pérez Herndndez, '21)

For o > 1,

ISA:0) < Hpgl ® po'pac — ]lAcH .
In particular,

I,(A:0) < Hpg1 ® pg'pac — ILAcH .
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THE PROOF: GEOMETRIC RENYI DIVERGENCES

I

N
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A B C

BOUND FOR THE BS-MUTUAL INFORMATION (Bluhm-C.-Pérez Herndndez, '21)

For o > 1,

ISA:0) < Hpgl ® po'pac — ]lAcH .
In particular,

I,(A:0) < Hpg1 ® pg'pac — ILAcH .

If szl ® palpAc — ]lACH < e(f) = Decay of mutual information.
The following chain of inequalities holds:

1 1
5 Corr(4 : 0)* < lpac —pa® pclli < I,(A:C)

< I(A:C) < T(A: C) < o' ® pgtpac — Lacl.
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Let A CZ and Hpy = ZXcA ® x a finite range, local, non-commuting Hamiltonian. For a
finite interval I = XY C Z, let us write
Exy = e Hxy (Hx + Hy
Then, there is an absolute constant G such that:
(i) It holds:

-1
HEX,Y“ ) ”EX,Y“ < G(8).
(ii) If we add two intervals X and Y adjacent to X and Y, respectively, then

g(B)*

ExL, — B2t Ny = Az ool € =222 |
1Exy Il 1 Ex, gxyvll < ]

XX, YY

for any ¢ € N such that ¢ < |X|, |Y].
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Let A CZ and Hpy = ZXcA ® x a finite range, local, non-commuting Hamiltonian. For a
finite interval I = XY C Z, let us write
Exy = e Hxy (Hx + Hy
Then, there is an absolute constant G such that:
(i) It holds:

-1
HEX,Y“ ) ”EX,Y“ < G(8).
(ii) If we add two intervals X and Y adjacent to X and Y, respectively, then

g(B)*

ExL, — B2t Ny = Az ool € =222 |
1Exy Il 1 Ex, gxyvll < ]

XX, YY

for any ¢ € N such that ¢ < |X|, |Y].

These and similar techniques are used repeatedly throughout the proof.
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LOCAL INDISTINGUISHABILITY (Bluhm-C.-Pérez Herndndez, '21)

Consider the previous setting and I = ABC C Z with |B| > 2¢. Assume exponential uniform
clustering:

e Hi
Try(e~Hr)
Then, for every pair of observables Q4 € A4 and Q¢ € 2Ac we have

g3+l
(L&/r] +1)!

4G 3+¢
(L¢/r] + 1)

Corrp, (A:C) <e(¥) where pr =

A

|Trapc(paBc®Qa) — Trap(pa@a)l < [1Qall +G*1Qall=(e)

A

|Trapc(paBcQc) — Tree(pBcQc)| < [1Qc] +G*IQclle(0).
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LOCAL INDISTINGUISHABILITY (Bluhm-C.-Pérez Herndndez, '21)

Consider the previous setting and I = ABC C Z with |B| > 2¢. Assume exponential uniform
clustering:

el
Corrp, (A:C) <e(¥) where pr = Ty (1)
Then, for every pair of observables Q4 € A4 and Q¢ € 2Ac we have
g3+l a
|Trapc(paBcQa) — Trap(papQa)l < ||QA||W + 6" |Qall£(£)
| ( ) ( )< lQcll S Qe e(e)
Trapc(papcQc) — Trpe(ppcRc)| < [|Qcll 77— + 9 IQcl e(®) .
(Le/r] +1)!

Brandao-Kastoryano, ’19: Exponential uniform clustering implies local

indistinguishability in any dimension, for high-enough temperature. Proof based on quantum
belief propagation techniques.
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Bluhm-C., ’20: The two following conditions are equivalent for any quantum
channel 7 and any positive states p and o:
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Bluhm-C., ’20: The two following conditions are equivalent for any quantum
channel 7 and any positive states p and o:

p=0T (T(a)"'T(p)) — D(pllo) = D(T(p)I|T (),
where the map B%(-) := o T* (T(0)~"(-)) is called BS recovery condition.
For Hapc = Ha ® He ® Hc, two positive states papc,capc such that
caBc = paB® 1c/dc and a T :=14/da ® Tra, we say that papc is a BS

recoverable state if
PABC = pABpglch-

In particular,

PABC = PABPE PBC = D(pascllpas) = D(pscllps)

LOCAL INDISTINGUISHABILITY (Bluhm-C.-Pérez Hernandez, ’21)

There exists a positive function £ — d2(£), exhibiting superexponential decay, such
that for every three adjacent and finite intervals ABC,

llpasc — pasps paclli < 62(|B]).
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In the first part of the talk:
e Review on results of quasi-factorization for the relative entropy.

o Application of such results of approximate tensorization of the relative entropy
to prove MLSI.

e Some results extend strong superadditivity and some others have various
applications in quantum information theory (superadditivity, uncertainty
relations, etc)

In the second part of the talk:

o Use of geometric Rényi divergences and Araki’s expansionals to show exponential
decay of mutual information.

o Superexponential decay of the distance of a Gibbs state from being
BS-recoverable.
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THANK YOU FOR YOUR ATTENTION!
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