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Information theory <+— Statistical mechanics

Information theory:
e Storage of information.

e Transmision by noisy channels.
Communication channels «+— Physical interactions

Macroscopic properties emerge as effective behavior for
microscopic interactions.
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FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative
evolutions to their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which
imply the existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

No experiment can be executed at zero temperature or
be completely shielded from noise.

= Open quantum many-body systems.

E environment

S system

Figure: An open quantum many-body system.

o Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a
q. Markov semigroup (Markovian approximation).
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QUANTUM DISSIPATIVE SYSTEMS

NOTATION

Figure: A quantum spin lattice system.

Finite lattice A cC Z%.

To every site © € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®$€A Ho.
The set of bounded linear endomorphisms on H, is denoted by
Ba := B(Hna).

The set of density matrices is denoted by

Sa:=8(Ha) = {pA € B : pa=ph,pa >0and tr[pa] = 1}.
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Isolated system.
Physical evolution: p +— UpU* ~» Reversible

Dissipative quantum system (non-reversible evolution)

T:p—T(p)

o States to states = Linear, positive and trace preserving
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p +— UpU* ~» Reversible

Dissipative quantum system (non-reversible evolution)

T:p—T(p)

o States to states = Linear, positive and trace preserving
p®o€S(H®H'), o with trivial evolution
u / / R
T: SE’H@’H) - S(HeH) T —To1
T(pwo) = Tp)®o

o Completely positive.
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EVOLUTION OF A SYSTEM

Isolated system.
Physical evolution: p +— UpU* ~» Reversible

Dissipative quantum system (non-reversible evolution)

T:p—T(p)

o States to states = Linear, positive and trace preserving
p®o€S(H®H'), o with trivial evolution

T: SHOH) —» SHOH) .
A =T=T®1
T(pwo) = Tp)®o

o Completely positive.
T quantum channel

Entropy decay for 1D quantum Gibbs samplers
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OPEN SYSTEMS

Open systems = Environment and system interact.

E environment

S system

Figure: Environment 4+ System form a closed system.

State for the environment: |¢) (|5

P p@ ) (Plp = U (p@ ) (¢lg) UT = tre[U (p @ W) (Wl) U] =5

- S(:H ) quantum channel
= P
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MARKOVIAN APPROXIMATION

Continuous-time description: For every t > 0, the
corresponding time slice is a realizable evolution 7} (quantum
channel).

The effect of the environment on the system is almost
irrelevant, but still important.

Assumption: The environment does not evolve

= Weak-coupling limit

Environment holds no memory + Future evolution only
depends on the present. J

Markovian approximation
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DISSIPATIVE QUANTUM SYSTEMS

DISSIPATIVE QUANTUM SYSTEMS

A dissipative quantum system is a 1-parameter continuous semigroup
{T:"},~, of completely positive, trace preserving (CPTP) maps (a.k.a.
quantum channels) in Sa.

Semigroup:
o T T = Thh.
o Ty =1.

d >k >k * * *
aﬁ =T oLy=LyoT .

QMS GENERATOR

The infinitesimal generator £} of the previous semigroup of quantum
channels is usually called Liouvillian, or Lindbladian.

d

T*: tﬂl*\<:>£*:7
t € A dt

T¢ le=o-
Notation: p; := T (p).

pr = po =Ty (pa) = €A (pa) =5 oa
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QUANTUM DISSIPATIVE EVOLUTIONS USEFUL?

Recent change of perspective = Resource to exploit

New area:
Quantum dissipative engineering,

to create artificial evolutions in which the dissipative process
works in favor (protecting the system from noisy evolutions).

Interesting problems:
o Computational power
o Conditions against noise

o Time to obtain certain states

Entropy decay for 1D quantum Gibb.
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We define the mixing time of 7,* by

7(e) = min{t >0 sup [|7;7(p) = Too(0)ll; < 6}'

PESA

RAPID MIXING
We say that £} satisfies rapid mixing if

sup [ lpr — oall; < poly(JA])e .
PAESA
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QUANTUM DISSIPAT

We define the mixing time of 7,* by

7(e) =mingt > 0: sup |7, °(p) — T (p)ll; <€
PESA

RAPID MIXING
We say that £} satisfies rapid mixing if

sup [ lpr — oall; < poly(JA])e .
PAESA

PROBLEM

Find examples of rapid mixing!
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CLASSICAL SPIN S

Log-Sobolev constant

Spectral gap Exponential

decay of correlations

Rapid mixing




QUANTUM DISSIPATI

QUANTUM SPIN SYSTEMS

Wa,c<D, AxD™?

g1
Ric(L)> K == HWI (k) MLSI(c) = TCo(c2) ﬁ PI(\) == Exp.

Wy <D, axD™2, e1=dca
(’At)tzﬂ unital

TCi(¢1) == Gauss.

y for 1D quantum Gibk



QUANTUM DISSIPATIVE SYSTEMS

QUANTUM SPIN SYSTEMS

Wa,<D, AxD~?
Kastoryano-Temme, 2013

= ~

Fa=k>03 ermal
Ric (£)> k == HWI () MLSI(a) 2== TCs(c2) === PI(\) == Exp.

Wy <D, axD™2, ci=dez

(At)g>0 unital

TCi(¢;) == Gauss.
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Recall: p := T (p).

Liouville’s equation:
Ot = L7 (pt)-

Relative entropy of p; and oy:

D(pt|lon) = tr[ps(log pr — logon)].

Deriving:

9 D(pil|on) = tr[L3 (pr)(log pr —log op)]- (1)
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LOG-SOBOLEV INEQUALITY (MLSI)

Recall: p := T (p).

Liouville’s equation:
Ot = L7 (pt)-

Relative entropy of p; and oy:

D(pt|lon) = tr[ps(log pr — logon)].

Deriving:

9 D(pil|on) = tr[L3 (pr)(log pr —log op)]- (1)

We want to find a lower bound for the derivative of D(p¢||oa) in
terms of itself:

2aD(pillon) < —tr[Lh(pe)(log pr —log on)]. (2)
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The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L) = f
alfa) = inf 2D(pallon)
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D(pt|loa) < D(pal|on)e 2 *ENE
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The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L)) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:

lpe = oally < v/2D(palloa) e A < /210g(1/0min) e~ * DL,

Log-Sobolev constant = Rapid mixing. )
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The log-Sobolev constant of L} is defined as:

x .« —tr[LA(pa)(log pa —logoa)]
L) = f
alfa) = inf 2D(pallon)

If a(LR) > 0:
D(pt|loa) < D(pal|on)e 2 *ENE
and with Pinsker’s inequality, we have:

llo: — oall, < v/2D(palloa) e *ER" < \/2Tog(1/amm) e 1),

Log-Sobolev constant = Rapid mixing. )
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(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). )

_|_

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev
constant of a size-fixed region.

+

(3) Positive log-Sobolev constant of a size-fixed region. J
U

Positive log-Sobolev constant. J
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LOG-SOBOLEV CONSTANT

Let L} : SA — Sa be a primitive reversible Lindbladian with stationary
state op. We define the log-Sobolev constant of £} by

x o —tr[LA(pa)(log pa —logon)]
L) = f
al£h) = il 2D(pallon)

CONDITIONAL LOG-SOBOLEV CONSTANT

Let £} : SA — Sa be a primitive reversible Lindbladian with stationary
state oa, A C A. We define the conditional log-Sobolev constant of L}
on A by

. o —tr[Lh(pa)(log pa —logoa )]
L) = f
an(£a) = il 9D 4(pallon)
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STRATEGY

(1) Quasi-factorization of the relative entropy (in terms of a conditional
relative entropy).

+

(2) Recursive geometric argument.
Lower bound for the log-Sobolev constant in terms of a conditional
log-Sobolev constant.

_|_

(3) Positive (and size-independent) conditional log-Sobolev constant. J
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STRATEGY

(1) Quasi-factorization of the relative entropy (in terms of a conditional
relative entropy).

+

(2) Recursive geometric argument.
Lower bound for the log-Sobolev constant in terms of a conditional
log-Sobolev constant.

_|_

(3) Positive (and size-independent) conditional log-Sobolev constant. J
I

Positive log-Sobolev constant. )
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STATEMENT OF THE PROBLEM

BC

AB

PROBLEM

Let Hapc = Ha ® He @ He and papc,ocaBc € Sapc. Can we prove
something like

D(papclloasc) < €&(oapc) [Dar(pasclloaBc) + Dec(pasc|loasc)] ?

QUANTUM RELATIVE ENTROPY

D(pllo) = tr [p(log p — log 0)]

Entropy decay for 1D quantum Gibb.
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f)

plEnt,(f | F1) + Entu(f | F2),

<
T 1-4|h -1,

Angela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibk



ONAL RELATIVE ENTROPY
ACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

PROBLEM

D(pasclloasc) < &(oasc) [Das(paBclloasc) + Dec(paBclloasc)]

CLASSICAL CASE, Dai Pra et al. 02

Ent,(f) < m;t[Entu(f | 71) + Enty (f | F2)],

CLASSICAL ENTROPY AND CONDITIONAL ENTROPY

Entropy:
Ent,.(f) = u(flog f) — u(f) log u(f).

Conditional entropy:

Ent,(f|G) =p(flog f|G) — p(f|G)logu(f|G).
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RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and op is defined
by:

D(palloa) = tr[pa(log pa —logoa)] .
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RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and oa is defined
by:

D(palloa) = tr[pa(log pa —logoa)] .

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pap — D(pag||oar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(psl||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagl|loas) > D(T(pas)||T(cas)) for every
quantum channel 7T'.
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N OF THE RELATIVE ENTROPY

RELATIVE ENTROPY

QUANTUM RELATIVE ENTROPY

Let pa,on € Sa. The quantum relative entropy of pa and oa is defined
by:

D(palloa) = tr[pa(log pa —logoa)] .

PROPERTIES OF THE RELATIVE ENTROPY

Let Hap = Ha ® Hp and pap,cas € Sap. The following properties hold:

@ Continuity. pap — D(pag||oar) is continuous.
@ Additivity. D(pa ® pgl|loca ® o) = D(palloa) + D(psl||los).
@ Superadditivity. D(pag|lca ® o) > D(palloa) + D(pzllos).

© Monotonicity. D(pagl|loas) > D(T(pas)||T(cas)) for every
quantum channel 7T'.

CHARACTERIZATION OF THE RE, Wilming et al. ’17, Matsumoto '10

If f:S4aB X Sap — R()L satisfies 1 — 4, then f is the relative entropy.

Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gib
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CONDITIONAL RELATIVE ENTROPY

CONDITIONAL RELATIVE ENTROPY

Let Hap = Ha ® Hp. We define a conditional relative entropy in A as

a function
DA(H) :SaB X SaBp — ]Ra—
verifying the following properties for every pap,ocap € Sap:

@ Continuity: The map pap — Da(par||loar) is continuous.
@ Non-negativity: Da(pag|locas) > 0 and
(2.1) Da(pagllcas)=0 if, and only if, pap = 0'114/;0'5 V= PB 0_1/201/§
@ Semi-superadditivity: Da(pag|loa ® o) > D(pal|loa) and
(3.1) Semi-additivity: if pap = pa ® pp,
Da(pa ® pplloa ® o) = D(palloa).
© Semi-motonicity: For every quantum channel T,
Da(T(paB)l|T(0a8)) + Da((tra oT)(pas)||(tra oT)(cas))

< Da(paBlloas) + Da(tra(pas)||tra(cas)).

A]xgela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibbs samplers
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

REMARK

Consider for every pap,oas € SaB
D} p(paslloas) = Da(paslloas) + De(paslloan).

Then, DX, p verifies the following properties:
QO Continuity: pap — DXB(pABHUAB) is continuous.
@ Additivity: D ,(pa @ pslloa @ 75) = D(palloa) + D(psllos).
@ Superadditivity: DX’B(pABHO'A ® o) > D(palloa) + D(ps||los)-

However, it does not satisfy the property of monotonicity.

AXIOMATIC CHARACTERIZATION OF THE CRE (C-Lucia-Pérez Garcia, ’18)

The only possible conditional relative entropy is given by:
Da(paglloas) = D(paglloas) — D(psllos)

for every pap,0aB € SaB.

Entropy decay for 1D quantum G



CTORIZATION OF THE ATIVE ENTROPY

BC

%/—/

AB
Figure: Choice of indices in Hapc = Ha Q Hp @ Hc-

Result of quasi-factorization of the relative entropy, for every
pABC,0ABC € SaBc:

D(pasclloasc) < &(oasc) [Dap(pascl|loasc) + Dec(pase|loasc)],

where £(0capc) depends only on oapc and measures how far cac is from
oA ®oc.

D quantum
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QUASI-FACTORIZA N OF )
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QUASI-FACTORIZATION FOR THE CRE (C-Lucia-Pérez Garcia, '18)

Let Hapc = Ha @ Hp ® Heo and papc,ocasc € Sapc. Then, the following
inequality holds

D(paBclloasc) <
1

m [DAB(pABC||UABC) = DBC(pABCHUABC’)] ,

where

H(oac) = 021/2 ® 051/2 oAC 021/2 ® 051/2 —Tac.

Note that H(cac) =0 if cac is a tensor product between A and C.
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[[H(0ac)|l)D(pasclloasc) <
Dag(papclloasc) + Dec(papcl|loasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

Capel (ICMAT-UAM, Ma,
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[[H(0ac)|l)D(pasclloasc) <
Dag(papclloasc) + Dec(papcl|loasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

=

(1+2|H(cac)lloo)D(pasclloasc) > D(palloa) + D(pclloc).

Angela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibk
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

(1 =2[[H(0ac)|l)D(pasclloasc) <
Dag(papclloasc) + Dec(papcl|loasc) =
=2D(pasclloasc) — D(pclloc) — D(palloa).

<
(1+2[|H(0ac)ll)D(pasclloasc) = D(palloa) + D(pclloc).
=

(1+2||H(cac)lloo)D(paclloac) = D(palloa) + D(pclloc).

Angela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibk
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This result is equivalent to:

(1+2[|H(0a8)l)D(paslloas) = D(palloa) + D(psllos) |

y for 1D quantum Gibk
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to:

(1+2[|H(0a8)l)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

Capel (ICMAT-UAM, Ma,



CONDITIONAL RELATIVE ENTROPY
QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

This result is equivalent to:

(1+2[|H(0a8)l)D(paslloas) = D(palloa) + D(psllos) |

Recall:
o Superadditivity. D(pag||ca ® o) > D(pal|lca) + D(psllog).

Due to:

o Monotonicity. D(pag|loas) > D(T(paB)||T(cas)) for every
quantum channel T

we have

2D(paslloas) 2 D(palloa) + D(psllos).

Angela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibk
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

RELATION WITH THE CLASSICAL CASE

STATES OBSERVABLES

QUANTUM D(paglloas) fas =Tz, (Paz) tr{oag faplogfas|

+—p
LU D(o,,ll00) — Dipsllo)  fo=Toiw)  trltralousfuslogfus] — onfslogfl
Pas =V troas -1 = u()
G =1 [ = (- 16)
CLASSICAL H(v.p) =z u(f logf)
4+——p
Selille Hg(v. ) 1(u(f 1ogf1G) — u(f 1G) log u(f 16))

Figure: Identification between classical and quantum quantities when the states
considered are classical.
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QUASI-FACTORIZATION OF THE RELATIVE ENT!
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LOG-SOBOLEV CONSTANT

QUANTUM SPIN LATTICES

>

00000
s0000
sccee X
S —

A

Figure: A quantum spin lattice system A and A, B C A such that AU B = A.

PROBLEM

For a certain £}, can we prove a(£}) > 0 using the result of
quasi-factorization of the relative entropy?

Entropy d f bs samplers
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THEOREM (C-Lucia-Pérez Garcia, '18)

The heat-bath dynamics, with product fixed point, has a positive
log-Sobolev constant.

Entropy d f bs samplers



LOG-SOBOLEV CONSTANT

THEOREM (C-Lucia-Pérez Garcia, '18)

The heat-bath dynamics, with product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Lp=E;—1a, Li=) L
zEA
Since 1/2 _—1/2 1/2 _1/2
Ez(pa) = UA/ Oge / Pae0 e / UA/ =02 & pee

for every pa € Sa, we have

[’j\(pl\) = Z (Uz & pae — pA)-

zeEA

Entropy decay for 1D quantum Gibb.



LOG-SOBOLEV CONSTANT

THEOREM (C-Lucia-Pérez Garcia, '18)

The heat-bath dynamics, with product fixed point, has a positive
log-Sobolev constant.

Consider the local and global Lindbladians
Lp=E;—1a, Li=) L
zEA
Since 1/2 _—1/2 1/2 _1/2
Ez(pa) = UA/ Oge / Pae0 e / JA/ =02 & pee

for every pa € Sa, we have

Li(pa) =D (02 @ pac — pa).

zeEA

GENERAL QUASI-FACTORIZATION FOR 0 A TENSOR PRODUCT

Let Ha = @ Ha and pa,on € Sa such that op = ®az. The following
TEA zEA

inequality holds:
D(palloa) <Y Dal(pallon).
TEA




OLEV CONSTANT

LOG-SOBOLEV CONSTANT

CONDITIONAL LOG-SOBOLEV CONSTANT

For z € A, we define the conditional log-Sobolev constant of £} in = by

" .o —tr[L£3(pa)(log pa —log UA)]
L) = f
oala) = inf 2D, (pallon)

where o, is the fixed point of the evolution, and D4 (palloa) is the
conditional relative entropy.

LEMMA

an(Ly) >

N | =

Capel (ICMAT-UAM, Ma,



LOG-SOBOLEV CONSTANT

D(palloa) < Da(palloa)

TzEA
—tr[L2(pa)(log pa —log oa)]
<
- g;\ 2aa(Ly)

1 *
- WZ — tr[£5(pa)(log pa —log o4 )]
zEA TEA

1

) 2inf an(£3) (—tr[£A(pa)(log pa — log oa)])

<

POSITIVE LOG-SOBOLEV CONSTANT

(= tr[L3(pa) (log pa — logaa)])

Angela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibk



LOG-SOBOLEV CONSTANT

EXAMPLES OF POSITIVE LOG-SOBOLEV CONSTANTS

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® HpB, A and B not connected, we
have

_ 1
”h(UAB)Hoo:H 1/2®U UABU /®0 2—]lABH SK<§-

In particular, classical Gibbs states satisfy this.




LOG-SOBOLEV CONSTANT

EXAMPLES OF POSITIVE LOG-SOBOLEV CONSTANTS

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® HpB, A and B not connected, we
have

_ 1
I(eaB)lle = 032 © 05 0an05* @ 05" — 1an| <K <.

In particular, classical Gibbs states satisfy this.

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

| A\

Dg(palloa) < f(osa) (Db, (palloa) + Dr,(palloa)) -

In particular, if o is classical, this holds.

A,

Capel (ICMAT-UAM, Ma,



LOG-SOBOLEV CONSTANT

EXAMPLES OF POSITIVE LOG-SOBOLEV CONSTANTS

ASSUMPTION 1

In a tripartite Hilbert space Ha ® Hc ® HpB, A and B not connected, we
have

_ 1
I(eaB)lle = 032 © 05 0an05* @ 05" — 1an| <K <.

In particular, classical Gibbs states satisfy this.

ASSUMPTION 2
For any B C A, B = B; U By, it holds:

| A\

Dg(palloa) < f(osa) (Db, (palloa) + Dr,(palloa)) -

In particular, if o is classical, this holds.

A,

THEOREM (Bardet-C-Datta-Lucia-Pérez Garcia-Rouzé, ’19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian,
the heat-bath dynamics has a positive log-Sobolev constant.

Capel (ICMAT-UAM, Ma,
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SKETCH OF THE PROOF




LOG-SOBOLEV CONSTANT

SKETCH OF THE PROOF

Entropy decay for 1D quantum Gibb.



LOG-SOBOLEV CONSTANT

SKETCH OF THE PROOF

A= OAZ and B = OBJ
i=1 j=1
1

D(palloa) <
(palloa) < 1—=2||h(oacse)|l,,

[Da(palloa) + De(palloa)]

Angela Capel (ICMAT-UAM, Madrid) Entropy decay for 1D quantum Gibk



Dalpalloa) < Da,(palloa)

=1

D quantum



LOG-SOBOLEV CONSTANT

alpalloa) <Y Da;(pallon)

=1

ally) > K mln {aA(LA ), aA(E}}i)}

ie{l,..

el (ICMAT-UAM, Entropy dec for 1D quantum Gibb:



LoG-SoBOLEV €O

OPEN PROBLEMS

PROBLEM 1

Can we use any of the quasi-factorization results to prove log-Sobolev
constants in a more general setting?

PROBLEM 2

Does this hold for greater dimension?

PROBLEM 3

Is there a better definition for conditional relative entropy?

Entropy decay for 1D quantum Gibbs samplers
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