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Open quantum systems

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

⇒ Open quantum many-body systems.

Dynamics of S is dissipative!

The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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Quantum Markov semigroups

Quantum Markov semigroups

A quantum Markov semigroup is a 1-parameter continuous semigroup {T ∗t }t≥0 of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in SΛ.

ρΛ
t−→ ρt := T ∗t (ρΛ) = etL

∗
Λ(ρΛ)

t→∞−→ σΛ

Rapid mixing

We say that L∗Λ satisfies rapid mixing if

sup
ρΛ∈SΛ

‖ρt − σΛ‖1 ≤ poly(|Λ|)e−γt.
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Modified logarithmic Sobolev inequality

Relative entropy: D(ρ‖σ) := tr[ρ(log ρ− log σ)]

MLSI constant

The MLSI constant of L∗Λ is defined as:

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

If lim inf
Λ↗Zd

α(L∗Λ) > 0:

D(ρt||σΛ) ≤ D(ρΛ||σΛ)e−2α(L∗Λ) t,

and with Pinsker’s inequality, we have:

‖ρt − σΛ‖1 ≤
√

2D(ρΛ||σΛ) e−α(L∗Λ) t ≤
√

2 log(1/σmin) e−α(L∗Λ) t.

For thermal states, σmin ∼ exp(|Λ|).

MLSI ⇒ Rapid mixing.

Using the spectral gap (Kastoryano-Temme ’13):

‖ρt − σΛ‖1 ≤
√

1/σmin e
−λ(L∗Λ) t.
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Strategy

Used in (C.-Lucia-Pérez Garćıa ’18) and (Bardet-C.-Lucia-Pérez Garćıa-Rouzé, ’19).
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Conditional MLSI constant

MLSI constant

The MLSI constant of L∗Λ is defined by

α(L∗Λ) := inf
ρΛ∈SΛ

− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]

2D(ρΛ||σΛ)

Conditional MLSI constant

The conditional MLSI constant of L∗Λ on A ⊂ Λ is defined by

αΛ(L∗A) := inf
ρΛ∈SΛ

− tr[L∗A(ρΛ)(log ρΛ − log σΛ)]

2DA(ρΛ||σΛ)
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Quasi-factorization of the relative entropy

Quasi-factorization of the relative entropy

Given Λ = ABC, it is an inequality of the form:

D(ρΛ‖σΛ) ≤ ξ(σABC) [DAB(ρΛ‖σΛ) +DBC(ρΛ‖σΛ)] ,

for ρΛ, σΛ ∈ D(HABC), where ξ(σABC) depends only on σABC and measures how far
σAC is from σA ⊗ σC .
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Example: Tensor product fixed point

(C.-Lucia-Pérez Garćıa ’18) L∗Λ(ρΛ) =
∑
x∈Λ

(σx ⊗ ρxc − ρΛ)

σΛ =
⊗
x∈Λ

σx,

D(ρΛ||σΛ) ≤

≤
∑
x∈Λ

Dx(ρΛ||σΛ)

≤
∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

2αΛ(L∗x)

≤ 1

2 inf
x∈Λ

αΛ(L∗x)

∑
x∈Λ

− tr[L∗x(ρΛ)(log ρΛ − log σΛ)]

=
1

2 inf
x∈Λ

αΛ(L∗x)
(− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)])

≤ (− tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)]) .
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MLSI for quantum spin systems

MLSI, informal (C.-Rouzé-Stilck França ’20)

Let HΛ be a local commuting Hamiltonian with β < βc and such that one of the
following conditions holds:

1 HΛ is classical.

2 HΛ is a nearest neighbour Hamiltonian.

3 Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σΛ, the Gibbs
state of HΛ, such that it has a positive MLSI constant which is independent of the
system size.

∀ρΛ ∈ SΛ, D(ρt‖σΛ) ≤ e−αtD(ρΛ‖σΛ) .

It constitutes the first unconditional proof of MLSI for quantum lattice systems at
high temperature.
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Quasi-factorization of the relative entropy

Let
{

etL
∗
Λ

}
t≥0

be a quantum Markov semigroup with L∗Λ(σΛ) = 0.

For A ⊂ Λ, let EA∗ := lim
t→∞

etL
∗
A .

Quasi-factorization via Pinching (Bardet-C.-Rouzé ’20)

We have:

D(ρ‖EA∪B∗(ρ)) ≤ 1

1− 2c1
[D(ρ‖EA∗(ρ)) +D(ρ‖EB∗(ρ))] + ξAc↔Bc (ρ) ,

where

c1 := max
blocks

‖EA ◦ EB − EA∪B‖ ,

and ξAc↔Bc (ρ) strongly depends on the Pinching.
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Tiling

(Bravyi-Vyalyi ’05) Nearest neighbour Schmidt semigroups.

Conditional expectation: Tiling A + NN Schmidt semigroups ⇒ ξAc↔Bc (ρ) = 0.

Chain rule for the relative entropy (Ohya-Petz ’04, Junge-Laracuente-Rouzé
’20): If σ = EA∗(σ), then

D(ρ‖σ) = D(ρ‖EA∗(ρ)) +D(EA∗(ρ)‖σ) .

D(ρ‖EA∗(ρ))→ Positive CMLSI (Gao-Rouzé ’21)

D(EA∗(ρ)‖σ)→ Quasi-factorization result.
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D(EA∗(ρ)‖σ)→ Quasi-factorization result.



Introduction and motivation Modified logarithmic Sobolev inequality Applications

Approximate tensorization of the relative entropy

Quasi-factorization (C.-Rouzé-Stilck França ’20)

If ω := EA∗(ρ), for C and D as above,

D(ω‖EC∪D∗(ω)) ≤ 1

1− 2c1

(
D(ω‖EC∗(ω)) +D(ω‖ED∗(ω))

)
.

The Hamiltonian needs to be classical, 1D or nearest neighbour.
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Decay of correlations

Clustering of correlations

For high-enough temperature

c1 = max
blocks

‖EC ◦ ED − EC∪D‖ ≤ c |C ∪D| e−
d(C\D,D\C)

k ,

Consequence of

High temperature
β < βc

⇒ Analyticity after measurement
(Harrow et al. ’20)

⇒ Our clustering
of correlations

The Hamiltonian needs to be at high temperature.
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Final steps of the proof

The recursive geometric argument is adapted from classical results (Cesi ’02, Dai
Pra-Paganoni-Posta ’02)

The positivity of the conditional MLSI follows from:
Pinched MLSI + Positivity of the complete MLSI (Rouzé-Gao ’21)

αc := inf
k∈N

α (L∗Λ ⊗ 1k).
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Joining the pieces

We want to show that there exists α > 0, independent of the system size, such that

2αD(ρΛ‖σΛ) ≤ − tr[L∗Λ(ρΛ)(log ρΛ − log σΛ)] =: EPΛ(ρΛ)

for σΛ = e−βHΛ

tr[e−βHΛ ]
with HΛ in the conditions described.

D(ρΛ‖σΛ) = D(ρ‖EA∗(ρ)) +D(EA∗(ρΛ)‖σΛ)

(CMLSI) ≤ αc(LA∗)−1EPA(ρΛ) +D(EA∗(ρΛ)‖σΛ)

+ ≤ αc(LA∗)−1EPA(ρΛ) + γ−1
Λ EPΛ(ρΛ)

≤
(
αc(LA∗)−1 + γ−1

Λ

)
EPΛ(ρΛ)

Finally, γ−1
Λ is positive and independent of |Λ| by .
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Applications

The output energy of an Ising quantum annealer subject to finite range
classical thermal noise at high enough temperature outputs a state whose energy
is close to that of the thermal state of the noise after an annealing time that is
constant in system-size.

In the context of quantum asymmetric hypothesis testing, we show a decay
estimate on the type II error for two Gibbs states corresponding to commuting
potentials in the finite blocklength regime.

We obtain efficient quantum Gibbs samplers for certain Gibbs states
corresponding to commuting potentials, only requiring the implementation of a
circuit of local quantum channels of logarithmic depth.
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Conclusions

In this talk:

Use of results of quasi-factorization and decay of correlations to prove MLSI.

First unconditional proof of MLSI on quantum lattice systems for classical,
nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

Extension to k-local commuting Hamiltonians.

Extension to more semigroups.

For further information, see 2009.11817.

THANK YOU FOR YOUR ATTENTION!
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