The modified logarithmic Sobolev inequality for quantum spin systems

Ángela Capel (Technische Universität München)

Joint work with: Cambyse Rouzé (T. U. München) Daniel Stilck França (U. Copenhagen).

Based on arXiv: 2009.11817.

International Congress on Mathematical Physics, 3 August 2021

Munich Center for Quantum Science and Technology

OPEN QUANTUM SYSTEMS

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

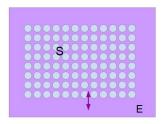
OPEN QUANTUM SYSTEMS

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



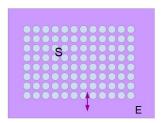
OPEN QUANTUM SYSTEMS

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

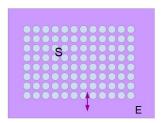
OPEN QUANTUM SYSTEMS

Problem

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

QUANTUM MARKOV SEMIGROUPS

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

QUANTUM MARKOV SEMIGROUPS

QUANTUM MARKOV SEMIGROUPS

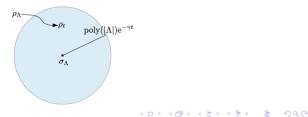
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t\to\infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda}\in\mathcal{S}_{\Lambda}}\left\|\rho_{t}-\sigma_{\Lambda}\right\|_{1}\leq \operatorname{poly}(|\Lambda|)e^{-\gamma t}$$



QUANTUM MARKOV SEMIGROUPS

QUANTUM MARKOV SEMIGROUPS

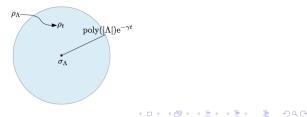
A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

$$\rho_{\Lambda} \stackrel{t}{\longrightarrow} \rho_{t} := \mathcal{T}_{t}^{*}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}^{*}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \left\| \rho_t - \sigma_{\Lambda} \right\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

 $D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha(\mathcal{L}_\Lambda^*) t},$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \le D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} || \sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda}) t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

Modified logarithmic Sobolev inequality

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

 $MLSI \Rightarrow Rapid mixing.$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} \|\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_\Lambda\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_\Lambda) t}.$$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}^*_\Lambda) > 0$:

$$D(\rho_t || \sigma_\Lambda) \leq D(\rho_\Lambda || \sigma_\Lambda) e^{-2 \alpha (\mathcal{L}_\Lambda^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \le \sqrt{2D(\rho_{\Lambda} \|\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}^*_{\Lambda})t}$$

For thermal states, $\sigma_{\min} \sim \exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

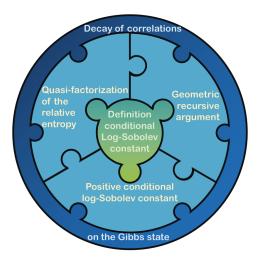
$$\|\rho_t - \sigma_\Lambda\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}^*_\Lambda)t}.$$

INTRODUCTION	AND	MOTIVATION
0000000		

Applications 00

STRATEGY

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined by

$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Conditional MLSI constant

The conditional MLSI constant of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CONDITIONAL MLSI CONSTANT



MLSI CONSTANT

The **MLSI constant** of \mathcal{L}^*_{Λ} is defined by

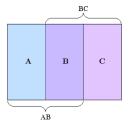
$$\alpha(\mathcal{L}^*_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The conditional MLSI constant of \mathcal{L}^*_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda} || \sigma_{\Lambda})}$$

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

 $D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right] \,,$

for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{D}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_A \otimes \sigma_C$.

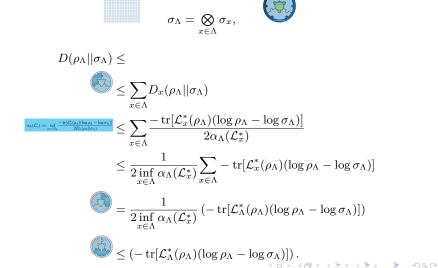
INTRODUCTION AND MOTIVATION

Modified logarithmic Sobolev inequality

Applications 00

EXAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez García '18) $\mathcal{L}^*_{\Lambda}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_x \otimes \rho_{x^c} - \rho_{\Lambda})$



MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- $\textcircled{0} H_{\Lambda} \text{ is classical.}$
- **2** H_{Λ} is a nearest neighbour Hamiltonian.
- \bullet A is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

$$\forall \rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \ D(\rho_t \| \sigma_{\Lambda}) \le e^{-\alpha t} D(\rho_{\Lambda} \| \sigma_{\Lambda}) \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

うして ふゆ く は く は く む く し く

MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- **1** H_{Λ} is classical.
- **2** H_{Λ} is a nearest neighbour Hamiltonian.
- \bullet A is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

$$\forall \rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \, D(\rho_t \| \sigma_{\Lambda}) \leq e^{-\alpha t} D(\rho_{\Lambda} \| \sigma_{\Lambda}) \,.$$

It constitutes the first unconditional proof of MLSI for quantum lattice systems at high temperature.

MLSI FOR QUANTUM SPIN SYSTEMS

MLSI, INFORMAL (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- $\textcircled{0} H_{\Lambda} \text{ is classical.}$
- **2** H_{Λ} is a nearest neighbour Hamiltonian.
- \bigcirc Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point σ_{Λ} , the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

$$\forall \rho_{\Lambda} \in \mathcal{S}_{\Lambda}, \, D(\rho_t \| \sigma_{\Lambda}) \leq e^{-\alpha t} D(\rho_{\Lambda} \| \sigma_{\Lambda}) \,.$$

It constitutes the first unconditional proof of MLSI for quantum lattice systems at high temperature.

・ロット 全部 とうかい きゅう

- 20

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Let $\left\{e^{t\mathcal{L}^*_{\Lambda}}\right\}_{t\geq 0}$ be a quantum Markov semigroup with $\mathcal{L}^*_{\Lambda}(\sigma_{\Lambda})=0$.

For
$$A \subset \Lambda$$
, let $E_{A*} := \lim_{t \to \infty} e^{t\mathcal{L}_A^*}$.

QUASI-FACTORIZATION VIA PINCHING (Bardet-C.-Rouzé '20)

We have:

$$D(\rho \| E_{A \cup B*}(\rho)) \le \frac{1}{1 - 2c_1} \left[D(\rho \| E_{A*}(\rho)) + D(\rho \| E_{B*}(\rho)) \right] + \xi_{A^c \leftrightarrow B^c}(\rho) ,$$

where

$$c_1 := \max_{\text{blocks}} \left\| E_A \circ E_B - E_{A \cup B} \right\|,$$

and $\xi_{A^c \leftrightarrow B^c}(\rho)$ strongly depends on the Pinching.

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Let $\left\{ e^{t\mathcal{L}_{\Lambda}^{*}} \right\}_{t \geq 0}$ be a quantum Markov semigroup with $\mathcal{L}_{\Lambda}^{*}(\sigma_{\Lambda}) = 0$.

For
$$A \subset \Lambda$$
, let $E_{A*} := \lim_{t \to \infty} e^{t \mathcal{L}_A^*}$.

QUASI-FACTORIZATION VIA PINCHING (Bardet-C.-Rouzé '20)

We have:

$$D(\rho \| E_{A \cup B*}(\rho)) \le \frac{1}{1 - 2c_1} \left[D(\rho \| E_{A*}(\rho)) + D(\rho \| E_{B*}(\rho)) \right] + \xi_{A^c \leftrightarrow B^c}(\rho) ,$$

where

$$c_1 := \max_{\text{blocks}} \left\| E_A \circ E_B - E_{A \cup B} \right\|,$$

and $\xi_{A^c \leftrightarrow B^c}(\rho)$ strongly depends on the Pinching.

TILING

(Bravyi-Vyalyi '05) Nearest neighbour Schmidt semigroups.

Conditional expectation: Tiling A + NN Schmidt semigroups $\Rightarrow \xi_{A^c \leftrightarrow B^c}(\rho) = 0$.

Chain rule for the relative entropy (Ohya-Petz '04, Junge-Laracuente-Rouzé '20): If $\sigma = E_{A*}(\sigma)$, then

$$D(\rho \| \sigma) = D(\rho \| E_{A*}(\rho)) + D(E_{A*}(\rho) \| \sigma).$$

TILING

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(Bravyi-Vyalyi '05) Nearest neighbour Schmidt semigroups.

Conditional expectation: Tiling A + NN Schmidt semigroups $\Rightarrow \xi_{A^c \leftrightarrow B^c}(\rho) = 0$.

Chain rule for the relative entropy (Ohya-Petz '04, Junge-Laracuente-Rouzé '20): If $\sigma = E_{A*}(\sigma)$, then

$$D(\rho \| \sigma) = D(\rho \| E_{A*}(\rho)) + D(E_{A*}(\rho) \| \sigma).$$

- $D(\rho || E_{A*}(\rho)) \rightarrow \text{Positive CMLSI (Gao-Rouzé '21)}$
- $D(E_{A*}(\rho) \| \sigma) \to$ Quasi-factorization result.

TILING

うして ふゆ く は く は く む く し く

(Bravyi-Vyalyi '05) Nearest neighbour Schmidt semigroups.

Conditional expectation: Tiling A + NN Schmidt semigroups $\Rightarrow \xi_{A^c \leftrightarrow B^c}(\rho) = 0$.

Chain rule for the relative entropy (Ohya-Petz '04, Junge-Laracuente-Rouzé '20): If $\sigma = E_{A*}(\sigma)$, then

$$D(\rho \| \sigma) = D(\rho \| E_{A*}(\rho)) + D(E_{A*}(\rho) \| \sigma).$$

- $D(\rho \| E_{A*}(\rho)) \rightarrow \text{Positive CMLSI (Gao-Rouzé '21)}$
- $D(E_{A*}(\rho) \| \sigma) \rightarrow$ Quasi-factorization result.

APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

QUASI-FACTORIZATION (C.-Rouzé-Stilck França '20)

If $\omega := E_{A*}(\rho)$, for C and D as above,

$$D(\omega \| E_{C \cup D*}(\omega)) \le \frac{1}{1 - 2c_1} \left(D(\omega \| E_{C*}(\omega)) + D(\omega \| E_{D*}(\omega)) \right)$$

The Hamiltonian needs to be classical, 1D or nearest neighbour.

APPROXIMATE TENSORIZATION OF THE RELATIVE ENTROPY

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

QUASI-FACTORIZATION (C.-Rouzé-Stilck França '20)

If $\omega := E_{A*}(\rho)$, for C and D as above,

$$D(\omega \| E_{C \cup D*}(\omega)) \le \frac{1}{1 - 2c_1} \left(D(\omega \| E_{C*}(\omega)) + D(\omega \| E_{D*}(\omega)) \right)$$

The Hamiltonian needs to be classical, 1D or nearest neighbour.

DECAY OF CORRELATIONS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CLUSTERING OF CORRELATIONS

For high-enough temperature

$$c_1 = \max_{\text{blocks}} \|E_C \circ E_D - E_{C \cup D}\| \le c |C \cup D| e^{-\frac{\mathrm{d}(C \setminus D, D \setminus C)}{k}}$$

Consequence of

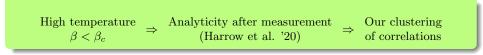
DECAY OF CORRELATIONS

CLUSTERING OF CORRELATIONS

For high-enough temperature

$$c_1 = \max_{\text{blocks}} \left\| E_C \circ E_D - E_{C \cup D} \right\| \le c \left| C \cup D \right| e^{-\frac{d(C \setminus D, D \setminus C)}{k}}$$

Consequence of



The Hamiltonian needs to be at **high temperature**.

DECAY OF CORRELATIONS

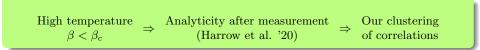
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CLUSTERING OF CORRELATIONS

For high-enough temperature

$$c_1 = \max_{\text{blocks}} \|E_C \circ E_D - E_{C \cup D}\| \le c |C \cup D| e^{-\frac{d(C \setminus D, D \setminus C)}{k}}$$

Consequence of



The Hamiltonian needs to be at high temperature.

FINAL STEPS OF THE PROOF

The **recursive geometric argument** is adapted from classical results (Cesi '02, Dai Pra-Paganoni-Posta '02)

The **positivity of the conditional MLSI** follows from: Pinched MLSI + Positivity of the complete MLSI (Rouzé-Gao '21)

$$\alpha_c := \inf_{k \in \mathbb{N}} \alpha \left(\mathcal{L}^*_\Lambda \otimes \mathbb{1}_k \right).$$

FINAL STEPS OF THE PROOF

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The **recursive geometric argument** is adapted from classical results (Cesi '02, Dai Pra-Paganoni-Posta '02)

The **positivity of the conditional MLSI** follows from: Pinched MLSI + Positivity of the complete MLSI (Rouzé-Gao '21)

 $\alpha_c := \inf_{k \in \mathbb{N}} \alpha \left(\mathcal{L}^*_{\Lambda} \otimes \mathbb{1}_k \right).$

	Modified logarithmic Sobolev inequality	
000000	000000	00

JOINING THE PIECES

We want to show that there exists $\alpha > 0$, independent of the system size, such that

$$2 \alpha D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}^*_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] =: \operatorname{EP}_{\Lambda}(\rho_{\Lambda})$$

for $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{tr[e^{-\beta H_{\Lambda}}]}$ with H_{Λ} in the conditions described.

$$D(\rho_{\Lambda} \| \sigma_{\Lambda}) = D(\rho \| E_{A*}(\rho)) + D(E_{A*}(\rho_{\Lambda}) \| \sigma_{\Lambda})$$
(CMLSI) $\leq \alpha_{c} (\mathcal{L}_{A*})^{-1} EP_{A}(\rho_{\Lambda}) + D(E_{A*}(\rho_{\Lambda}) \| \sigma_{\Lambda})$

$$\Leftrightarrow + \bigotimes \leq \alpha_{c} (\mathcal{L}_{A*})^{-1} EP_{A}(\rho_{\Lambda}) + \gamma_{\Lambda}^{-1} EP_{\Lambda}(\rho_{\Lambda})$$

$$\leq (\alpha_{c} (\mathcal{L}_{A*})^{-1} + \gamma_{\Lambda}^{-1}) EP_{\Lambda}(\rho_{\Lambda})$$

Finally, γ_{Λ}^{-1} is positive and independent of $|\Lambda|$ by

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ○ ○ ○ ○

	Modified logarithmic Sobolev inequality	
000000	000000	00

JOINING THE PIECES

We want to show that there exists $\alpha > 0$, independent of the system size, such that

$$2 \alpha D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq -\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] =: \operatorname{EP}_{\Lambda}(\rho_{\Lambda})$$

for $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{tr[e^{-\beta H_{\Lambda}}]}$ with H_{Λ} in the conditions described.

$$D(\rho_{\Lambda} \| \sigma_{\Lambda}) = D(\rho \| E_{A*}(\rho)) + D(E_{A*}(\rho_{\Lambda}) \| \sigma_{\Lambda})$$
(CMLSI) $\leq \alpha_{c} (\mathcal{L}_{A*})^{-1} EP_{A}(\rho_{\Lambda}) + D(E_{A*}(\rho_{\Lambda}) \| \sigma_{\Lambda})$

$$\Leftrightarrow + \bigotimes \leq \alpha_{c} (\mathcal{L}_{A*})^{-1} EP_{A}(\rho_{\Lambda}) + \gamma_{\Lambda}^{-1} EP_{\Lambda}(\rho_{\Lambda})$$

$$\leq (\alpha_{c} (\mathcal{L}_{A*})^{-1} + \gamma_{\Lambda}^{-1}) EP_{\Lambda}(\rho_{\Lambda})$$

Finally, γ_{Λ}^{-1} is positive and independent of $|\Lambda|$ by $\textcircled{}{}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ○ ○ ○ ○

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

- The output energy of an **Ising quantum annealer** subject to finite range classical thermal noise at high enough temperature outputs a state whose energy is close to that of the thermal state of the noise after an annealing time that is constant in system-size.
- In the context of quantum asymmetric **hypothesis testing**, we show a decay estimate on the type II error for two Gibbs states corresponding to commuting potentials in the finite blocklength regime.
- We obtain efficient **quantum Gibbs samplers** for certain Gibbs states corresponding to commuting potentials, only requiring the implementation of a circuit of local quantum channels of logarithmic depth.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CONCLUSIONS

In this talk:

• Use of results of quasi-factorization and decay of correlations to prove MLSI.

CONCLUSIONS

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

CONCLUSIONS

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

CONCLUSIONS

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

 $\bullet\,$ Extension to $k\mbox{-local}$ commuting Hamiltonians.

CONCLUSIONS

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

- \bullet Extension to k-local commuting Hamiltonians.
- Extension to more semigroups.

CONCLUSIONS

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

- Extension to k-local commuting Hamiltonians.
- Extension to more semigroups.

For further information, see **2009.11817**.

THANK YOU FOR YOUR ATTENTION!

CONCLUSIONS

In this talk:

- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- First unconditional proof of MLSI on quantum lattice systems for classical, nearest neighbour commuting and 1D commuting Hamiltonians.

Open problems:

- Extension to k-local commuting Hamiltonians.
- Extension to more semigroups.

For further information, see **2009.11817**.

THANK YOU FOR YOUR ATTENTION!