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MAIN CONCEPTS
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Given o > 0, p > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(allp) := trlo(log o — log p)].
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MAIN CONCEPTS

RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their relative entropy
is defined as:

D(ollp) = trlo(log o — log ).

BELAVKIN-STASZEWSKI RELATIVE ENTROPY
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Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is

defined as:
Dgs(ol|p) := tr [o log (0‘1/2p 101/2”

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every o > 0, p > 0:

Dss(allp) = D(allp).

Angela Capel, TUM A strengthened DPI for the BS-entropy
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DATA PROCESSING INEQUALITY

Quantum channel: 7 : M — M CPTP map.
e 0>0~T(o)>0.
o T®ldp : MM, - M® M, is positive for every n € N.
e tr[T(0)] = tr[o].
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Quantum channel: 7 : M — M CPTP map.
e 0>0~T(o)>0.
o T®Idy, : M®M, - M® M, is positive for every n € N.
e tr[T(0)] = tr[o].
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D(allp) = D(T(0)[IT(p))-
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DATA PROCESSING INEQUALITY

Quantum channel: 7 : M — M CPTP map.
e 0>0~T(o)>0.
o T®Idy, : M®M, - M® M, is positive for every n € N.
e tr[T(0)] = tr[o].

DATA PROCESSING INEQUALITY

D(allp) = D(T(0)[IT(p))-

CONDITIONS FOR EQUALITY, Petz ’86

D(ol|p) = D(T (0)||T(p)) < o = P4 o T (o), for P4 a recovery map.

Petz recovery map: R4 (-) := p'/2T* (T(p)fl/g(-)T(p)fl/Q) p'/2.

Angela Capel, TUM A strengthened DPI for the BS-entropy
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Particular case: Hapc = Ha @ Hp @ Hce.

Quantum channel: 7 = tra.

Counsider papc,capc € Sapc. Denote ppe = tra[parc].




MOTIVATION

DATA PR NG INEQUALITY FOR THE RELATIVE ENTROPY
GTHENED DPI FOR THE RELATIVE ENTRO

DATA PROCESSING INEQUALITY

A C

Particular case: Hapc = Ha @ Hp @ Hce.
Quantum channel: 7 = tra.
Counsider papc,capc € Sapc. Denote ppe = tra[parc].

Petz’s condition reads as:

2 —-1/2 1/2
D(oagcllpasc) = D(oscllppc) & 0aBc = pYpeppd oBcpRd Pipe
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Operational meaning of D(o||p) — D(T (o)||T (p))
o Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).
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o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).

DPI for relative entropy: D(cl||p) — D(T (o)||T(p)) > 0.
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Operational meaning of D(o||p) — D(T (o)||T (p))
o Thermodynamics: Cost of a certain quantum process (Faist et al, '18).
o Partial trace: Conditional relative entropy (C.-Lucia-Pérez Garcia, ’18).

DPI for relative entropy: D(cl||p) — D(T (o)||T(p)) > 0.

PROBLEM
Can we find a lower bound for the DPI in terms of R5-o T (o) ?

(Fawzi-Renner ’15) Hapc = Ha @ Hp ® He, 0apc > 0 and
pagc =1a/da®opc, T(:) = trc[].

CMI: I(A: C|B)s = D(cascllpasc) — D(osc||pse).

I(A:C|B)s > inf (—2logy F(caBc,naBc)),

~ mapcrecov.

where

F(oaBc,nasc) = ||[V/oascyvnasc||;

thened DPI for the BS-entropy
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(Fawzi-Renner ’15) Hapc = Ha ® Hp @ He, oapc > 0 and
pac = Ia®opc, T(:) = trcl].

CMI: I(A: C|B), = D(casc|lpasc) — D(oscllpse).

I(A : C‘B)g > inf (—210g2 F(UABCJ?ABC)),
NABC

where

F(oasc,nasc) = |VoaBovnasc|l;
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

(Fawzi-Renner ’15) Hapc = Ha ® Hp @ He, oapc > 0 and
pac = Ia®opc, T(:) = trcl].

CMI: I(A: C|B), = D(casc|lpasc) — D(oscllpse).

I(A : C‘B)g > inf (—210g2 F(UABCJ?ABC)),
NABC

where
F(oasc,nasc) = |VoaBovnasc|l;

More specifically, if we consider Vpc o RZBCC oUp, with Ugp and V¢
unitaries on Hp, Hpc respectively,

Vi o RYZC oUp(oar) = VBca'lB/C%O'B UBO'ABUBJBl/2O'IB/C2vV§c,
we have
I(A:C|B)s > —2log, F(ocapc, Ve ORtrc oUp(oaB))-

ngthened DPI for the BS-entropy



MOTIVATION
DATA PF ING INEQUALITY FOR THE RELATIVE

STRENG D DPI FOR THE RELATIVE ENTROPY

MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1), (2), (3), where:
(1) := —/ﬂo(t) log F’ (U, R o T(a)) dt (Junge et al. ’15),

with

—1—it
2

Ry = 5T (T 7T OT() ) o5

and
Bo(t) = g(cosh(ﬂt) +1)7
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:

(1) := —/ﬂo(t) log F' (U, Rg—’m o T(a)) dt (Junge et al. ’15),

with

—1—it
2

Ry = 5T (T 7T OT() ) o5

and
Bo(t) = g(cosh(ﬂt) +1)7
(2) = DM (0’

with

/ﬂo(t) R o T(U)> dt (Sutter-Berta-Tomamichel ’16),

Dy (o||p) = sup D(Psni||Po,m), for M a POVM on the power-set of a finite £.
(&, M)
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

Extensions and improvements of the previous result:

D(allp) = D(T(o)IIT(p)) = (1),(2), (3), where:

(1) := —/ﬂo(t) log F' (U, Rg—’m o T(a)) dt (Junge et al. ’15),

with o.[¢] 14it —1—it —1+it 1—it
REC) =p 2 T (T 77 (T (o) "2 ) p 2
and
™ -1
Bo(t) = i(cosh(ﬂt) +1)7.
(2) := Dy (a /ﬂo(t) ’R;’—’[t] o T(U)> dt (Sutter-Berta-Tomamichel ’16),
with

Dy (o||p) = sup D(Psni||Po,m), for M a POVM on the power-set of a finite £.
(&, M)

(3) := lim suplD (a®"

n—oo T

/ o,11] on )
Bolt) (RT oT(a)) )dt (Berta et al. ’17),

Angela Capel, TUM A strengthened DPI for the BS-entropy
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PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5 o T (0))?

Answer: Tt is not possible (Brandao et al. '15, Fawzi® ’17).
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PROBLEM
Can we find a lower bound for the DPI in terms of D(c||R5 o T (0))?

Answer: Tt is not possible (Brandao et al. '15, Fawzi® ’17).

(Sutter-Renner ’18) Hapc = Ha ® Hp ® Hc, capc > 0 and
papc =1a/da®opc, T(-) = trel].

D(oaBc||RGEE otreloapc]) + Amax(caB||Re-5) > I(A: C|B),,

tro

where
Amax(UHg) =0 5(0') =0,

and
Rp_p = tre O'RUBC.

thened DPI for the BS-entropy
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PROBLEM
Can we find a lower bound for the DPI in terms of RS-0 T (0)?

(Carlen-Vershynina ’17) £ : M — N conditional expectation,
on = E(o) and pn = E(p):

T\ 4 _ o
D(allp) = Diowllpn) = (T ) ILoRo-r | ZIRE (o) = pl}-
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MOTIVATION: STRENGTHENED BOUNDS FOR DPI orF RE

PROBLEM
Can we find a lower bound for the DPI in terms of RS-0 T (0)?

(Carlen-Vershynina ’17) £ : M — N conditional expectation,
on = E(o) and pn = E(p):

T\ 4 _ o
D(allp) = Diowllpn) = (T ) ILoRo-r | ZIRE (o) = pl}-

(Carlen-Vershynina ’18) Extension to standard f-divergences.

thened DPI for the BS-entropy
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SOME DEFINITIONS

C
Let M matrix algebra with matrix subalgebra N. There exists a unique
linear mapping € : M — A such that

ONDITIONAL EXPECTATION

Q ¢ is a positive map,
Q@ &£(B) =B forall BeN,
Q £(AB)=E&E(A)Bfor all A€ M and all Be N,

@ €& is trace preserving.

A map fulfilling (1)-(3) is called a conditional expectation.

a Capel, TUM A strengthened DPI for the BS-entropy
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Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is
defined as:

Dgs(ol|p) :=tr [a log (01/2;)_101/2)].
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BELAVKIN-STASZEWSKI RELATIVE ENTROPY

Given o > 0, p > 0 states on a matrix algebra M, their BS-entropy is
defined as:
Dgs(ol|p) :=tr [cr log (01/2;)_101/2)].

v,

RELATION BETWEEN RELATIVE ENTROPIES

The following holds for every o > 0, p > 0:

Dgs(ollp) = D(al|p)-

thened DPI for the
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SOME DEFINITIONS

OPERATOR CONVEX
Let Z C R interval and f:Z — R. If

fAA+ (L=XN)B) < Af(A)+ (1= Nf(B)

for all Hermitian A, B € B(*H) with spectrum contained in Z, all X € [0, 1],
and for all finite-dimensional Hilbert spaces #, then f is operator convex.

A strengthened DPI for the BS-entropy
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STANDARD f-DIVERGENCES

(Hiai-Mosonyi ’17)

STANDARD f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(llp) = tx[p" 2 f (Lo Ry1)p"?]

is the standard f-divergence.
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(Hiai-Mosonyi ’17)

STANDARD f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(llp) = tx[p" 2 f (Lo Ry1)p"?]

is the standard f-divergence.

Example: Let f(z) = zlogx. Then,
S¢(allp) = trlo(log o — log p)]

defines the relative entropy D(c||p).

A strengthened DPI for the BS-entropy
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STANDARD f-DIVERGENCES

(Hiai-Mosonyi ’17)

STANDARD f-DIVERGENCES

Let f: (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

S1(llp) = tx[p" 2 f (Lo Ry1)p"?]

is the standard f-divergence.

Example: Let f(z) = zlogx. Then,
S¢(allp) = trlo(log o — log p)]

defines the relative entropy D(c||p).

DATA PROCESSING INEQUALITY

Si(T(@)T((p)) < Ss(allp).

A strengthened DPI for the BS-entropy
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STANDARD f-DIVERGENCES

CONDITIONS FOR EQUALITY

Let 0 >0, p >0 beon M and let 7 : M — B be a 2PTP linear map.
Then, the following are equivalent:

O There exists a TP map T : B — M such that 7(T(p)) = p and
T(T (o)) =o0.

Q Sy (T(o)|IT(p)) = St(o|lp) for all operator convex f on [0, c0).

Q@ RY(T(0)) =o0.

A strengthened DPI for the BS-entropy
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MAXIMAL f-DIVERGENCES

Let f : (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

Sp(ollp) = tr [pl/zf(p_l/%p_l“)pl”]

is the maximal f-divergence.

1gthened DPI for the
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MAXIMAL f-DIVERGENCES

Let f : (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

Sp(ollp) = tr [pl/zf(p_l/%p_l“)pl”]

is the maximal f-divergence.

Example: Let f(x) = zlogz. Then,

Si(ollp) = tr pPop /2 log(p_l/QUp_l/Q)] =tr [a log(gl/zp_lal/Q)]

is the Belavkin-Staszewski relative entropy (BS-entropy).
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MAXIMAL f-DIVERGENCES

MAXIMAL f-DIVERGENCES

Let f : (0,00) — R be an operator convex function and o > 0, p > 0 be two
states on a matrix algebra M. Then,

Sp(ollp) = tr [pl/zf(p_l/%p_l“)pl”]

is the maximal f-divergence.

Example: Let f(x) = zlogz. Then,

Si(ollp) = tr pPop /2 log(p_l/QUp_l/Q)] =tr [a log(cfl/zp_lal/Q)]

is the Belavkin-Staszewski relative entropy (BS-entropy).

DATA PROCESSING INEQUALITY

SHT (@) T(p)) < S5 (allp).

A strengthened DPI for the BS-entropy
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STRENGTHENED DP

MAXIMAL f-DIVERGENCES

CONDITIONS FOR EQUALITY

Let 0 >0, p>0beon M and T : M — B be a PTP linear map. Then, the
following are equivalent:

Q SH(T(0)||T(p)) = S¢(allp) for all operator convex functions on [0, o).
Q tr[T(0)*T(p)~'] =tr[o?p!].

A strengthened DPI for the BS-entropy
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RELATION BETWEEN f-DIVERGENCES

For every two states ¢ > 0, p > 0 on M and every operator convex function
f:(0,00) =R, X
St(ollp) < St(ollp).
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RELATION BETWEEN f-DIVERGENCES

For every two states ¢ > 0, p > 0 on M and every operator convex function
f:(0,00) =R, X
St(ollp) < St(ollp).

REMARK: DIFFERENCE

For maximal f-divergences, there is no equivalent condition for equality in
DPI which provides a explicit expression of recovery for o.

A strengthened DPI for the BS-entropy
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ELATIVE ENTROPY

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS
entropy (or for maximal f-divergences) which provides a explicit expression
of recovery for o?

ened DPI for the
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SZEWSKI RELATIVE ENTROPY

QUESTIONS

BS RECOVERY CONDITION

Can we prove an equivalent condition for equality in DPI for the BS
entropy (or for maximal f-divergences) which provides a explicit expression
of recovery for o?

STRENGTHENED DPI FOR BS ENTROPY

Following Carlen-Vershynina, can we provide a lower bound for the DPI for
the BS entropy (or for maximal f-divergences) in terms of a (hypothetical)
BS recovery condition?

thened DPI for the
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BELAVKIN-STASZEWSKI RELATIVE ENTROPY

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI

[:=0"12%po and I'r := 0;1/2p70;1/2

pr = T(p), o1 == T(0)

—1/2

1gthened DPI for the



BELAVKIN-STASZEWSKI RELATIVE ENTROPY

NGTHENED DPI Fo
STRENGTHENED DPI FOR

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI

[:=0"12%po and I'r := 0;1/2p7*0;1/2

pr = T(p), o1 == T(0)

—1/2

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI (Bluhm-C. ’19)

Let M and N be matrix algebras, 7 : M — N a quantum channel, o > 0,
p > 0 two quantum states on M. The following are equivalent:

Q Dss(allp) = Des(o7llpr)-
Q@ p=0oT"(T(0)"'T(p)).
Q 0_1/27-*(0'77—1/21—‘»17-/20';—/2) _ 1-\1/20_1/2.
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EQUIVALENT CONDITIONS FOR EQUALITY ON DPI

[:=0"12%po and I'r := 0;1/2p7*0;1/2

pr = T(p), o1 == T(0)

—1/2

EQUIVALENT CONDITIONS FOR EQUALITY ON DPI (Bluhm-C. ’19)

Let M and N be matrix algebras, 7 : M — N a quantum channel, o > 0,
p > 0 two quantum states on M. The following are equivalent:

Q Dss(allp) = Des(o7llpr)-
Q@ p=0oT"(T(0)"'T(p)).
Q 0_1/27-*(0'77—1/21—‘»17-/20';—/2) _ 1-\1/20_1/2.

4

BS RECOVERY CONDITION

B7() = oT"(T(0)"'()).

A strengthened DPI for the BS-entropy
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CONSEQUENCES

Note: Although they can be seen as a consequence of the previous result,
the following facts were previously known.

COROLLARY

Dgs(ollp) = Des(orllpT) & p =BT o T(p)
& o =BroT(o)
< Dgs(pllo) = Des(prllor).

| A\

COROLLARY

D(o|lp) = D(orllpr) = Dss(ollp) = Des(or|pr)-

Equivalently,
a:'R‘;—OT(U) = o =l3’7)-07'(0).

The converse of this result is false (Jencova-Petz-Pitrik 09,
Hiai-Mosonyi ’17).

thened DPI for the BS-entropy
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STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. ’19)

Let M and N be matrix algebras, 7 : M — N a quantum channel, o > 0,
p > 0 two quantum states on M. Then,

4 _
Dus(llp) = Dastorller) 2 (§) ITIL o™ | Zllo = o7 (o7 o7) s
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STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. ’19)

Let M and N be matrix algebras, 7 : M — N a quantum channel, o > 0,
p > 0 two quantum states on M. Then,

4 _
Dos(ale) = Dos(orllor) = (§) " ITIZ o™ | Zllo = o7 (o7 o)

For £ : M — N a conditional expectation, on := E(c) and pn := E(p):

T 4 _ _ 4
Des(allp) = Des(onllon) = (§) IV [ 2ox*TNoN? = 12612
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STRENGTHENED DPI FOR THE BS-ENTROPY (Bluhm-C. ’19)

Let M and N be matrix algebras, 7 : M — N a quantum channel, o > 0,
p > 0 two quantum states on M. Then,

4 _
Dos(ale) = Dos(orllor) = (§) " ITIZ o™ | Zllo = o7 (o7 o)

STEP 1

For £ : M — N a conditional expectation, on := E(c) and pn := E(p):

T\ 4 _ _ 4
Des(allp) = Des(onllon) = (§) IV [ 2ox*TNoN? = 12612

For £ : M — N a conditional expectation, o := E(0) and pn := E(p):

|ot/2ox 23 — 11262 2 S0 | loont on ol
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For £ : M — N a conditional expectation, on := (o) and pn := E(p):
N A 8 5 4
DBS(UHP) o DBS(UNHPN) 2 (Z) ||r||002"0_1/20_N1/2F./1\//’20_./1\/{2 . 1—11/20_1/2”2 7

and

o2 itz ~ 12| > M 2o~ 2 ot en — ol

,
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STRENGTHENED DPI FOR THE BS-ENTROPY

[Stepsian02 .

For £ : M — N a conditional expectation, on := (o) and pn := E(p):
Dos(ollp) — Das(onllon) > (5) " IPIZ2 o 2ox2ri20x? ~ 14/

and

o2 itz ~ 12| > M 2o~ 2 ot en — ol

For quantum channels 7 : M — N (Stinespring’s dilation):
Dgs(ollp) — Des(orllpT)

>( ) )15 HV01/2V* —1/2F1/2 1/2 _yTY25/?

2

and
HVJI/QV*J}lmFlT/ZU;—/Q _YTY25/2

2

1 _ A=
> L2 2o

|UT* (07_’1/)7') - p||2.

A strengthened DPI for the BS-entropy
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STRENGTHENED DPI FOR MAXIMAL f-DIVERGENCES (Bluhm-C. ’19)

Let M and N be matrix algebras, 7 : M — N a quantum channel, o > 0,
p > 0 two quantum states on M and f : (0,00) — R an operator convex

functlon with transpose f We assume that f is operator monotone

decreasing and such that p_f is absolutely continuous with respect to

Lebesgue measure. Moreover, we assume that for every T' > 1, there exist

constants a > 0, C > 0 satisfying du_ 7(¢)/dt > (CT?*)~! for all

t € [1/T,T] and such that

<<2a + )VT ($i(olle) - s}«wnpﬂ)l”) S
4 1+ [Tl :

Then, there is a constant L, > 0 such that

81(ollp) = Ss(orllor) =
(1+||F|| ) (4a+2) ||F||;o(2a+2)|’071H;(2a+2)”p7 * UT . H4(&+1)'

v,

> La
c

Angela Capel, TUM A strengthened DPI for the BS-entropy
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COMPARISON RESULTS FOR THE RELATIVE ENTROPY AND THE
BS-ENTROPY

Relative entropy BS-entropy
tr[o(log o — log p)] trolog (o1/2p~1a1/2)]
p=p' 2T (T(p)"/*T(0)T (p)~"/?) p'/? o=pT* (T(p)"*T (o))
(5)* 1o Ro-1 12 RE (ox) — oI} (&) 101 o 1Nl ~ B% 0 TG
Extension to Extension to
standard f-divergences miaimal Edivergences
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FUTURE WORK

A C

Particular case: Hapc = Ha @ He ® Hc.

Quantum channel: T = trc.

Ta
Consider papc,caBc € Sapc such that papc = — ® opc.

da

1/2

o= Rg— 0 T(0) ~ oapc = o2 051/ -1/2 _1/2

2
OABOp Opc-

1
o=B0T(0)~ ocapc =0Bcog 0aB.
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CONCLUSIONS AND FUTURE WORK

)

-1
OABC = 0o 0Op

1/2 / /2 1/2

2 -1
0ABOp  Opc

P

—1
OABC = 0OBCOp OAB
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1/2

_1/
0ABC =0pc0p

2 —1/2 _1/2
0ABOB  Ipc

—1
<« OABC = 0BC Op OUAB

Define a BS recoverable state as a state capc € Sapc such that
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1/2

-1/
0ABC =0pc0p

/2 1/2

2 -1 -1
0ABOg '~ 0o OABC = O0BCOp OAB

P

Define a BS recoverable state as a state capc € Sapc such that
OABC = OBC G;}l OAB-

Is the set of BS recoverable states robust?

hened DPI for
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