Logarithmic Sobolev Inequalities for Quantum Many-Body Systems

Ángela Capel (Universität Tübingen)

Joint work with: Ivan Bardet (Inria, Paris)

Li Gao (U. Houston)

Angelo Lucia (U. Complutense Madrid)

David Pérez-García (U. Complutense Madrid)

Cambyse Rouzé (T. U. München)

Daniel Stilck França (U. Copenhagen)

Quantum Trajectories Fall School, 21 October 2021

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

Main topic of this talk

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

Main Topic

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

Concrete Problem

Provide sufficient static conditions on a Gibbs state which imply the existence of a positive log-Sobolev constant.

OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

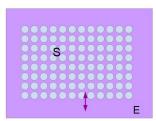
No experiment can be executed at zero temperature or be completely shielded from noise.

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.

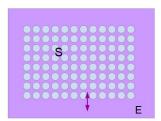


PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



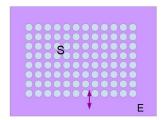
- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal equilibriums.

No experiment can be executed at zero temperature or be completely shielded from noise.

 \Rightarrow Open quantum many-body systems.



- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

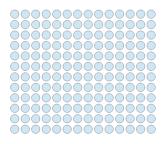


Figure: A quantum spin lattice system.

- Finite lattice $\Lambda \subset \subset \mathbb{Z}^d$.
- To every site $x \in \Lambda$ we associate \mathcal{H}_x (= \mathbb{C}^D).
- The global Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_x$.
- The set of bounded linear endomorphisms on \mathcal{H}_{Λ} is denoted by $\mathcal{B}_{\Lambda} := \mathcal{B}(\mathcal{H}_{\Lambda})$.
- The set of density matrices is denoted by $\mathcal{S}_{\Lambda} := \mathcal{S}(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

Isolated system.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \leadsto \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states ⇒ Linear, positive and trace preserving.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states ⇒ Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$$
, σ with trivial evolution

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states \Rightarrow Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$$

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

• Completely positive.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states ⇒ Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$$

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

• Completely positive.

 \mathcal{T} quantum channel

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states ⇒ Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$$

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

• Completely positive.

$\mathcal T$ quantum channel

For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

Isolated system.

Physical evolution: $\rho \mapsto U \rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states ⇒ Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}'), \sigma \text{ with trivial evolution}$$

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

Completely positive.

\mathcal{T} quantum channel

For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

Continuous-time description: Markovian approximation.

Isolated system.

Physical evolution: $\rho \mapsto U\rho U^* \rightsquigarrow \text{Reversible}$

Dissipative quantum system (non-reversible evolution)

$$\mathcal{T}: \rho \mapsto \mathcal{T}(\rho)$$

• States to states ⇒ Linear, positive and trace preserving.

$$\rho \otimes \sigma \in \mathcal{S}(\mathcal{H} \otimes \mathcal{H}')$$
, σ with trivial evolution

$$\begin{array}{cccc} \hat{\mathcal{T}}: & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') & \rightarrow & \mathcal{S}(\mathcal{H} \otimes \mathcal{H}') \\ & \hat{\mathcal{T}}(\rho \otimes \sigma) & = & \mathcal{T}(\rho) \otimes \sigma \end{array} \Rightarrow \hat{\mathcal{T}} = \mathcal{T} \otimes \mathbb{1}$$

Completely positive.

\mathcal{T} quantum channel

For every $t \geq 0$, the corresponding time slice is a realizable evolution \mathcal{T}_t (quantum channel).

Continuous-time description: Markovian approximation.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\bullet \ \mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*.$
- $\mathcal{T}_0^* = 1$.

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^* \quad , \qquad \mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}$$

PRIMITIVE OMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by σ

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^* \quad , \qquad \quad \mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}$$

Primitive QMS

We assume that $\left\{\mathcal{T}_t^*\right\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by $\sigma.$

REVERSIBILITY

The QMS studied is **reversible**, i.e. it satisfies **detailed balance** $\forall f, g \in \mathcal{A}$

$$\langle f, \mathcal{L}(q) \rangle_{\tau} = \langle \mathcal{L}(f), q \rangle_{\tau}$$

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in S_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^* \quad , \qquad \mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}$$

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt} \mathcal{T}_t^* \mid_{t=1}^{t} \mathcal{T}_t^* \mid_{t=1}^{t$$

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by σ .

REVERSIBILITY

The QMS studied is **reversible**, i.e. it satisfies **detailed balance** $\forall f, g \in \mathcal{A}$:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}.$$

Notation:
$$\rho_t := \mathcal{T}_t^*(\rho), \qquad \qquad \rho_{\Lambda} \xrightarrow{t} \rho_t := \mathcal{T}_t^*(\rho_{\Lambda}) = e_{\tau}^{t\mathcal{L}_{\Lambda}^*}(\rho_{\Lambda}) \xrightarrow{t \to \infty} \sigma_{\Lambda \in \Xi}, \qquad \Xi \longrightarrow QQ$$

QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t^*\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in S_{Λ} .

Semigroup:

- $\mathcal{T}_t^* \circ \mathcal{T}_s^* = \mathcal{T}_{t+s}^*$.
- $\mathcal{T}_0^* = 1$.

$$\frac{d}{dt}\mathcal{T}_t^* = \mathcal{T}_t^* \circ \mathcal{L}_{\Lambda}^* = \mathcal{L}_{\Lambda}^* \circ \mathcal{T}_t^* \quad , \qquad \mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{d}{dt}\mathcal{T}_t^* \mid_{t=0}$$

$$\mathcal{T}_t^* = e^{t\mathcal{L}_{\Lambda}^*} \Leftrightarrow \mathcal{L}_{\Lambda}^* = \frac{u}{dt}\mathcal{T}_t^* \mid_{t=0}$$

PRIMITIVE QMS

We assume that $\{\mathcal{T}_t^*\}_{t\geq 0}$ has a unique full-rank invariant state, which we denote by σ .

REVERSIBILITY

The QMS studied is **reversible**, i.e. it satisfies **detailed balance** $\forall f, g \in \mathcal{A}$:

$$\langle f, \mathcal{L}(g) \rangle_{\sigma} = \langle \mathcal{L}(f), g \rangle_{\sigma}.$$

Notation:
$$\rho_t := \mathcal{T}_t^*(\rho), \qquad \qquad \rho_\Lambda \xrightarrow{t} \rho_t := \mathcal{T}_t^*(\rho_\Lambda) = e^{t\mathcal{L}_\Lambda^*}(\rho_\Lambda) \xrightarrow{t \to \infty} \sigma_{\Lambda}$$

MIXING TIME

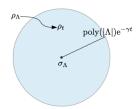
We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min \bigg\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \| \mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho) \|_{1} \le \varepsilon \bigg\}.$$

RAPID MIXING

We say that \mathcal{L}^*_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$



RAPID MIXING

MIXING TIME

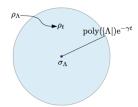
We define the **mixing time** of $\{\mathcal{T}_t^*\}$ by

$$\tau(\varepsilon) = \min \bigg\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\mathcal{T}_{t}^{*}(\rho) - \mathcal{T}_{\infty}^{*}(\rho)\|_{1} \leq \varepsilon \bigg\}.$$

Rapid Mixing

We say that $\mathcal{L}_{\Lambda}^{*}$ satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$



Recall:
$$\rho_t := \mathcal{T}_t^*(\rho)$$
.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Modified Log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Modified Log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t||\sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Modified Log-Sobolev inequality (MLSI)

Recall: $\rho_t := \mathcal{T}_t^*(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}^*(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t||\sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim_{\Lambda \nearrow \mathbb{Z}^d} \inf \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \le D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha (\mathcal{L}_{\Lambda}^*) t}$$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with **Pinsker's inequality**, we have:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t} \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Relative entropy: $D(\rho \| \sigma) := tr[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t}.$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

Relative entropy: $D(\rho \| \sigma) := \operatorname{tr}[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}^*) t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t}.$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

MLSI ⇒ Rapid mixing

Relative entropy: $D(\rho \| \sigma) := \operatorname{tr}[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda}^*)t},$$

and with **Pinsker's inequality**, we have:

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t}.$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13)

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_{\Lambda}^*) \, t}.$$

Relative entropy: $D(\rho \| \sigma) := \operatorname{tr}[\rho(\log \rho - \log \sigma)]$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \nearrow \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}^*) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda}^*)t},$$

and with **Pinsker's inequality**, we have:

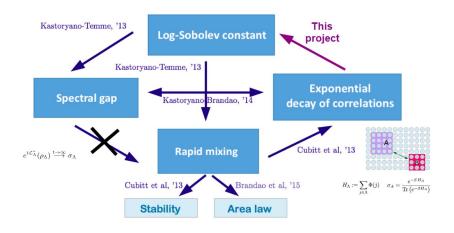
$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_{\Lambda}^*) \, t}.$$

For thermal states, $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

$MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} \, e^{-\lambda(\mathcal{L}_{\Lambda}^*) \, t}.$$



(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

٦

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure

CLASSICAL STRATEGY

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

(2) Recursive geometric argument.

Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

(3) Decay of correlations on the Gibbs measure.

(Cesi, Dai Pra-Paganoni-Posta, '02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy).

(2) Recursive geometric argument.

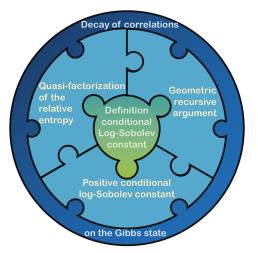
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant of a size-fixed region.

(3) Decay of correlations on the Gibbs measure.

Positive log-Sobolev constant.

STRATEGY

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



Conditional MLSI constant

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined by

$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}^*_{Λ} is defined by

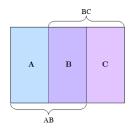
$$\alpha(\mathcal{L}_{\Lambda}^*) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of $\mathcal{L}_{\Lambda}^{*}$ on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}^{*}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Quasi-factorization of the relative entropy



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

$$D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right],$$

for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{D}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_{A} \otimes \sigma_{C}$.

Example: Tensor product fixed point

(C.-Lucia-Pérez García '18)
$$\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda}) = \sum_{x \in \Lambda} (\sigma_{x} \otimes \rho_{x^{c}} - \rho_{\Lambda})$$
heat-bath
$$D_{x}(\rho_{\Lambda} || \sigma_{\Lambda}) := D(\rho_{\Lambda} || \sigma_{\Lambda}) - D(\rho_{x^{c}} || \sigma_{x^{c}})$$

 $\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x,$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq$$

$$\leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\frac{|\mathbf{x}_{\alpha}(\mathcal{C}_{x}) = \inf_{\mathbf{x} \in \mathcal{S}_{x}} \frac{-\operatorname{tr}[\mathcal{C}_{x}(\mathbf{x})|\log \rho_{\Lambda} - \log \sigma_{\Lambda}]}{2\partial_{x}(\mathbf{x}_{x}|\sigma_{\lambda})} \leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}$$

$$\leq \frac{1}{2\inf_{x\in\Lambda}\alpha_{\Lambda}(\mathcal{L}_{x}^{*})}\sum_{x\in\Lambda} -\operatorname{tr}[\mathcal{L}_{x}^{*}(\rho_{\Lambda})(\log\rho_{\Lambda}-\log\sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{\Gamma \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_{x}^{*})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^{*}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}^*(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}_{x}^{D}(X)$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\mathrm{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The Davies generator is given by:

$$\mathcal{L}_{\Lambda}^{D}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S}(X) = \sum_{x \in \Lambda} \left(E_{x}^{S}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}[e^{-\beta H_{\Lambda}}]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H;*}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \mathcal{L}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S}(X) = \sum \left(E_{x}^{S}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Previous results

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

F REVIOUS RESULTS

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D;*}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D;*}$ has a positive spectral gap that is independent of the system size, for every temperature

PREVIOUS RESULTS

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D;*}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D;*}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI for heat-bath with tensor product fixed point (C.-Lucia-Pérez García Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H;*}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

Previous results

Let us recall: For $\alpha(\mathcal{L}^*_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda}^*)$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

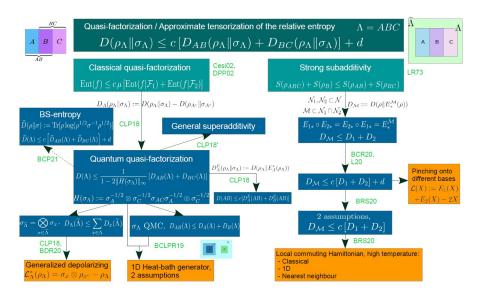
SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D;*}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D;*}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García, Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H;*}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

Quasi-factorization of the relative entropy



Some results

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) = D(\rho_{\Lambda}||\sigma_{\Lambda}) - D(\rho_{B^c}||\sigma_{B^c}).$$

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\|\sigma_A^{-1/2}\otimes\sigma_B^{-1/2}\sigma_{AB}\sigma_A^{-1/2}\otimes\sigma_B^{-1/2}-\mathbbm{1}_{AB}\right\|_\infty\leq K<\frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right)$$

In particular, tensor products satisfy this (with f = 1)

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) = D(\rho_{\Lambda}||\sigma_{\Lambda}) - D(\rho_{B^c}||\sigma_{B^c}).$$

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\| \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB} \right\|_{\infty} \leq K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the **heat-bath** dynamics has a positive MLSI constant.

Some results

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) = D(\rho_{\Lambda}||\sigma_{\Lambda}) - D(\rho_{B^c}||\sigma_{B^c}).$$

Assumption 1

In a tripartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_C \otimes \mathcal{H}_B$, A and B not connected, we have

$$\left\| \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB} \right\|_{\infty} \le K < \frac{1}{2}.$$

In particular, Gibbs states at high enough temperature satisfy this.

Assumption 2

For any $B \subset \Lambda$, $B = B_1 \cup B_2$, it holds:

$$D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \le f(\sigma_{B\partial}) \left(D_{B_1}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_2}(\rho_{\Lambda}||\sigma_{\Lambda}) \right).$$

In particular, tensor products satisfy this (with f = 1).

Theorem (Bardet-C.-Lucia-Pérez García-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the **heat-bath** dynamics has a positive MLSI constant.

MLSI FOR SCHMIDT (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- \bullet H_{Λ} is classical.
- $\ 2\ H_{\Lambda}$ is a nearest neighbour Hamiltonian.
- \bullet Λ is 1D.

Then, there exists a local quantum Markov semigroup with fixed point $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}\left[\mathrm{e}^{-\beta H_{\Lambda}}\right]}$, the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

The dynamics considered in this result is given by **Schmidt generators**.

Previous results

MLSI FOR SCHMIDT (C.-Rouzé-Stilck França '20)

Let H_{Λ} be a local commuting Hamiltonian with $\beta < \beta_c$ and such that one of the following conditions holds:

- \bullet H_{Λ} is classical.
- \bullet \bullet \bullet \bullet \bullet is a nearest neighbour Hamiltonian.

Then, there exists a local quantum Markov semigroup with fixed point $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}[e^{-\beta H_{\Lambda}}]}$, the Gibbs state of H_{Λ} , such that it has a positive **MLSI constant** which is independent of the system size.

The dynamics considered in this result is given by **Schmidt generators**.

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}$$

Let $\mathcal{L}_{\Lambda}^{D,*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D,*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D,*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda}^*)$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*)t}$$

Let $\mathcal{L}_{\Lambda}^{D,*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D,*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D,*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda}^*)$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

RAPID MIXING

In the setting above, $\mathcal{L}_{\Lambda}^{D,*}$ has rapid mixing.

Let $\mathcal{L}_{\Lambda}^{D;*}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D;*}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D;*}) = \Omega(\ln(|\Lambda|)^{-1})$.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda}^*)$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}^*) t}.$$

Rapid Mixing

In the setting above, $\mathcal{L}_{\Lambda}^{D,*}$ has rapid mixing.

Conditional relative entropies: $D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| \sigma_{\Lambda}) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_A^*(\rho_\Lambda))$.

 $\textbf{Heat-bath cond. expectation:} \ E_A^*(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\, \cdot \,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ .$

Proof: Conditional relative entropies + Quasi-factorization

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|}$$

Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: $D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| \sigma_{\Lambda}) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_A^*(\rho_\Lambda))$.

 $\textbf{Heat-bath cond. expectation:} \ \ E_A^*(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ .$

Quasi-factorization (C.-Lucia-Pérez García '18)

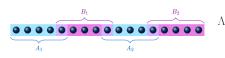
Let \mathcal{H}_{ABC} and ρ_{ABC} , $\sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

$$D(\rho_{ABC}||\sigma_{ABC}) \leq \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|}.$$

Proof: Quasi-factorization



 $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$ is the Gibbs state of a k-local, commuting Hamiltonian H_{Λ} .

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

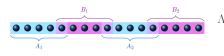
$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^c B^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \le \sum_i D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\sigma_{\Lambda} = \bigoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^c}$$



 $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$ is the Gibbs state of a k-local, commuting Hamiltonian H_{Λ} .

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^c B^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

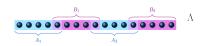
$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez García-Rouzé'19)

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial (A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then:

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_i D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}).$$

$$\sigma_{\Lambda} = \bigoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^c}$$



QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

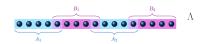


DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\|_{\infty} \le \delta(|Y|).$$

Proof: Decay of Correlations



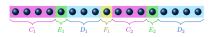
QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2\left\|\sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c}\right\|_{\infty}}.$$



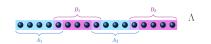
Decay of correlations, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\| \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments $= \mathcal{O}(|A|/\ln |A|)_{0,0}$

Proof: Decay of Correlations



QUASI-FACTORIZATION

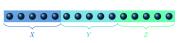
Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \, \sigma_{A^cB^c} \, \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbbm{1}_{A^cB^c} \right\|_{-1}^{2}}.$$





Decay of correlations, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\| \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments $= \mathcal{O}(|A|/\ln|A|)$

Proof: Geometric recursive argument

Let us recall: $D_A(\rho_{\Lambda} || \sigma_{\Lambda}) := D(\rho_{\Lambda} || \sigma_{\Lambda}) - D(\rho_{A^c} || \sigma_{A^c})$, $D_{\Lambda}^{E}(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| E_{\Lambda}^{*}(\rho_{\Lambda}))$.

Comparison between conditional relative entropies (Bardet-C.-Rouzé, '20)

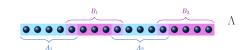
$$D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) \le D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda})$$

 $D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum \left[D_{A_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$

 $\alpha(\mathcal{L}_{\Lambda}^{H;*}) \ge \frac{K}{\mathcal{E}(\sigma_{A^cR^c})} \min \left\{ \alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}), \alpha_{B_i}(\mathcal{L}_{\Lambda}^{H;*}) \right\},$

 $\alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}) = \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \left[\mathcal{L}_{A_i}^{H;*}(\rho_{\Lambda}) (\ln \rho_{\Lambda} - \ln \sigma_{\Lambda})\right]}{D(\rho_{\Lambda} \|E_{A_i}^*(\rho_{\Lambda})\|_{\mathcal{A}_{\Lambda}})}.$

Proof: Geometric recursive argument



Let us recall: $D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| \sigma_{\Lambda}) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| E_A^*(\rho_{\Lambda}))$.

Comparison between conditional relative entropies (Bardet-C.-Rouzé, '20)

$$D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) \le D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda})$$

Therefore, by this and

$$D(
ho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}^E(
ho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}^E(
ho_{\Lambda}||\sigma_{\Lambda}) \right],$$

and thus

$$\alpha(\mathcal{L}_{\Lambda}^{H;*}) \ge \frac{K}{\xi(\sigma_{A^c B^c})} \min \left\{ \alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}), \alpha_{B_i}(\mathcal{L}_{\Lambda}^{H;*}) \right\},\,$$

for

$$\alpha_{A_i}(\mathcal{L}_{\Lambda}^{H;*}) = \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}\left[\mathcal{L}_{A_i}^{H;*}(\rho_{\Lambda})(\ln \rho_{\Lambda} - \ln \sigma_{\Lambda})\right]}{D(\rho_{\Lambda} \|E_{A_i}^*(\rho_{\Lambda}))}.$$

Proof: Positive CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} \| E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} \| E_j^*(\rho_{\Lambda}))$$

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} \| E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} \| E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

PROOF: POSITIVE CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} \| E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} \| E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$\alpha_c(\mathcal{L}_j^{D;*}) := \inf_{k \in \mathbb{N}} \alpha(\mathcal{L}_j^{D;*} \otimes \mathrm{Id}_k) > 0$$

PROOF: POSITIVE CMLSI

Reduction of conditional relative entropies (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} \| E_{A_i}^*(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} \| E_j^*(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$\alpha_c(\mathcal{L}_j^{D;*}) := \inf_{k \in \mathbb{N}} \alpha(\mathcal{L}_j^{D;*} \otimes \mathrm{Id}_k) > 0.$$

Last step

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^{H;*}(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\ \cdot\] \ \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ . \\ \textbf{Davies cond. expectation:} \ E_A^{D;*}(\cdot) := \lim_{t \to \infty} \operatorname{e}^{t \mathcal{L}_A^{D;*}}(\cdot) \ . \end{array}$$

Last step

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^{H;*}(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ . \\ \textbf{Davies cond. expectation:} \ E_A^{D;*}(\cdot) := \lim_{n \to \infty} \operatorname{e}^{t\mathcal{L}_A^{D;*}}(\cdot) \ . \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^{H;*}(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\ \cdot\] \ \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ . \\ \textbf{Davies cond. expectation:} \ E_A^{D;*}(\cdot) := \lim_{n \to \infty} \operatorname{e}^{t \mathcal{L}_A^{D;*}}(\cdot) \ . \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D,*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D,*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D,*}$ has rapid mixing.

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^{H;*}(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\ \cdot\] \ \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ . \\ \textbf{Davies cond. expectation:} \ E_A^{D;*}(\cdot) := \lim_{n \to \infty} \operatorname{e}^{t \mathcal{L}_A^{D;*}}(\cdot) \ . \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D,*}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D,*}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D,*}$ has rapid mixing.

Conclusions

In this talk:

• Introduction of MLSI as a tool to prove rapid mixing.

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Conclusions

In this talk:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

• Can the MLSI be independent of the system size?

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!

- Introduction of MLSI as a tool to prove rapid mixing.
- Use of results of quasi-factorization and decay of correlations to prove MLSI.
- Proof of MLSI for a relevant physical system in 1D.

Open problems:

- Can the MLSI be independent of the system size?
- Extension to more dimensions.

THANK YOU FOR YOUR ATTENTION!