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MAIN TOPIC OF THIS TALK

FIELD OF STUDY

Dissipative evolutions of quantum many-body systems

MAIN TOPIC

Velocity of convergence of certain quantum dissipative evolutions to
their thermal equilibriums.

CONCRETE PROBLEM

Provide sufficient static conditions on a Gibbs state which imply the
existence of a positive log-Sobolev constant.
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OPEN QUANTUM SYSTEMS

PROBLEM

Velocity of convergence of certain quantum dissipative evolutions to their thermal
equilibriums.

No experiment can be executed at zero temperature or be completely
shielded from noise.

= Open quantum many-body systems.

@ Dynamics of S is dissipative!
o The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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NOTATION

Figure: A quantum spin lattice system.

o Finite lattice A CC Z.

o To every site x € A we associate H, (= CP).

The global Hilbert space associated to A is Ha = ®I€A He.

The set of bounded linear endomorphisms on H, is denoted by Ba := B(Ha).

@ The set of density matrices is denoted by
Sa:=8(Ha) ={pa € Ba : po >0 and tr[pa] = 1}.
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EVOLUTION OF A SYSTEM

Isolated system.

Physical evolution: p — UpU™ ~» Reversible

Dissipative quantum system (non-reversible evolution)
T:p—T(p)
o States to states = Linear, positive and trace preserving.
pRc € S(H®H), o with trivial evolution
T: SHOMH) — SHOH) X
A =>T=T31
Tlpwo) = T(p)®o

o Completely positive.
T quantum channel

For every t > 0, the corresponding time slice is a realizable evolution T (quantum

channel).
Continuous-time description: Markovian approximation.
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QUANTUM MARKOV SEMIGROUPS

A quantum Markov semigroup is a 1-parameter continuous semigroup {7;"},~, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
o T o TS = Tihs-
o 7y =1.
d * * * * * * tLA * d .
e =TooLa=LyoTr To =t e Ly=2T |t=0

PriMITIVE QMS

We assume that {7;"},-, has a unique full-rank invariant state, which we denote by o.

REVERSIBILITY
The QMS studied is reversible, i.e. it satisfies detailed balance Vf, g € A:

(f, £(9)), = (L(f),9), -

t—o0

Notation: p; := T, (p), oA ELIN pt =T (pa) = el LA (pr) — oa.
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RAPID MIXING

We define the mixing time of {7;"} by
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MIXING TIME

We define the mixing time of {7;"} by

PAESA

T(e) = min{t >0: sup |77 (p) — Tos ()|, < 5}.

RAPID MIXING

| \.

We say that £} satisfies rapid mixing if

sup [|pr — oall, < poly(JA[)e™".
PAESA
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MODIFIED LOG-SOBOLEV INEQUALITY (MLST)

Recall: p; := T (p).

Master equation:
Orpe = LE(pt)-

Relative entropy of p; and oa:

D(pt|loa) = tr[p(log pt — logoa)].

Differentiating:
9:D(pellon) = tr[Lh(pr)(log pe —logaa)].

Lower bound for the derivative of D(pt||oa) in terms of itself:

2aD(pellon) < — tr[L2(pe) (log pr — log o).
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Relative entropy: D(p||c) := tr[p(log p — logo)]

The MLSI constant of £} is defined as:

" .o —tr[LA(pa)(log pa —logoa)]
Ly) = f
al£h) = fuf 2D(palloa)

If lim inf a(L}) > O:
A 7.4

D(ptlloa) < D(pallon)e >R,
and with Pinsker’s inequality, we have:

o — oally < /2D (palloa) e~ Rt < /2Tog (1 Jomm) e 2R,

For thermal states, omin ~ 1/exp(|A]).

MLSI = Rapid mixing. J

Using the spectral gap (Kastoryano-Temme ’13):

lot = oally < V/1/0min e MR,
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This
Log-Sobolev constant project

Kastoryano-Temme, '13

Kastoryano-Temme, '13

— Exponential
Spectral gap KastoryanofBrandao, *14 decay of correlations

R () 2% U‘X Rapid mixing %al, 13
Cubitt et al, ’1% \handao et al, 15 Hy=Y8G) oa=

Stability Area law
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CLASSICAL STRATEGY

(Cesi, Dai Pra-Paganoni-Posta, ’02)

(1) Quasi-factorization of the entropy (in terms of a conditional entropy). J

+

(2) Recursive geometric argument.
Lower bound for the global log-Sobolev constant in terms of the log-Sobolev constant
of a size-fixed region.

+

(3) Decay of correlations on the Gibbs measure. J

I

Positive log-Sobolev constant. )



INTRODUCTION AND MOTIVATION
0000000000800 0

STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

Quasi-factorization Geometric

of the recursive
relative Definition argument

entropy conditional

Log-Sobolev
constant

Positive conditional
log-Sobolev constant

on the Gibbs state
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CONDITIONAL MLSI CONSTANT

The MLSI constant of £} is defined by

" .o —tr[LA(pa)(log pa —logoa)]
L)) = f
al£h) = ff 2D (pal|oa)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £} on A C A is defined by

. o —tr[Lh(pa)(log pa — logoa )]
L) = f
an(£d) = inf 2D a(pallon)
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QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pa,on € D(HaBc), where {(capc) depends only on 04pc and measures how far
oac 1s from o4 ® oc.
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EXAMPLE: TENSOR PRODUCT FIXED POINT

(C.-Lucia-Pérez Garcfa '18)  Li(pa) = Z (02 ® pzec — pa) heat-bath
TEA

Da(palloa) := D(palloa) = D(pae|loze)

or= Q oq, @

TEA
D(palloa) <
@ < ZDZ(pAHUA)
zEA
anie= o HEGHERE S Z —tr[L3(pa)(log pa —logon)]
a zEA 20‘/\(5;)
1
N e | o
— 2inf aA(L;)Z r[L5(pa)(log pa — log oa)]
TEA zEA
@ .- (= tr[L2 (pa) (log pa — log oa)])
- Qileljf\a/\(ﬁgg) alpa)tlog pa g oA

(3N
@ < (—tr[LA(pa)(log pa — logan)]).



MODIFIED LOGARITHMIC SOBOLEV INEQUALITY
®000000000000

DyNAMICS

Let op = T ] be the Gibbs state of finite-range, commuting Hamiltonian.



MODIFIED LOGARITHMIC SOBOLEV INEQUALITY
®000000000000

DyNAMICS

Let op = T ] be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

T oa) = (Uk/z P pgeotPoy/? PA)
TEA




MODIFIED LOGARITHMIC
®000000000000

DyNAMICS

—B
Let oa = ﬁ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 _—1/2 ~1/2 _1/2
Ly " (pa) == Z (a'A/ ch/ cho'a,c/ O‘A/ pr)
TEA

DAVIES GENERATOR

The Davies generator is given by:
LR(X) = di[Hp, X]+ Y L2 (X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.
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DyNAMICS

—B
Let oa = ﬁ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR.

The heat-bath generator is defined as:

H; 1/2 _—1/2 ~1/2 _1/2
Ly " (pa) == Z (a'A/ ch/ Pmco'xc/ O‘A/ pr)
TEA

DAVIES GENERATOR

The Davies generator is given by:
LR(X) =14[Hp, X]+ D _LD(X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

£ =3 (ESx0) - x),

TEA

where the conditional expectations do not depend on system-bath couplings.



MODIFIE ITHMIC
O@00000000000

PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,

lpe = oally < v/210g(T/omin) e~ *FD".



MODIFIED LOGARITHMIC SOB:
O@00000000000

PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,
o1 — oally < v/ZToB(T fomim) e~ (",

Using the spectral gap A(L}):

lpe = oally < V/1/omme N



MODIFIE
0O®00000000000

PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,

lpe = oally < v/210g(T/omin) e~ *FD".

Using the spectral gap A(L}):

loe = oally < v/Tfomm e MR,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £5"”* has a
positive spectral gap that is independent of the system size, for every temperature.
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PREVIOUS RESULTS

Let us recall: For a(L£}) a MLSI constant,
lpe = oally < v/210g(T/omin) e~ *FD".

Using the spectral gap A(L}):
>3

loe = oally < V/T/omme

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let L7 be the heat-bath or Davies generator in 1D. Then, £5"”* has a
positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,

Beigi-Datta-Rouzé ’18)

Let L’f;* be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.
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MODIFIED LOGARITHMIC SOBOLEV INEQUALITY
QUASI—FACTORIZATION OF THE RELA E ENTROPY

Quasi-factorization / Approximate tensorization of the relative entropy

N=
|oa) + Deo(palloa)] +d

D(palloa) < c[Dag(pa

Classical quasi-factorization Strong subadditivity
Ent(f) < cp [Ent(f|F1) + Ent(f|F2)] S(pasc) + S(ps) < S(pas) + S(psc)

BS-entropy
D(pllo)

General superadditivity
D() )| +d ]
B

- CLP18'

D5 (palloa) = D(pall E4(pa))

Pinching onto

different bases
L(X) = Ey(X)
+E(X) —2X

2 assumptions,

D < c[D; + Ds]

[ i IR Py - Classical
Genera polarizing 1D Heatbath 7 T
FA(pA) =00 ® pre —pa ptic - Nearest
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SOME RESULTS

Dp(pallon) = D(pallon) — D(ppe|lope).

ASSUMPTION 1

In a tripartite Hilbert space Hq ® Ho @ Hp, A and B not connected, we have
_ _ _ _ 1
ot © o5 2oanay? @05t —1as|| <K < 3.
e o]

In particular, Gibbs states at high enough temperature satisfy this.
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Dp(pallon) = D(pallon) — D(ppe|lope).

ASSUMPTION 1

In a tripartite Hilbert space Hq ® Ho @ Hp, A and B not connected, we have

_ _ _ _ 1
ot © o5 2oanay? @05t —1as|| <K < 3.
o0

In particular, Gibbs states at high enough temperature satisfy this.

ASSUMPTION 2
For any B C A, B = B; U Ba, it holds:

Dp(palloa) < f(oBa) (DB, (palloa) + D, (palloa)) -
In particular, tensor products satisfy this (with f =1).

N,

THEOREM (Bardet-C.-Lucia-Pérez Garcia-Rouzé '19)

In 1D, if Assumptions 1 and 2 hold, for a k-local commuting Hamiltonian, the heat-bath
dynamics has a positive MLSI constant.
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MLSI For ScHMIDT (C.-Rouzé-Stilck Franca ’20)

Let Ha be a local commuting Hamiltonian with § < . and such that one of the
following conditions holds:

@ H, is classical.

@ H, is a nearest neighbour Hamiltonian.

@ Ais 1D.
Then, there exists a local quantum Markov semigroup with fixed point
oA = %, the Gibbs state of Ha, such that it has a positive MLSI constant
which is independent of the system size.
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PREVIOUS RESULTS

MLSI For ScHMIDT (C.-Rouzé-Stilck Franca ’20)

Let Ha be a local commuting Hamiltonian with § < . and such that one of the
following conditions holds:

@ H, is classical.

@ H, is a nearest neighbour Hamiltonian.

@ Ais 1D.
Then, there exists a local quantum Markov semigroup with fixed point
oA = %, the Gibbs state of Ha, such that it has a positive MLSI constant
which is independent of the system size.

The dynamics considered in this result is given by Schmidt generators.
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MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f;* be a Davies generator with unique fixed point oa given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£Y*) = Q(In(|A]) ™).
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MAIN RESULT

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)
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MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '21)

Let £f\);* be a Davies generator with unique fixed point oa given by the Gibbs state
of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLST a(£Y*) = Q(In(|A]) ™).

Rapid mixing:

sup |[|pt —oall; < poly(|A])e

PAESA

For a(L£}) a MLSI constant:

lor — oally < v/210g(1/gmm) e * 52

RAPID MIXING

In the setting above, £f;* has rapid mixing.
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PROOF: CONDITIONAL RELATIVE ENTROPIES —+ QUASI—FACTORIZATION

Conditional relative entropies: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) := D(pallE4(pa)) -

n
Heat-bath cond. expectation: E%() := lim 011\/20;3/2 trA[-]Uzcl/Qall\/z) .
n— oo

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,ocasc € Sapc. The following holds
D(pasclloasc) < &(oac) [Das(pasclloapc) + Dec(pasc|loasc)],

where
1

§(oac) =

1/2

1— 2HO’;1/2 ®o5?oaco P @agt? - ILACH

o0

D(pasclloasc) Dap(pasclloasc) Dpc(pasclloasc)

OABC
AlBlc <E(A0) |falBlc + 4Bl c
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PROOF: QUASI-FACTORIZATION

By By
— —
9090090000000000000
N _ ~ ~
Ay Ao

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian Hy .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1

&(oacpe) = 7

1— QHUAC ®agi/2 O AcBe 0261/2 ®agi/

2
—]lAch

Aiy1

—
900000000000000000
S
9A A; DA,

A
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PROOF: QUASI-FACTORIZATION

B, By

99090000000 00000000
| S — ~ _

Ay As

e~ BHA

oA = m is the Gibbs state of a k-local, commuting Hamiltonian Hy .

QUASI-FACTORIZATION
Let AUB = A C Z and pp,op € Sp. The following holds
D(palloa) < &(oacpe) [Dalpalloa) + Da(palloa)l,

where 1

&(oacBe) =
1— 2”0’251/2 ®O’;i/2 O AcBe 0261/2 ®agi/2 — L gcpe

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)

Since o is a QMC between A; <> 9(A;) <> (A; U9OA;)¢, then:

Da(palloa) €D Da,(palloa).
3

Aiy1

= t—
IA ]@]UAi(aai)f ® T(9a;) R (A;004,)¢ 9 0000100100 0 00000000
—
94 A 94,
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By By

P N— —— A
90000000000000000
A Ay

QUASI-FACTORIZATION
Let AUB = A CZ and pp,op € Sp. The following holds

D(pallona) < &(oacBe) Z [Da,(palloa) + D, (palloa)] s
where 1
&(opcpe) =

—1/2

1-— ZHUAC ®a§i/2 O AcBe a;cl/r‘) ®a§i/

2
—]lAch

0000002000 00000000 000000000000000
~ —~ A A — A v ~ ~ —
C )i D Cy By Dy X



MODIFIED LOGARITHMIC SOBOLEV INEQUALITY
0000000080000

PROOF: DECAY OF CORRELATIONS

B By

P N— —— A
90000000000000000
E > 8 5
A Ay

QUASI-FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds

D(pallona) < &(oacBe) Z [Da,(palloa) + D, (palloa)] s

where

1
&(oacpe) =
—1/2 —1/2 —-1/2 —1/2
1—2H0'Ac/ ®UBC/ O.ACBCUAC/ ®0'BC/ — 1 gcpe
0000002000 00000000 000000000000000
| —— N N ——— N _ ~ — —
c E D ¢ E Dy X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernéndez, '21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:
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B By

P N— —— A
90000000000000000
E > 8 5
A Ay

QUASI-FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds
D(palloa) < &(oace) Y [Da,(palloa) + D, (pallon)] ,
i
where 1
&(oacpe) =

—1/2

=i/ =i/ =i
1—2”0’Ac ®UBC/ aAcho'Ac/ ®0'BC/

2
—]lAch

0000002000 00000000 000000000000000
~ —~ A A — A 7 S~ ~— —
c E D. ¢, E Dy X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernéndez, '21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(]' ®0'21(7XZ — ]lszoo < 5(|Y|)

As a consequence, £(o gcpe) is uniformly bounded as long as # segments = O(|A|/In [A]).
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By By
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09090090000 000000000
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Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

Da(palloa) < DX(palloa)
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PROOF: GEOMETRIC RECURSIVE ARGUMENT

By By
— —
09090090000 000000000

S S
1 1y

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) = D(pallE4(pa)) -

COMPARISON BETWEEN CONDITIONAL RELATIVE ENTROPIES (Bardet-C.-Rouzé, '20)

Da(palloa) < DX(palloa)

Therefore, by this and @ , we have:

D(palloa) < g(aAch)Z [DAi (pallona) + D, (PAHUA)} :

i

and thus a(ﬁf;*) >

> oy mn {oa (), am ()}

for

L —tr [LIZ;*(pA)(lnpA —In O'A)]
= R T DR, (o))
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Proor: PositivE CMLSI

REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallE4, (pa)) < 4ka, > D(pallEj (pa))
JEA;
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REDUCTION OF CONDITIONAL RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallE4, (pa)) < 4ka; Y D(pall E; (pa))
JEA;

REDUCTION FROM CMLSI TO GAP

1
kAiO(m,

where A < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), ka, = O(In|A|) for 4; = O(In|A]).

CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:
Dijxy - Djx*
ac(Ly) = égga(ﬁj ®Idg) > 0.
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Heat-bath cond. expectation: E/*(-):= lim (U,l\/QUch/2 trA[-]U;xcl/Qa[lx/Z) .

n— 00

. Djx*
Davies cond. expectation: EY™ () := tlim etfa ().
— 00
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DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, ’20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

For £1*, there is a positive MLSI constant a(£y) = Q(In |A|71).
Therefore, L‘f * has rapid mixing.
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